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Biological analysis of the
potential pathogenic
mechanisms of Infectious
COVID-19 and Guillain-Barré
syndrome

Hongyu Gao, Shuning Wang, Hanying Duan,
Yushi Wang and Hui Zhu*

Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
Background: Guillain-Barré syndrome (GBS) is a medical condition

characterized by the immune system of the body attacking the peripheral

nerves, including those in the spinal nerve roots, peripheral nerves, and cranial

nerves. It can cause limb weakness, abnormal sensations, and facial nerve

paralysis. Some studies have reported clinical cases associated with the severe

coronavirus disease 2019 (COVID-19) and GBS, but how COVID-19 affects GBS

is unclear.

Methods: We utilized bioinformatics techniques to explore the potential genetic

connection between COVID-19 and GBS. Differential expression of genes (DEGs)

related to COVID-19 and GBS was collected from the Gene Expression Omnibus

(GEO) database. By taking the intersection, we obtained shared DEGs for COVID-

19 and GBS. Subsequently, we utilized bioinformatics analysis tools to analyze

common DEGs, conducting functional enrichment analysis and constructing

Protein–protein interaction networks (PPI), Transcription factors (TF) -gene

networks, and TF-miRNA networks. Finally, we validated our findings by

constructing the Receiver Operating Characteristic (ROC) curves.

Results: This study utilizes bioinformatics tools for the first time to investigate the

close genetic relationship between COVID-19 and GBS. CAMP, LTF, DEFA1B,

SAMD9, GBP1, DDX60, DEFA4, and OAS3 are identified as the most significant

interacting genes between COVID-19 and GBS. In addition, the signaling

pathway of NOD-like receptors is believed to be essential in the link between

COVID-19 and GBS.
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1 Introduction

A massive epidemic of novel coronavirus disease 2019

(COVID-19), characterized by high rates of disability and

mortality, began in 2019, and the healthcare sector faces

significant challenges in the current pandemic. The prevalence of

COVID-19 has escalated to rank among the most significant public

health well-being challenges within the category of infectious

respiratory illnesses. COVID-19 can cause respiratory and

neurological issues, as well as temporary loss of smell and taste. It

is unclear whether the presence of neurological symptoms in

individuals with COVID-19 can be attributed to either direct

invasion of the virus or damage caused by immune inflammation.

Guillain-Barré syndrome (GBS) is an acute inflammatory

peripheral neuropathy caused by immunity. Guillain-Barre

syndrome occurs worldwide, with approximately 1 to 2 cases of

Guillain-Barre syndrome in 100,000 people per year. Prior to the

onset of Guillain-Barr syndrome, it has been observed that several

patients have experienced prior infections, mainly upper respiratory

tract infections. The emergence of the condition has been associated

with different pathogenic microorganisms (1), notably

Campylobacter jejuni, and Zika virus. GBS is primarily classified

into two subtypes within the scholarly realm. The first is acute

inflammatory demyelinating polyneuropathy (AIDP), which falls

under the demyelinating category. The second subtype is acute

motor axonal neuropathy (AMAN), which belongs to the axonal

category. Research has indicated that the electrophysiological

aspects of GBS in relation to COVID-19 typically exhibit

observations that imply the presence of demyelination, aligning

with Acute Inflammatory Demyelinating Polyneuropathy (AIDP)

(2). The link between GBS and Severe Acute Respiratory Syndrome

Coronavirus-2 (SARS-CoV-2) is strongly supported by evidence

(3). However, there is still a lack of gene-level studies on both

diseases. Thus, we are looking for a deeper understanding of the

common molecular biology functions and pathways of COVID-19

and GBS.

