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Introduction: Metastatic colorectal cancer (mCRC) remains a common and highly

morbid disease, with a recent increase in incidence in patients younger than 50

years. There is an acute need to better understand differences in tumor biology,

molecular characteristics, and other age-related differences in the tumor

microenvironment (TME).

Methods: 111 patients undergoing curative-intent resection of colorectal liver

metastases were stratified by age into those <50 years or >65 years old, and

tumors were subjected to multiplex fluorescent immunohistochemistry (mfIHC)

to characterize immune infiltration and cellular engagement.

Results: There was no difference in infiltration or proportion of immune cells based

upon age, but the younger cohort had a higher proportion of programmed death-

ligand 1 (PD-L1)+ expressing antigen presenting cells (APCs) and demonstrated

decreased intercellular distance and increased cellular engagement between tumor

cells (TCs) and cytotoxic T lymphocytes (CTLs), and between TCs and APCs. These

trends were independent of microsatellite instability in tumors.

Discussion: Age-related differences in PD-L1 expression and cellular engagement in

the tumormicroenvironment of patients with mCRC, findings which were unrelated

to microsatellite status, suggest a more active immune microenvironment in

younger patients that may offer an opportunity for therapeutic intervention with

immune based therapy.

KEYWORDS

tumor immunology, colorectal cancer, immunotherapy, spatial relation analysis,
multiplex immunohistochemistry (IHC)
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Introduction

The tumor microenvironment (TME) in metastatic colorectal

cancer (mCRC) is composed of both proinflammatory and

immunosuppressive cells that impact disease progression and

survival (1, 2). Patients with a greater proportion of cytotoxic T

cells (CTLs) tend to have more favorable outcomes and lower risk of

recurrence, while those with a greater proportion of

immunosuppressive cells succumb to earlier disease recurrence (3–

7). Programmed death-ligand 1 (PD-L1) expression has been shown

to inhibit activation of granzyme-secreting CTLs (8). Tumor-resident

antigen-presenting cells (APCs) that upregulate surface expression of

PD-L1 directly mediate T cell suppression and are an important

mechanism of tumor immune evasion (9, 10). Higher expression of

PD-L1 is associated with higher stage and grade tumors, more distant

metastasis, and reduced overall survival in CRC (11–13).
Not only does the composition of immune cells influence the

TME and tumor biology, but characteristics of the tumor cells

themselves are integral to shaping the microenvironment. For

instance, defects in mismatch repair (MMR) machinery result in

tumors with high mutational burden and microsatellite instability

(MSI) (14, 15), which promotes both an adaptive immune response

and compensatory upregulation of immune suppressive elements

(16, 17). This immune state renders MMR-deficient tumors

susceptible to immunotherapies targeting immunosuppressive

checkpoints like PD-L1 and its receptor (18–21). However, not all

patients respond to checkpoint inhibition. Immunotherapy has not

yet demonstrated efficacy in clinical trials for MMR-proficient or

microsatellite stable (MSS) tumors in mCRC (22, 23). These

findings highlight that further understanding of the interactions

between tumor cells and immune cells in the mCRC

microenvironment is essential to guiding future therapeutics.

Although age is a non-modifiable risk factor for CRC incidence

and mortality (24), there is a disproportionate increase in CRC

incidence in patients less than 50 years of age (25). These younger

patients tend to have more aggressive tumor biology and are more

likely to be diagnosed at an advanced disease stage with more

frequent synchronous and metachronous metastases (26).

Molecular characteristics also vary between early and late onset

CRC. For instance, early onset CRC is associated with higher rates

of microsatellite instability and mucinous tumors (27, 28), often

attributed to increased rates of hereditary syndromes, although the

majority of early onset CRC is sporadic (29).
Aging significantly influences the composition of the TME. In

advanced years of life, there is greater accumulation of senescent

cells that secrete pro-inflammatory cytokines and chemokines,

resulting in low levels of chronic inflammation, and age-related

dysregulation of the immune system, which alters the TME and

increases the susceptibility of tissues to metastatic seeding (30–34).

