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Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates

by suppressing peripheral immune cells but have limited efficacy in progressive

forms of the disease where cells in the central nervous system play a critical role.

To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and

monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab,

ocrelizumab, ofatumumab, and teriflunomide are either limited to the

periphery or insufficiently studied to confirm direct central nervous system

effects in participants with multiple sclerosis. In contrast, cladribine and

sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod,

ponesimod, and siponimod) are central nervous system-penetrant and could

have beneficial direct central nervous system properties.

KEYWORDS

sphingosine 1 phosphate receptor modulators, multiple sclerosis, ozanimod, cladribine,
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Introduction

As of 2020, approximately 2.8 million people were recorded to have multiple sclerosis

(MS) worldwide (global prevalence: 35.9 [95% confidence interval, 35.87–35.95] per

100,000 persons), with women being twice as likely as men to develop MS (1),

highlighting the need for effective disease-modifying therapies (DMTs). The typical

progression of MS is shown in Figure 1 (2). Current treatment strategies aim at

reducing relapse risk, decreasing the formation of new brain lesions, and slowing

disability progression (3, 4). Most currently available DMTs are immunomodulatory or

immunosuppressive agents that act predominantly on peripheral immune responses (3, 4).

While immunotherapies reduce relapse activity, most therapies for relapsing MS (RMS)
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have limited efficacy in treating progressive forms of MS, and

targeting peripheral inflammation is not sufficient to slow disease

progression (5).

As MS progresses, resident central nervous system (CNS) cells

play a more dominant, critical role in MS pathogenesis; thus, the

ability of DMTs to cross the blood-brain barrier (BBB) and directly

target sites of inflammation, demyelination, and neuroaxonal

damage could have additional benefits over therapies that are

limited to the periphery (6, 7). For DMTs to be effective in

progressive MS, they must also target chronic CNS inflammation

(5). The purpose of this narrative review is to provide an overview

of therapies currently approved by the US Food and Drug

Administration (FDA) and European Medicines Agency (EMA)

for MS treatment that penetrate the CNS and to elaborate on future

perspectives in the MS therapeutic landscape.
Methods

DMTs approved by the FDA and EMA as of February 2023

were included in this review. Pivotal phase 3 clinical trials in adults

with RMS or progressive MS subtypes were assessed for

alemtuzumab (CARE-MS I and CARE-MS II) (8, 9), dimethyl

fumarate (CONFIRM and DEFINE) (10, 11), glatiramer acetate

(Copolymer 1 Multiple Sclerosis Study Group) (12), interferons

(IFN) (IFNB Multiple Sclerosis Study Group, Multiple Sclerosis

Collaborative Research Group, European Study Group on IFN b-1b
in Secondary Progressive MS, CHAMPS, EVIDENCE, BENEFIT,

and ADVANCE) (13–20), mitoxantrone (MIMS) (21), natalizumab

(AFFIRM) (22), ocrelizumab (OPERA I, OPERA II, and

ORATORIO) (23, 24), ofatumumab (ASCLEPIOS I and

ASCLEPIOS II) (25), teriflunomide (TEMSO and TOWER) (26,

27), cladribine (CLARITY) (28), fingolimod (FREEDOMS,
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FREEDOMS II, and TRANSFORMS) (29–31), ozanimod

(SUNBEAM and RADIANCE) (32, 33), ponesimod (OPTIMUM)

(34), and siponimod (EXPAND) (35).

Given the relatively recent FDA and EMA approvals of a subset

of DMTs assessed here (e.g., ofatumumab, ozanimod, ponesimod),

additional phase 3 clinical trials, post hoc analyses of phase 3 clinical

trials, or open-label extension trials that enrolled phase 3

participants were included if relevant data were not reported in

the pivotal phase 3 clinical trial publications or there were no

significant differences in any measures of brain volume, cognition,

or disability against a comparator in ≥1 pivotal study. Other

relevant references were retrieved from October 2021 to July 2022

by searching PubMed for the generic name of each DMT combined

with each of the following search terms individually: astrocyte, brain

volume/atrophy, evoked potential latency, magnetic transfer ratio,

microglia, multiple sclerosis, myelination, myelin water fraction,

neuron, oligodendrocyte, oligodendrocyte progenitor/precursor

cells, phase 3, remyelination, slowly expanding lesions (SELs), and

smoldering lesions. All references were included at the

authors’ discretion.