We downloaded datasets on COVID-19 and GBS from Gene

Expression Omnibus (GEO), identified differential expression of

genes (DEGs) for each disease, and analyzed their enriched

pathways and functions to gain insight into associated biological

processes. Subsequently, to illustrate the relationships between all

the genes that exhibit differential expression, a Protein–protein

interaction network (PPI) network was constructed, highlighting

the essential genes. Furthermore, the Transcription factors (TF)-

gene regulation network and the TF-miRNA coregulation network
Abbreviations: COVID-19, The severe coronavirus disease 2019; GBS, Guillain-

Barré syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2;

DEGs, differential expression of genes; GEO, Gene Expression Omnibus; PPI,

Protein–protein interaction network; TF, Transcription factors; ROC, the Receiver

Operating Characteristic; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; AUC, Area Under Curve; NLR, NOD-like receptor;

NLRP3, NOD-like receptor thermal protein domain associated protein 3; IL,

Interleukin; TLRs, Toll-like receptors; AMPs, Antimicrobial peptides.
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were constructed. Finally, validation was carried out using the

Receiver Operating Characteristic (ROC) curve. The primary goal

of this bioinformatics study is in order to definitively establish the

genetic connection between COVID-19 and GBS to gain a deeper

comprehension of the pathogenesis of GBS in association with

COVID-19 (4). Please refer to Figure 1 for the flowchart.
2 Materials and methods

2.1 Dataset preparation

Microarray datasets were obtained from the Gene Expression

Omnibus (GEO) database, which provides freely accessible resource

for gene expression data across various diseases (http://

www.ncbi.nlm.nih.gov/geo/). We selected two datasets separately:

GSE157103 and GSE31014. GSE157103 consists of 102 COVID-19

samples and 26 non-COVID-19 samples obtained from Illumina

NovaSeq 6000 high-throughput sequencing technology (5). The

GSE31014 dataset is derived from the Affymetrix Human Genome

U133A Array platform. This analysis examines the global gene

expression microarray in peripheral blood leukocytes of 7 GBS

patients and 7 healthy individuals (6).
2.2 Identification of DEGs and obtaining
common DEGs

GEO2R (7), available at www.ncbi.nlm.nih.gov/geo/geo2r/,

facilitates the comparison and analysis of gene expression across

distinct sample groups. The DEGs of GSE157103 was analyzed with

GEO2R. DEGs were assumed to be the adjusted p-value < 0.05 and |

log FC | > 1.0. The identification of overlapping DEGs between the

GSE157103 and GSE31014 datasets was conducted using the

VennDiagram R language package (8).
FIGURE 1

The overall workflow of research. DEGs, differentially expressed
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; PPI, The protein-protein interaction; TF,
Transcription factor; miRNA, microRibonucleic acid.
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2.3 Functional enrichment analysis

The clusterProfiler (9) package (v25.3.0) was utilized for

conducting functional analysis of Gene Ontology (GO) (10, 11)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis (12) on the shared DEGs. GO or KEGG

enrichment analysis are presented in bubble plot format.
2.4 Construction of PPI network

To gain insights into the proteins encoded by DEGs and their

interactions, For the retrieval of interacting genes, we made use of

the STRING database (version 11.5; https://string-db.org/cgi/

input.pl) (13). A PPI network was established by implementing a

confidence score threshold of 0.4 as the minimum requirement for

interaction scores, while keeping all other parameters at their

default settings.
2.5 TF gene regulatory network and TF-
miRNA regulatory network