Although colon cancer in younger patients appears more

biologically aggressive, an in-depth analysis of the age-related

differences in the TME in mCRC is lacking.
Multiplex fluorescent immunohistochemistry (mfIHC) is a

technique used to provide phenotypic spatial orientation of cells

within the TME, allowing quantification of cell-to-cell distance and

engagement (35–39). We have previously shown using mfIHC that
Frontiers in Immunology 02
higher mixing of tumor cells and CTLs is associated with improved

CTL engagement with tumor cells and APCs, as well as improved

overall survival (35). mCRC with increased mixing of tumor cells and

CTLs also demonstrated increased PD-L1+ APCs, likely a

compensatory immunosuppressive response (35). We thus aimed to

usemfIHC to assess age-related differences in the TME ofmCRC to the

liver, with the hope of informing novel approaches to immunotherapy.
Methods

Patient sample collection

The institutional review board of Memorial Sloan Kettering, New

York, approved the study involving patient samples. Patient

characteristics of 111 patients who underwent curative intent resection

of colorectal liver metastasis were collected along with whole tissue

samples. A pathologist (JS) selected 0.6 mm diameter cores from each

patient block in triplicate to create a tissue microarray (TMA). Of the

patients who received preoperative chemotherapy, all received standard

chemotherapy treatment (40). No patients received immunotherapy.
Multiplex fluorescent
immunohistochemistry staining
and imaging

TMA blocks were cut into 5-micron slices and placed onto charged

slides for processing. Slides were baked in a hybridization chamber for

1 hour at 60°C. Once baked, TMA slides were subjected to

deparaffinization and rehydration, then fixed with formalin.

Following our established protocol (35), multiplex staining was

conducted on the slides through six rounds of staining. The slides

were prepared for each round of staining using either an antigen

retrieval buffer with pH 9 or pH 6 (AR9 and AR6 Akoya Biosciences)

preceded by a primary antibody. The following primary antibodies

were used—CD3, CD8, CD163, PD-L1, pancytokeratin, and FoxP3

(Supplementary Table 1) followed by secondary antibody application

(Opal Polymer, Akoya Biosciences) and fluorescent tyramide signal

amplification (TSA, Akoya Biosciences). Slides were counter stained

using 4’,6-diamidino-2-phenylindole (DAPI), mounted, cover-slipped

and left to dry overnight. Using the Mantra Quantitative Pathology

WorkStation (Akoya Biosciences), cores were imaged at 20x

magnification in all channels: DAPI, FITC, CY3, CY5, CY7, Texas

Red, and Qdot, with an exposure of 250 ms. Composite images were

created by automatically merging images from each channel, then

taken for further analysis. More detailed descriptions of staining and

imaging methods can be found in prior publications (35, 41).
Image analysis: phenotyping and cell-to-
cell interactions

As described previously (35), InForm software (Akoya

Biosciences) and novel R based programs were used to perform

simple and complex phenotyping as well as cell-to-cell interactions.
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The following phenotypes were assigned with the previously

established parameters: T cells (CD3+), regulatory T cells (Treg;

CD3+CD8-FoxP3+), helper T cells (Th; CD3+CD8-FoxP3-), tumor

cells (TC; PanCK+), cytotoxic T cells (CTL; CD3+CD8+), and

antigen presenting cells (APC; CD163+). The nearest distance

from one cell to another (nearest neighbor) and the cell-to-cell

engagement was calculated as previously described (35).
Image analysis: spatial G-function

The spatial relationship between two or more types of cells was

quantified by calculating the G-function to assess cellular mixing in

the liver mCRC TME (35). In brief, the G-function is a function of a

distance that computes the probability that cells of a reference cell

type have a non-reference cell type within a certain distance. It is

mathematically expressed as G(r)x,y = 1 − e� ly p r2 , where the

subscripts ‘x’ and ‘y’ refer to the spatial distribution of cell type ‘y’

relative to cell type ‘x’ being calculated, ‘r’ refers to the distance from

the reference cell type, and ly is the overall density of cell type ‘y’ on
the slide. A Kaplan–Meier correction was applied to the G-function

to correct for edge effects. As previously described (36), the G-

function mathematically modeled the potential cellular interactions

in the mCRC TME and the corresponding data was correlated to

the patient age group.
Statistical analyses

Statistical analyses were performed using JMP Pro 13.2.0.