DMTs were categorized as direct CNS agents based on

mechanism of action, ability to traverse the BBB, and compilation

of data from the literature search (positive phase 3 clinical trial data

for ≥2 measures of neurodegeneration that a direct-acting DMT

would be expected to affect [brain volume, cognition, and/or

disability]). Assessments of remyelination, most notably magnetic

transfer ratio (MTR)/myelin water fraction (MWF) (36), were also

evaluated. Ultimately, a DMT was considered limited to the

periphery based on data suggesting limited ability or inability to

cross the BBB, unavailable or nonsignificant phase 3 clinical trial

data for the clinical outcomes assessed during the development of

this narrative review, and the authors’ expert opinion.
Observations

Pathophysiology

The BBB normally controls immune cell infiltrates in the CNS

by limiting cell entry to only cell subsets required for immune

surveillance (37). During periods of neuroinflammation, the BBB is

impaired and immune cell entry into the CNS becomes less

regulated (37). Early RMS pathophysiology is characterized by

BBB injury, influx of peripheral immune cells into the CNS, and

the development of focal inflammatory demyelinating lesions in

grey and white matter [Figure 2A (38)] (4, 39). Breakdown of the

BBB in patients with MS may therefore facilitate proinflammatory

cell migration into the CNS (40). During relapses, which are most

prominent early in MS, peripheral innate and adaptive immune

cells, such as CD4+ and CD8+ T cells, B cells, and myeloid cells,

accumulate in the perivascular space and infiltrate the CNS

parenchyma (4, 41–44).

Peripheral immune cells, resident activated microglia, and

astrocytes likely contribute to oligodendrocyte injury,

demyelination, and neuroaxonal injury mediated by the secretion

of soluble factors and cell contact–dependent mechanisms (4).
FIGURE 1

Typical clinical course of MS. The clinical course of MS is heterogenous,
but RRMS is the most common subtype characterized by an initial
episode of neurological symptoms (CIS) followed by periods of
remissions and relapses. Some patients have an initial diagnosis of
primary progressive MS, which is associated with progressive decline.
Over time, improvement during remissions wane, and disability
accumulates, with most patients developing secondary progressive MS.
In secondary progressive MS, neurodegeneration is accompanied with a
decline in brain volume. CIS, clinically isolated syndrome; MS, multiple
sclerosis; RRMS, relapsing-remitting multiple sclerosis. Source: Adapted
(colors revised, text edited/moved, and content removed) from
Håkansson et al. (2). under Creative Commons Attribution
NonCommercial 4.0 International License (https://
creativecommons.org/licenses/by-nc/4.0/).
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While the formation of MS lesions is associated with acute axonal

injury, subsequent lesion-related Wallerian, retrograde, and

neuroaxonal degeneration contribute to the ongoing loss of brain

tissue (45, 46).

As the disease progresses, compartmentalized inflammatory

mechanisms that predominantly involve microglia, B cells, and

other innate cells of the CNS become more prominent, leading to

neurodegeneration, CNS atrophy, and disability worsening

[Figure 2B (38, 47–51)]. The influx of immune cells into the CNS

is dampened, but CNS inflammation persists from resident innate

immune cells contributing to a chronic, localized inflammatory

response (38). Other mechanisms that contribute to progressive

tissue injury and the symptoms associated with progressive forms of

the disease may include neurodegeneration resulting from

neuroaxonal, astrocyte, and oligodendrocyte damage (4, 52). This

tissue injury is evident at the edge of SELs, where “slow-burning”

inflammation contributes to increased lesion burden, brain atrophy,

cognition, and disability worsening (53, 54). In progressive MS,

the BBB is an essential barrier for DMTs to overcome target sites

of CNS-compartmentalized inflammation, demyelination, and

neuroaxonal damage (6, 7). Clinical efficacy on measures of
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cognition, brain volume, and disability may therefore indicate

direct CNS effects (55–57).