TF, which stands for transcription factors, is a group of protein

molecules responsible for controlling gene expression by binding to

specific sections of genes. In contrast, TF interacts with miRNAs in

order to jointly control the expression of genes. In our research, we

used NetworkAnalyst 3.0 to detect the TF-gene network and TF-

miRNA co-regulatory network (14).
2.6 Construction of ROC curves for DEGs

To assess the diagnostic abilities of common genes for GBS and

COVID-19, ROC curves were created and the AUC was determined

using the “pROC” R package (15).
3 Results

3.1 Identifying the DEGs and shared genes
between COVID-19 and GBS

In the GSE31014 dataset, the sum of 164 DEGs was detected, with

150 genes up-regulated and 14 genes down-regulated (Figure 2A). In

the GSE157103 dataset, a comprehensive analysis revealed the

identification of 1315 DEGs. 901 genes exhibited up-regulated, while

414 genes displayed down-regulated (Figure 2B). We identified 12

common DEGs: HBQ1, CAMP, LTF, CFD, DEFA1B, SAMD9, GBP1,

JUNB, DDX60, MIR8071-2, DEFA4, and OAS3, as shown in the Venn

diagram (Figure 2C). Interestingly, among the 12 shared DEGs, only

HBQ1 was found to be down-regulated in the disease group in the

GSE31014 dataset, while the expression of the remaining genes was up-

regulated (Figure 3A). In dataset GSE157103, the disease group

exhibited lower expression levels of HBQ1, CFD, and JUNB genes
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compared to the control group, while the expression levels of other

genes were higher (Figure 3B).
3.2 GO and KEGG enrichment analysis
for DEGs

GO enrichment analysis revealed significantly enriched pathways

(p-value<;0.05) in various categories such as biological processes (BP),

cell composition (CC), and molecular functions (MF). Based on the

analysis results of GO enrichment, biological processes was focused on:

innate immune response in mucosa, organ or tissue-specific immune

response, andmucosal immune response. The DEGs including CAMP,

LTF, DEFA1B, and DEFA4 were found to be enriched in the biological

processes mentioned above. Cell composition was found to be higher in

the vesicle lumen, cytoplasmic vesicle lumen, and secretory granule

lumen. The genes CAMP, LTF, DEFA1B, DEFA4, and CFD play

crucial roles in the cell composition mentioned above.

Regarding molecular function, double-stranded RNA binding,

lipopolysaccharide binding, and iron ion binding are among the

highest rankings. The KEGG pathway enrichment analysis was

conducted to ascertain the shared pathways between 12 common

DEGs. The top 3 KEGG human pathways are the NOD-like receptor

signaling pathway, Staphylococcus aureus infection, and

Transcriptional misregulation in cancer (Figure 4). The DEGs

involved in the NLR signaling pathway in this study were CAMP,

DEFA1B, GBP1, DEFA4, and OAS3.
3.3 PPI network construction

I submitted the 12 DEGs to the STRING database and utilized

the generated data to create a visual representation. The PPI

network for the shared genes, which consisted of 11 nodes and 12

edges (Figure 5A). We used the GeneMANIA database to create a

detailed network of gene interactions. This helps us understand the

biological functions of the genes that were expressed differently. The

results show that 76.91% of genes are Co-expression, 17.39% are

Shared protein domains (Figure 5B). Please refer to Supplementary

Material for more details.
3.4 TF-gene network and TF-miRNA
coregulatory network

The identification of common DEGs in the TF-gene network and

the TF-miRNA co-regulatory network was carried out using

NetworkAnalyst 3.0. This network consists of 11 Seeds, 54 Nodes,

and 86 Edges (Figure 6). Within the network of TF-gene interactions,

LTF, JUNB and HBQ1 demonstrate numerous connections with other

TFs. FOXC1 and GATA2 are the most active transcription factors in

TF-gene interactions. Afterward, we constructed a TF-miRNA

Coregulatory Network using the same approach, aiming to predict

the interactions among shared DEGs, TFs and miRNAs (Figure 7).

This network comprised 9 Seeds, 1100 Nodes, and 1109 Edges. The

gene that is most closely associated with TFs and miRNAs is JUNB.
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3.5 Construction of ROC curves for
shared DEGs

The effectiveness of the 12 common DEGs was evaluated through

the construction of ROC curves in the GBS dataset to determine their

diagnostic efficacy. CAMP (AUC: 0.939), LTF (AUC: 0.878), DEFA1B

(AUC: 0.837), SAMD9(AUC: 0.837), GBP1(AUC: 0.816), DDX60
Frontiers in Immunology 04
(AUC: 0.796), DEFA4 (AUC: 0.735), and OAS3(AUC: 0.755) were

found to be useful for distinguishing GBS patients from healthy

individuals showed good diagnostic efficiency (Figure 8A). The

COVID-19 dataset revealed CAMP (AUC: 0.692), LTF (AUC:

0.764), DEFA1B (AUC: 0.701), SAMD9(AUC: 0.786), GBP1(AUC:

0.757), DDX60 (AUC: 0.802), DEFA4 (AUC: 0.763), and OAS3(AUC:

0.801) that exhibited superior diagnostic capabilities (Figure 8B).
A B

FIGURE 3

The heatmap of two datasets (A)The heatmap showed the expression of 12 DEGs in GSE31014; (B) The heatmap showed the expression of shared
DEGs in GSE157103.
A B

C

FIGURE 2

Volcano diagram and Venn diagram (A) The volcano map of GSE31014. (B) The volcano map of GSE157103. Upregulated genes are colored in red;
downregulated genes are colored in blue. (C) The two datasets showed an overlap of 12 DEGs.
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4 Discussion

GBS refers to a collection of autoimmune peripheral

neuropathies that are typically acquired following bacterial or

viral infections. According to reports, there is a close association

between GBS and various viruses such as Cytomegalovirus (CMV),

Epstein-Barr virus (EBV), Zika virus, andWest Nile virus. However,

there is limited research on the connection between COVID-19 and

GBS. Therefore, our objective was to investigate the molecular

biological mechanisms and pathways that are common to both

COVID-19 and GBS, as well as to establish the correlation

between them.

In conducting this research, two separate gene microarray

databases for COVID-19 and GBS were analyzed using

bioinformatics methods. Through GEO database, we have

successfully identified a total of 12 common DEGs distinguishing

COVID-19 from GBS. Based on the GO enrichment analysis, it was

observed that the DEGs were primarily enriched in signal pathways

that regulate immune response. Furthermore, the KEGG

enrichment analysis of DEGs primarily focused on NOD-like

receptor signaling pathways.
4.1 How does the signaling
pathway function?

The innate immune system acts as the main protective

mechanism against invading pathogens. It relies on pattern

recognition receptors (PRRs) to detect pathogen-associated

molecular patterns (PAMPs) and trigger signaling pathways that
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lead to the elimination of the pathogens. There are two pathways for

signaling: NOD-like receptor (NLR) and Toll-like receptor (TLR)

pathways (16). The NLR pathway includes a protein family that acts

as PRRs (17). It can be involved in the formation of inflammatory

vesicles, where the role of NLR thermal protein domain associated

protein 3 (NLRP3) inflammatory vesicles is crucial in the host

antiviral immune response. This complex is made up of NOD-like

receptor NLRP3, articulator ASC, and cystein-1 (18). Activating

NLRP3 inflammasome causes lysosomal damage, mitochondrial

dysfunction, and metabolic changes, and triggers cell pyroptosis.

This process is a programmed cell death pathway that depletes T

lymphocytes and mediates immune cell depletion. Ultimately, it can

also result in a cytokine storm, leading to acute lung injury, acute

respiratory distress syndrome, and systemic inflammatory response

syndrome. In the pathogenesis of neurological diseases, NLRP3

inflammatory vesicle activation occurs mainly in microglia and

macrophages. Activation leads to the release of active cystathione-1

further promoting Interleukin (IL)-1 and IL-18 maturation.
FIGURE 4

The GO and KEGG functional enrichment analysis.
A

B

FIGURE 5

Gene network analysis (A) PPI network of common DEGs. (B) shared
DEGs were analyzed via GeneMANIA.
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Cytokines can exacerbate neuroinflammation and ultimately lead to

neuronal cell death. Neurological disorders such as Alzheimer’s

disease, Parkinson’s disease, traumatic brain injury, stroke,

depression, and multiple sclerosis are often associated with the

progression of NLRP3 inflammatory vesicles. However, there have

been fewer studies conducted on the association between GBS and

these vesicles (19).

The TLR signaling pathway involves a group of receptors called

Toll-like receptors (TLRs) (20). These receptors identify molecules

released by pathogens and trigger the innate immune system.

Numerous hypotheses have been put forth to elucidate the

pathogenesis of GBS, encompassing the potential role of TLR.

TLR ligands are composed of endogenous and exogenous ligands.