Weighted means of the three cores were used to mitigate

intratumoral heterogeneity. Differences in nearest neighbor

distances and engagement were evaluated by two-sided analysis of

variance (ANOVA) or bivariate analysis when appropriate. P ≤ 0.05

was considered statistically significant.
Results

Younger patients demonstrate increased
infiltration of PD-L1+ APCs

To study the effect of age on the immune microenvironment in

mCRC, 111 patients who underwent curative intent resection of

colorectal liver metastasis were stratified by age into older (age >65

years, n=76) and younger (age <50 years, n=35) cohorts. Ages 50-65

were excluded to minimize overlap in trends between the age

groups. No difference was seen between gender, disease free

survival, clinical risk score, or rates of preoperative chemotherapy

among the groups. Younger patients were more likely to present

with smaller tumor size (L/S 3.6 vs 5.0 in the old, p=0.0221), ≥3

tumors (40% vs 20% in the old, p=0.0269) and at a higher N stage

(47% N2 vs 23% in the old, p=0.0366) (Table 1).

Tumors were subjected to mfIHC for the cell markers CD3,

CD8, CD163, FoxP3, pancytokeratin, and PD-L1. InForm software

(Akoya Bioscience) was used to assign a cellular phenotype and a
Frontiers in Immunology 03
unique spatial location within the TME as previously described

(35). A representative composite mfIHC image and phenotypic

map are shown in Figure 1, with representative images of an older

patient >65 years in Figures 1A, B and a younger patient <50 years

in Figures 1C, D. When quantifying immune composition in the

TME, there was no significant difference in infiltration of APCs, T

cells, CTLs, T helper cells, T regulatory cells, or the proportion of

tumor cells between young and old patients. However, younger

patients had a significantly higher proportion of PD-L1+ APCs of all

APCs present (p=0.0387, Table 2). Representative images of PD-L1

staining on APCs and tumor cells are shown in Figures 1E, F,

respectively. Although there was no difference in immune cell

infiltration, this finding suggests a possible compensatory

immunosuppressive TME.
Proximity between CTLs and TCs is
decreased in young patients

After unique spatial locations were assigned to phenotyped cells

within the TME, cellular distance was quantified from each CTL to

all other cell types. No significant difference was found between

Tregs and nearest CTL (105.1µm in young vs 115.3µm in old,

p=0.6373, Figure 2A), T helper cell and nearest CTL (34.4µm in

young vs 29.9µm in old, p=0.9810, Figure 2B), or distance between

an APC and nearest CTL (128.7µm in young vs 152.1µm in old,

p=0.1742, Figure 2C). However, in young patients, the distance
TABLE 1 Tumor characteristics of patients younger than 50 years of age
and patients older than 65 years of age.

Demographic
Younger
(n=35)

Older
(n=76)

P-
value

Gender (%M/F) 60/40 55/45 0.6559

Age (mean years) 41.6 71.6 <0.0001

Tumor size (L/S) 3.6 5.0 0.0221

Number (<3/23) 60/40 80/20 0.0269

DFS (mean mos) 15.2 20.8 0.1002

CRS 0.1189

1 23 44

2 54 30

3 20 15

4 3 9

5 0 2

N Stage 0.0366

0 24 29

1 29 48

2 47 23

Pre-op chemo 66% 58% 0.5323
fro
Ages 50 to 65 years were omitted from the analysis to minimize overlapping trends between
the two age groups. Abbreviations: Disease free survival (DFS), Clinical risk score (CRS).
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B