Although small, lipophilic molecules cross the BBB through

passive diffusion, large molecules require membrane transport

proteins to cross the BBB (58). For large molecule MS therapies

that are unable to cross the BBB, it is proposed that effects on

peripheral immune cells indirectly affect CNS-compartmentalized

processes, potentially through changing the function or circulating

concentration of immune cells that would typically access the CNS

(59); thus, depending on target cells and the size/lipophilic nature of

the compound, MS therapies may have CNS and peripheral effects.
Direct CNS and peripheral effects of DMTs

The evidence presented in Supplementary Table 1 for

alemtuzumab; dimethyl, diroximel, and monomethyl fumarate;

interferons; glatiramer acetate; mitoxantrone; natalizumab;

ocrelizumab; ofatumumab; and teriflunomide suggests that the

function of these DMTs may be limited to the periphery or that

they were insufficiently studied to confirm direct CNS effects.
A B

FIGURE 2

Pathophysiology of multiple sclerosis. (A) In the early stages of MS, relapses coincide CNS inflammation and demyelination that are typically
discernible as white matter lesions via MRI. Peripheral immune cell infiltration can occur from meningeal blood vessels (across the BBB), the
subarachnoid space, or the choroid plexus (across the blood-CSF barrier). These infiltrates may then accumulate in perivascular spaces and enter the
CNS parenchyma, and along with activated CNS-resident microglia and astrocytes, promote demyelination and oligodendrocyte and neuroaxonal
injury through direct contact-dependent mechanisms or via soluble inflammatory and neurotoxic mediators. (B) In the later stages of MS,
progressive neurological decline is accompanied by CNS atrophy. Immune cell infiltration is dampened, but CNS inflammation persists. Meningeal
tertiary lymphoid-like structures can also contribute to late-stage inflammation in SPMS. Irrespective of MS subtype, CNS-resident innate immune
cells may contribute to chronic inflammation. Astrocytes produce ligands and factors that can promote microglial recruitment and activation while
also preventing remyelination at the sites of neuroaxonal injury by inhibiting progenitor cell development into mature oligodendrocytes. APC,
antigen-presenting cell; BBB, blood-brain barrier; CCL, chemokine ligand; CNS, central nervous system; CSF, cerebrospinal fluid; FDC, follicular
dendritic cell; GM, grey matter; IFN-y, interferon gamma; IL, interleukin; MAIT, mucosal-associated invariant T cell; MRI, magnetic resonance
imaging; MS, multiple sclerosis; NO, nitric oxide; RNS, reactive nitrogen species; ROS, reactive oxygen species; SPMS, secondary progressive multiple
sclerosis; TH, T helper. Adapted from Dendrou et al. (38).
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Evidence for cladribine, fingolimod, ozanimod, ponesimod, and

siponimod suggests their direct CNS effects (Supplementary

Table 2); therefore, these DMTs are the focus of this review.
DNA synthesis inhibitor

Cladribine
Cladribine is indicated for the treatment of adults with RMS,

including relapsing-remitting MS (RRMS) and active secondary

progressive MS (SPMS) in the US and for adults with highly active

RMS in the European Union (EU) (60, 61). Cladribine is an

adenosine analog prodrug thought to function by causing

cytotoxic effects on B and T cells through the impairment of

DNA synthesis resulting in lymphocyte depletion (60).

Intermittent therapy with cladribine can induce long-term

remission of MS that is sustained without ongoing treatment (28).

During treatment-free periods, the immune system repopulates and

regains the ability to respond to infections without commensurate

return of MS disease activity; thus, cladribine is considered an

immune reconstitution therapy (62, 63).

As a small molecule, cladribine crosses the BBB in humans (64,

65), with penetration of the CNS observed in children with acute

leukemia (64). An in vitro study found cladribine treatment to

significantly reduce the granularity, phagocytotic ability, and

motility of lipopolysaccharide-stimulated microglia at

concentrations that putatively overlap with those found in the

cerebrospinal fluid (CSF) of humans (0.1 µM–1 µM) (66). Other

preclinical studies confirmed that cladribine inhibits microglial

proliferation and proinflammatory cytokine release and induces

microglia apoptosis (67, 68).

In a phase 3, randomized, placebo-controlled trial, cladribine-

treated participants with RMS had a lower risk of clinical relapse

and disability progression and had suppression of magnetic

resonance imaging (MRI) brain lesions compared with placebo

over 96 weeks (28). A post hoc analysis found that cladribine

treatment resulted in less annualized brain atrophy over 2 years

compared with placebo-treated participants (69). This reduction in

brain atrophy was closely associated with a lower risk of disability

progression, suggesting that treatment with cladribine can target

neurodegeneration in patients with RMS (69). An observational

study also found that cladribine suppresses the intrathecal humoral

response, as observed by the disappearance of oligoclonal banding

from the CSF of participants with RMS, an effect that was associated

with milder neurological disability after 10 years of follow-up (70).