Each isoform is capable of signaling after recognizing a specific
Frontiers in Immunology 06
ligand. TLR2 is responsible for the recognition of peptidoglycan

(PGN), whereas TLR4 is responsible for the recognition of

lipopolysaccharide (LPS). NF-B levels can be increased through

MyD88-dependent or non-dependent pathways, resulting in the

secretion of pro-inflammatory cytokines. Additionally, Studies have

demonstrated that it has the capacity to boost the generation of

certain cytokines, including IL-1, IL-6, IL-12, tumor necrosis factor

(TNF), and interferon (IFN) (21). These cytokines are believed to

contribute significantly to the development of GBS (22). Moreover,

TLR plays a crucial role in promoting the development and

maturation of immune cells, which may have implications in the

pathogenesis of GBS (20, 23, 24).

TLR2 is capable of detecting b-coronavirus infection through

recognition of E protein, resulting in TNF-a, IFN-g and other
A B

FIGURE 8

ROC curve (A) ROC curve for diagnostic validity validation in GSE31014. (B) ROC curve for diagnostic validity validation in GSE157103.
FIGURE 7

TF-miRNA coregulatory network. The nodes in red color are the
DEGs, a yellow node represents TFs and other nodes indicate
miRNAs. This network comprised 9 Seeds, 1100 Nodes, and
1109 Edges.
FIGURE 6

TF-gene networks. This network consists of 11 Seeds, 54 Nodes, and
86 Edges. The highlighted orange nodes represent shared DEGs,
while the remaining blue nodes represent TFs.
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inflammatory cytokines. The E protein is a vital component of

coronaviruses, serving as a structural protein with ion channel

capabilities. This mechanism has the ability to form pores

consisting of proteins and lipids in the membrane, which aids in

the transportation of ions and initiates the formation of the NLRP3

inflammasome (25). The activation of NLRP3 triggers the secretion

of the pro-inflammatory cytokines IL-1b and IL-18 as a result of b
coronavirus infection. Inflammatory response induced by b-
coronaviruses involving TLR2 relies on the presence of Myd88,

which acts as a TLR adaptor protein (26). Inhibitors or antibodies

that target TLR2 can be utilized to block the release of harmful

cytokines and chemokines, which can help prevent cytokine storms.

This approach could potentially serve as a treatment option for

COVID-19-related GBS and offer valuable insights for managing

the disease (26). Our analysis suggests that the NLR and TLR

signaling pathways may be key in the link between COVID-19 and

GBS. These pathways could provide new targets for treating

COVID-19-related GBS.
4.2 How do genes exert their influence?

According to GO enrichment analysis, the genes CAMP, LTF,

DEFA1B, and DEFA4 play vital roles in innate immune response in

mucosa. Antimicrobial peptides (AMPs) play a vital role in the

innate immune response against pathogens, such as viruses, by

defending the body against invading microorganisms. The

defensins (a-defensins and b-defensins) and the cathelicidin LL-

37 are the most extensively studied classes of AMPs in humans (27).

The CAMP gene, also known as LL-37, is located on chromosome

3p21.31. The CAMP protein is composed of 37 amino acids in a

spiral shape and a type of Cathelicidin antimicrobial peptide (28).

Recent studies indicate that LL-37 is a host defense peptide with

direct anti-SARS-CoV-2 activity. Some researchers have proposed

that CAMP may exert its anti-COVID-19 infection effects through

several mechanisms. On one hand, the activation of the vitamin D

pathway through TLR receptors induces the expression of CAMP

genes. On the other hand, it can directly inhibit the replication and

transmission of SARS-CoV-2. Additionally, LL-37 plays a crucial

role in neutrophil extracellular traps (NETs) (29).