C D

E F

A

FIGURE 1

Multiplex fluorescent immunohistochemical (A, C) composite image of colorectal liver metastasis tumor microenvironment incorporating 7 cell
types: tumor cells (white), T-cells (green), Tregs (green and red), CTLs (yellow), APCs (orange), PD-L1 (magenta), and DAPI (Blue), in (A) patients older
than 65 years of age and (C) patients younger than 50 years of age; (B, D) spatial phenotype map of epithelial cells (pink), T-cells (blue), APCs
(orange), and other cells (grey) in (B) patients older than 65 years of age and (D) patients younger than 50 years of age. Representative images of
PD-L1 staining on APCs (E) and tumor cells (F).
TABLE 2 Mean concentration of immune infiltrates in the mCRC TME in
patients older than 65 years of age and patients younger than 50 years
of age.

Cell type
Younger
(n=35)

Older
(n=76)

P-
value

% APCs 7.6 (4.7-10.5) 8.9 (6.9-10.9) 0.4587

% PD-L1+APC
of APC 12.9 (6.9-19.0) 5.3 (1.1-9.3) 0.0387

% PD-L1-APC
of APC 87.1 (81.0-93.0) 94.8 (90.7-98.8) 0.0387

% T cells 6.1 (4.1-8.1) 4.6 (3.2-6.0) 0.2205

(Continued)
F
rontiers in Immunolog
y
 04
TABLE 2 Continued

Cell type
Younger
(n=35)

Older
(n=76)

P-
value

% CTL of T cells 16.7 (11.9-21.5) 11.2 (7.9-14.5) 0.0652

% Th of T cells 74.1 (67.9-80.2) 79.8 (75.4-83.8) 0.1414

% Treg of T cells 2.1 (.06-3.6) 3.2 (2.1-4.2) 0.2686

% Tumor cells 67.1 (60.4-73.8) 65.6 (61.1-70.1) 0.7137

% PD-L1+TC of TC 5.5 (1.5-9.3) 1.0 (-1.8-3.6) 0.0637

% PD-L1-TC of TC 94.5 (91-99) 99.1 (96-101) 0.0637
fro
Younger patients have significantly greater infiltration of PD-L1+ APCs than older patients,
who inversely have more PD-L1- APCs relative to all APCs present in the TME.
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between both TCs and nearest CTL (152.8µm vs 194.2µm in old,

p=0.0339, Figure 2D), and PD-L1- TCs and nearest CTL (158.4µm

vs 196.7µm in old, p=0.0350, Figure 2E) was significantly shorter.

The effect was abrogated when analyzing distance between PD-L1+

TC and nearest CTL (93.6µm in young vs 126.7µm in old, p=0.1103,

Figure 2F). To evaluate this in the context of the larger cohort,

spatial relationships between TCs and CTLs were evaluated against

age as a continuous variable. When incorporating all ages, there

continued to be a significant increase in intercellular distance

(Figure 2G) and decreased cellular engagement (Figure 2H) with

advancing age. These findings suggest that younger patients may

have more effective infiltration of tumor antigen-specific CTLs
Frontiers in Immunology 05
given the decreased distances between TCs and CTLs. The

abrogation of spatial proximity in the setting of PD-L1 positivity

supports the hypothesis that PD-L1 expression may suppress

CTL homing.
CTLs are more frequently engaged with
PD-L1- APCs and PD-L1- TCs in
younger patients

Whereas cellular distance describes the spatial relationship

between cells, cellular engagement more effectively describes physical
B

C D

E
F

G H

A

FIGURE 2

Younger patients present with closer TC to CTL interactions without PD-L1 expression. (A-F) ANOVA was used to compare the weighted mean
distance in microns from (A) Tregs to nearest CTLs, (B) T-helper cells to nearest CTLs, (C) APCs to nearest CTLs, (D) TCs to nearest CTLs, and
infiltrating CTLs relative to (E) PD-L1- TCs and (F) PD-L1+ TCs in younger patients (n=35) and older patients (n=76). Bivariate analysis of age as a
continuous variable vs TC to CTL intercellular distance (G) and TC to CTL engagement (H). P values are shown for each.
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interaction among cell types (42). We aimed to assess differences in