To our knowledge, phase 3 clinical trials assessing cognition and

studies utilizing MTR/MWF techniques are not published

for cladribine.
S1P receptor modulators

Fingolimod
Fingolimod is indicated for the treatment of patients 10 years of

age and older with RMS, including clinically isolated syndrome

(CIS), RRMS, and active SPMS, in the US and for patients 10 years
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of age and older with highly active RMS in patients with active

disease despite treatment with at least one other DMT or rapidly

evolving severe RMS in the EU (71, 72). Fingolimod is a prodrug

metabolized by sphingosine kinase to the active metabolite

fingolimod-phosphate, which is a sphingosine-1 phosphate (S1P)

receptor modulator that binds with high affinity to S1P1,3,4,5 and

blocks the capacity of lymphocytes to egress from lymph nodes,

reducing the number of lymphocytes in peripheral blood (71). The

full mechanism by which fingolimod exerts therapeutic effects in

MS is unknown but may involve lymphocyte sequestration within

lymphatic tissue thereby limiting lymphocyte migration into the

CNS (71).

The lipophilic properties of fingolimod allow for CNS

penetration (73). In experimental autoimmune encephalomyelitis

(EAE) rodent models, fingolimod crossed the BBB, accumulated in

the white matter of the CNS along the myelin sheath, and reduced

S1P1 signaling from astrocytes (73, 74). Following intravenous

injection in humans, a radiolabeled fingolimod analog entered the

brain, with uptake increasing up to 26 hours after administration

(75). An in vivo study found fingolimod improves neurological

functional recovery in an EAE mouse model and promotes

oligodendrocyte precursor cell proliferation and differentiation

(76). Additional in vitro studies observed ameliorated pathological

effectors associated with the activation of microglia, ultimately

leading to increased morphological markers of remyelination and

direct neuronal effects (77, 78).

In phase 3, randomized, RMS clinical trials, treatment with

fingolimod reduced annualized relapse rate (ARR), MRI brain

lesion activity, and brain volume loss compared with placebo at

12 and 24 months or IFN b-1a at 12 months (29–31). Post hoc

analysis of data pooled from the phase 3 FREEDOMS and

FREEDOMS II trials found that early fingolimod treatment may

offer long-term cognitive benefits in participants with RRMS, as

determined via improvements in Paced Auditory Serial Addition

Test 3 (PASAT-3) scores from baseline compared with placebo (79).

Fingolimod also reduced the risk of 3- and 6-month confirmed

disability progression (CDP) over a 24-month study period, with

Expanded Disability Status Scale (EDSS) and Multiple Sclerosis

Functional Composite (MSFC) z scores remaining stable or

improving slightly at month 24 compared with placebo in

participants with RMS (29); however, when compared with IFN

b-1a treatment, there were no significant differences in time to

disability progression or the proportion of participants with

confirmed progression at 12 months (31). Subsequently, a post

hoc analysis of data from TRANSFORMS, FREEDOMS,

FREEDOMS II, and their extensions, found that participants

taking continuous fingolimod were more likely to experience

confirmed or sustained disability improvement over 8 years than

those switching from IFN b-1a and were more likely to experience

confirmed disability improvement than those switching from

placebo, suggesting long-term benefit (80).

Fingolimod also enhanced tissue damage recovery assessed by

MTR in lesions after 6 months and in normal-appearing white

matter and grey matter after 2 years (81). In an investigator-driven,

randomized, phase 2 trial, fingolimod treatment improved recovery

from unilateral optic neuritis in participants with MS or CIS
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compared with IFN b-1b, further supporting effects on

remyelination; however, these results require confirmation in

multicenter phase 3 clinical trials (82).

Ozanimod
Ozanimod is indicated for the treatment of adults with RMS,

including CIS, RRMS, and active SPMS in the US and for RRMS with

active disease defined by clinical or imaging features in the EU, as well

as ulcerative colitis in the US and EU (83, 84). Ozanimod is a selective

S1P receptor modulator that binds with high affinity to S1P1 and S1P5
receptors.Ozanimodblocks lymphocyte egress from lymphnodes and

reduces the number of lymphocytes in peripheral blood. Although its

fullmechanismsof actionareunknown, ozanimod isproposed toaffect

MS through lymphocyte sequestration, thereby limiting lymphocyte

migration into the CNS (84).