In this study, we have observed significantly elevated levels of a-
defensins (DEFA1 and DEFA3) in COVID-19 and GBS. These

biomarkers may be shared by two diseases. Extensive evidence

suggests that a-defensins play a significant role in the innate

immune response originating from neutrophils and monocytes

(30). Recently some studies indicate that elevated Levels of Alpha-

Defensins (DEFA1) is associated with disease severity in COVID-19

and can inhibit SARS-CoV-2 infection (31–33). Lactoferrin (LTF), a

glycoprotein with versatile iron-binding capabilities, holds

significant importance in immune regulation and defense

mechanisms against bacteria, fungi, and viruses. It has been

studied against a broad range of viruses, including SARS-CoV-2.

LTF prevents viral entry by binding to both cell surface molecules

and viral particles. In addition, it can suppress virus replication (34).
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The DEGs involved in the NLR signaling pathway in this study

were CAMP, DEFA1B, GBP1, DEFA4, and OAS3. While CAMP

and OAS3 were involved in the gamma-type interferon-mediated

signaling pathway. Studies have demonstrated that SARS-CoV-2

ORF6 functions as an immune evasion tactic by obstructing

STAT1’s nuclear translocation, which counteracts type II IFN-

mediated immune responses of the host, resulting in an increase

in transcriptional expression of NLRC5 and a decline in CITA

activity (21). The OAS gene family plays a crucial role in innate

immunity and the execution of antiviral biological processes. It is an

interferon-induced dsRNA-activated antiviral enzyme. ATP

activation leads to the formation of adenosine oligomers that

activate RNA enzyme L, which then degrades the cell (10). The

OAS/RNase L pathway assumes a critical function in the

establishment of an antiviral state and the prevention of viral

infection (35, 36). According to prior research, it has been found

that OAS cluster variants are linked to a heightened susceptibility to

severe COVID-19. Additionally, the OAS gene family has been

identified as a crucial component in the innate antiviral mechanism

related to SARS-CoV-2 infection. Numerous studies indicate that

IFN-g has a significant pro-inflammatory role in the development of

GBS (37).

DDX60 is a cytoplasmic helicase induced by IFN. This

substance activates the RIG-I pathway and facilitates the

production of type I IFN. It serves as an upstream factor for RIG-

I. In the event of viral infection, phosphorylation of DDX60 can be

induced by epidermal growth factor receptor (EGFR), reducing

antiviral activity (38). The M protein from SARS-CoV-2 weakens

the body’s antiviral response and increases viral replication by

hindering the production of type I and type III IFN through

targeting the RIG-I/MDA-5 signaling (39). It has been suggested

that DDX60 may interact directly with SARS-CoV-2 viral proteins

and is considered a key host factor during SARS-CoV-2 infection.

No known link exists between the genes DDX60 and GBS, though

they may be related to autoimmune conditions (40).
4.3 What are the associations between TFs
and microRNAs with two diseases?

After careful selection, it has been determined that FOXC1 and

GATA2 are the most significant transcription factors in the TF-gene

network. In previous bioinformatics analyses, numerous researchers

have observed that among the identified TFs, FOXC1 and GATA2

have been established as crucial regulatory factors in COVID-19 (41–

43). Their association with GBS is relatively limited. In TF-miRNA

coregulatory network, JUNB is a transcription factor that plays a role in

the regulation of gene activity after the initial growth factor response.
4.4 What are the achievements and
shortcomings of this research study?

This study explores, for the first time, the close genetic

relationship between COVID-19 and GBS using bioinformatics
frontiersin.org
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tools. CAMP, LTF, DEFA1B, SAMD9, GBP1, DDX60, DEFA4,

OAS3 are identified as the most important interacting genes

between COVID-19 and GBS. The KEGG enrichment analysis of

key genes suggests that the NLR signaling pathway is a critical

pathway in COVID-19-related GBS. In our study, we aim to shed

light on the significant contribution of the NLR signaling pathway

to the development of GBS associated with COVID-19. Our study,

however, has a few limitations that should be acknowledged. Firstly,

we utilized only one dataset for the analysis of each disease. Of

course, in the future, we will consider utilizing additional datasets

for more in-depth analysis. In addition, it is essential to conduct

external validation in order to authenticate our findings. In order to

complete our work, we need to validate the function of the hub gene

in an in vitromodel. This will be our primary focus in future efforts.
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