The ability of ozanimod to cross the BBB was observed

preclinically, where the brain:blood ratio was 10:1 in mice

following a single oral dose of ozanimod and 16:1 in rats

following 5 days of once-daily dosing (85). Ex vivo treatment of

EAE corticostriatal slices with ozanimod increased the mRNA

expression of a marker of microglia activation while decreasing

the expression of other inflammatory markers, and in vitro

ozanimod treatment elicited potent protein kinase B (AKT) and

extracellular-regulated kinase phosphorylation in human astrocytes

(86, 87). In murine EAE, ozanimod reduced clinical scores at a dose

that did not induce lymphopenia and elicited neuroprotective

effects by reducing axonal breaks and improving functional

capabilities following cuprizone-induced demyelination, each of

these processes suggesting direct CNS effects (85, 88).

In phase 3, randomized, active comparator–controlled clinical

trials, treatment with ozanimod 0.92 mg for up to 24 months

reduced ARR, MRI brain lesions, and brain volume loss compared

with IFN b-1a (32, 33). In addition, ozanimod treatment improved

cognitive processing speed, as observed with greater Symbol Digit

Modalities Test (SDMT) z scores, at month 12 compared with IFN

b-1a in participants with RMS (32). Mean change in MSFC scores

were similar across treatment groups from baseline to month 12 but

were improved at month 24 with the ozanimod 0.46 mg dose

compared with IFN b-1a (32, 33). Although the proportions of

participants with CDP at 3 and 6 months were not significantly

different between treatment groups in the phase 3 clinical trials (32,

33), interim analysis of a long-term, open-label extension trial

demonstrated sustained control of disability progression with

continuous ozanimod use (89). To our knowledge, studies

utilizing MTR/MWF to assess the effects of ozanimod on

demyelination are not published.

Ponesimod
Ponesimod is indicated for the treatment of adults with RMS,

including CIS, RRMS, and active SPMS in the US and EU (90, 91).

Ponesimod is an S1P receptor modulator that binds with high

affinity exclusively to S1P1 and blocks the capacity of lymphocytes

to egress from lymph nodes, reducing the number of lymphocytes

in peripheral blood (90). Like the other S1P receptor modulators,

ponesimod is proposed to act through lymphocyte sequestration

and reduction of lymphocyte migration into the CNS (90).
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Preclinical studies of ponesimod demonstrated dampened

neuroinflammation through the attenuation of glial activation in

murine EAE and neuroinflammatory responses in primary human

astrocytes (92, 93). In addition, ponesimod prevented cuprizone-

induced demyelination in the cingulum of an EAE mouse

model, supporting protective and likely selective effects against

demyelination in the brain (93).

In a phase 3, randomized, active comparator-controlled clinical

trial, ARR, number ofMRIbrain lesions, andbrain volume loss atweek

108 was lower with ponesimod compared with teriflunomide in

participants with RMS (34). Cognitive processing speed and auditory

processing speed were assessed with the SDMT and PASAT-3,

respectively. Mean changes in SDMT and PASAT-3 scores from

baseline to week 108 were numerically higher at most visits through

week 108 in ponesimod-treated participants versus those treated with

teriflunomide (94). Although ponesimod treatment did not impact

time to 12- or 24-week confirmed disability accumulation compared

with teriflunomide in participants with RMS, change from baseline to

week 108 in MSFC z-scores favored ponesimod (34, 94). To our

knowledge, studies utilizing MTR/MWF to assess the effects of

ponesimod on remyelination are not published.
Siponimod
Siponimod is indicated for the treatment of adults with RMS,

including CIS, RRMS, and active SPMS in the US and for adults

with active SPMS in the EU (95). Siponimod is an S1P receptor

modulator that binds with high affinity to S1P1 and S1P5 and blocks

the capacity of lymphocytes to egress from lymph nodes, reducing

the number of lymphocytes in the peripheral blood (95).

Siponimod is lipophilic and crosses the BBB, reaching dose-

proportional steady-state levels in blood, concomitant with 6- to 8-

fold higher levels in mouse brain homogenates after 10 days of

treatment (96, 97). In preclinical studies, siponimod decreased

oligodendrocyte cell death and axon demyelination, stimulated

remyelination, prevented neurons from astrocyte-induced

degeneration, attenuated astrogliosis and microgliosis, and induced

proregenerative microglia (96, 98–101). In addition, siponimod

provided neuroprotective benefits in murine EAE, independent of

peripheral immune effects, suggesting direct CNS effects (96, 102).

In a phase 3, randomized clinical trial in SPMS, siponimod

slowed disability progression, decreased ARR, reduced the

accumulation of MRI brain lesions, and reduced the rate of brain

atrophy compared with placebo (35). Of the five participants with

SPMS treated with siponimod from the phase 3 study who

consented to CSF sampling, all had siponimod (low nM range) in

their CSF (97). Post hoc analyses demonstrated positive effects on

cognition, as siponimod improved SDMT scores from baseline at

months 12 and 24 compared with placebo (103). Most notably,

siponimod had a significant and consistent impact on MTR

decrease in normal-appearing white matter and cortical grey

matter over time compared with placebo, while improving MTR

recovery in newly formed lesions, consistent with possible

remyelination (104). In addition, siponimod treatment improved

brain tissue integrity/myelination within newly formed normalized

MTR lesions across brain tissues compared with placebo (105).
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Direct impact of DMTs on the CNS

Pivotal active-comparator phase 3 clinical trials established

greater efficacy in measures of brain volume, cognition, and/or

disability for DMTs acting directly on the CNS (e.g., fingolimod,

ozanimod, and ponesimod) than those that may be limited to the

periphery (e.g., teriflunomide and IFN b-1a) in participants with

MS (31–34). Fingolimod treatment, however, did not slow disease

progression compared with placebo in a phase 3 clinical trial of

participants with primary progressive MS, suggesting that this anti-

inflammatory therapy for relapse-onset MS is less likely to be

effective in primary progressive disease, and other treatment

approaches may be needed for these patients (106). In addition,

other putative remyelination-promoting therapies, including

opicinumab, MD-1003, and elezanumab failed to meet their study

endpoints in MS clinical trials; lack of efficacy may have been due to

the studied dose, time of treatment initiation, proof of concept

study endpoints, or patient selection (107–110). The impact of

centrally acting DMTs on brain volume, cognition, and/or disability

contrasts with the lack of observed efficacy of remyelinating

therapies and warrants further investigation.

Future perspectives

The MS treatment landscape is continuously evolving, and

ublituximab (an anti-CD20 monoclonal antibody) was recently

approved by the FDA (111). Other therapies that target novel

pathways are also in development (e.g., autologous hematopoietic

stem cell transplantation [aHSCT], intrathecal stem cells, Bruton’s

tyrosine kinase [BTK] inhibitors, clemastine fumarate, Epstein Barr

virus [EBV]-targeted T cell immunotherapy, and temelimab) (112–

122); preliminary data for these novel therapies are suggestive of

CNS effects, as summarized in more detail below.

An observational, multicenter study provided Class IV evidence

for aHSCT as an immunosuppressant MS therapy, because

treatment induced durable disease remission for over 10 years in

most participants with RRMS (including extremely aggressive

forms of MS) (121). A randomized, phase 3 clinical trial

(NCT04047628) is underway to determine the efficacy of aHSCT

in participants with RMS, RRMS, or SPMS (123). Similarly, a pilot

study of intrathecal mesenchymal stem cells in participants with

RRMS or SPMS found that treatment stalled the disease progression

of SPMS, and a phase 1/2 study (NCT04749667) is recruiting to

determine efficacy in participants with progressive MS (112, 124).

BTK inhibitors primarily prevent B cell activation and maturation

andare consideredapromising therapeutic treatmentoption forMSthat

could target CNS-compartmentalized B cells, macrophages, and

microglia (125). In a murine EAE model, the BTK inhibitors

evobrutinib and tolebrutinib crossed the BBB (126, 127), with other

preclinical studies showing BTK inhibitors to target CNS-inflammatory

processes, including the reduction of microglial activation and

inflammatory signaling (128–130). In addition, BTK inhibition has a

positive effect on remyelination by targetingmicroglia, as demonstrated

in ex vivoand in vivomodels (131).Aphase1 trial found that evobrutinib

was well tolerated in healthy volunteers, and a phase 2 trial found that

treatment reduced the total number of GdE lesions compared with
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in participants with RMS (118, 122). In a phase 1 tolebrutinib clinical

trial, theCSF:plasmaratiooffree tolebrutinibwas2.25and treatmentwas

considered well tolerated in healthy volunteers (116). A phase 2b trial in

participants with RMS found that tolebrutinib treatment reduced the

total number of GdE lesions compared with placebo (51). Additional

phase 2 and phase 3 clinical trials are planned/underway for evobrutinib

(NCT02975349, NCT04338022, and NCT04338061) and tolebrutinib

(NCT04411641,NCT04410991,NCT04410978, andNCT04458051), as

well as other BTK inhibitors, including fenebrutinib (NCT05119569,

NCT04586010, NCT04586023, and NCT04544449), orelabrutinib

(NCT04711148), remibrutinib (NCT05147220 and NCT05156281),

and BIIB061 (NCT04079088) for relapsing and progressive forms of

MS (118, 132–145).

Clemastine fumarate, originally developed as a first-generation

antihistamine, is a muscarinic receptor antagonist that crosses the

BBB and may promote remyelination (146). In the randomized,

placebo-controlled crossover ReBUILD study, clemastine fumarate

reduced visual-evoked potential latency delay in participants with

RMS and chronic demyelinating optic neuropathy (120) and is

considered the first randomized, controlled MS trial to demonstrate

efficacy of a remyelinating agent (120). Phase 1 and 2 trials are

planned/underway to assess the effects of clemastine fumarate as a

monotherapy or in combination with metformin on remyelination

in participants with relapsing or progressive forms of MS (147, 148).

EBV-targeted T cell immunotherapies have the potential to target

cells associated with MS pathophysiology and may have a role in the

CNS, as T cells access all compartments within the CNS (114). A case

reportof apatientwith secondaryprogressiveMStreatedwithanEBV-

targeted T cell immunotherapy showed clinical improvement with

reduced disease activity via MRI and decreased intrathecal

immunoglobulin production (115). An open-label phase 1 trial of 10

participants with primary progressive multiple sclerosis and SPMS

found EBV-targeted T cell treatment to be associated with clinical

improvement in 7 participants, with 3 having improved EDSS score

(114). Retrospective analysis of participants with progressive MS in

part 1 of EMBOLD (NCT03283826), a single-arm phase 1 study with

an open-label extension, found long-term disability improvement

during ATA188 treatment (investigational EBV-targeted T cell

immunotherapy) to be related to brain volume change and MTR in

T2 lesions, suggesting the potential for remyelination over time (117).

Part 2 of EMBOLD is a double-blind, randomized, placebo-controlled

trial that is currently underway (149).

Early data for the immunoglobulin G4 monoclonal

antibody temelimab suggest CNS effects on MRI measures of

neurodegeneration (119). Although a randomized, placebo-

controlled phase 2b study of temelimab failed to show an effect on

acute inflammation, radiologic signs of possible neural protective

effects suggest the potential use of temelimab in progressiveMS (119).

In future clinical trials, applying appropriate endpoints that

distinguish between peripheral and direct CNS effects may guide the

therapeutic landscape for MS. A molecule is commonly considered to

penetrate the BBB if the brain:plasma ratio is >0.04 using nonperfused

brain tissue; however, this single parameter does not guarantee that

adequate brain penetration is achieved for ligand-target interaction for

a specific compound and should be accompanied by assessment of
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therapeutic response (150). Assessing the therapeutic response in the

CNS may be accomplished with biomarkers (e.g., neurofilament light

chain and glial fibrillary acidic protein), monitoring SELs and/or

paramagnetic rim lesions, myelin measurements (e.g., MTR/MWF

and ultrashort echo time MRI), P100 latency using multifocal or full-

field visual evoked potential, optical coherence tomography, or in vivo

imaging techniques (e.g., positron emission tomography imaging of

microglia). The reliability of these techniques for determining direct

effects within the CNS remains under investigation (110, 151–157).

Well-designed clinical trials that consider these approaches are needed

to substantiate new treatment modalities for MS that may include

combining BBB-penetrating DMTs with peripherally acting

monoclonal antibodies to limit disease progression and improve

treatment outcomes through promoting immunomodulation,

remyelination, and neuroprotection (158, 159).

Conclusions

Of the DMTs currently available for the treatment of MS, data

for cladribine, fingolimod, ozanimod, ponesimod, and siponimod

are suggestive of direct CNS effects. Future MS studies may show a

broader therapeutic benefit for DMTs that directly impact the CNS

than those that act on the peripheral immune response alone.
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