engagement in young and old patients, as cellular engagement between

CTLs and tumor cells is associated with improved survival in colorectal

cancer (35). Cellular engagement was quantified by identifying

instances in which a cell type was within 15µm of the center of a

CTL of interest. CTLs were more likely to be engaged with APCs

(35.1% in young vs 23.1% in old, p=0.0206, Figure 3A), and PD-L1-

with APCs in the young (32.7% in young vs 22.6% in old, p=0.0249,

Figure 3C). However, there was no difference in engagement among

CTLs and PD-L1+ APCs (60.6% in young vs 54.4% in old, p=0.0980,

Figure 3B). A similar trend was seen between CTL engagement with

TCs, where young patients demonstrated increased engagement

between CTLs and TCs (26.8% vs 15.7% in old, p=0.0016,
Frontiers in Immunology 06
Figure 3D) and PD-L1- TCs (24.5% vs 9.1% in old, p=0.0006,

Figure 3E) but not PD-L1+ TCs (34.0% vs 27.4% in old, p=0.378,

Figure 3F). Tumors were stratified into high or low CTL to TC

engagement. Younger patients had a higher proportion of high CTL

to TC engagement (47.6% vs 12.2% in the old, Figure 3G, p=0.0102).

Because both increased infiltration and engagement of CTLs have been

independently associated with improved outcomes, we next sought to

determine if both factors were different in extremes of age. Indeed,

young patients tended to have increased incidence of both elevated

CTL infiltration and engagement (43.2% in young patients vs 8.1% in

old patients, Figure 3H, p=0.0089). Increased CTL engagement with

APCs and TCs may indicate increased anti-tumor immunity in

younger patients. The abrogation of this effect with PD-L1
B

C D

E F

G H

A

FIGURE 3

Younger patients present with higher CTL cellular engagement with PD-L1- APC and PD-L1- TC. Modeling predicts immune cell engagement
between immune infiltrates in older and younger patients. (A-F) ANOVA analysis of CTL engagement to (A) APCs, (B) PD-L1+ APCs, (C) PD-L1- APCs,
(D) TCs, (E) PD-L1- TCs, (F) PD-L1+ TCs in younger patients (n = 35) and older patients (n = 76). (G, H) ANOVA was used to compare percent of total
patients between younger and older patient populations with (G) low CTL/EC engagement relative to high CTL/TC engagement and (H) Low CTL
and CTL/TC engagement relative to high CTL and CTL/TC engagement. P values are shown for each.
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expression supports the hypothesis that PD-L1 expression is a

mechanism of tumor immune evasion and may provide a link

between the TME and the aggressive tumor biology in

younger patients.
Younger patients have increased CTL
mixing and enhanced inflammation scores

Population level mixing of two or more cell types in the TME

can be expressed as the tissue’s G-function (36–38). The rate of rise

of the G-function correlates with the degree of cellular mixing, and

therefore the area under the curve (AUC) can be used to compare

the degree of cellular mixing at a fixed radius from individual cells

between different tissues (36). When calculating G-function curves

for CTLs and APCs, we found significantly higher mixing of these

two cell types in young patients (AUC 6.7 in young vs 11.7 in old,

p=0.0180, Figure 4A). Similarly, young patients had a greater degree

of mixing of CTLs and TCs (AUC of 3.7 in young vs 0.97 in old, p=-

.0063, Figure 4B). When stratified by the degree of CTL and TC

mixing into high and low groups, younger patients had an increased

percentage of high mixing (42.9% in young vs 22.4% in old,

p=0.0413, Figure 4C). To evaluate potential synergistic pro-

inflammatory cellular relationships, selected beneficial

associations previously reported were used to calculate an

immune-inflammation score (CD8-TC engagement, CD8-CD4

engagement, APC-CD8 engagement) (35, 36, 42). Younger
Frontiers in Immunology 07
patients had increased rates of high inflammation scores (40.0%

high and 31.4% medium in young patients vs 18.4% high and 22.4%

medium in older patients, p=0.0174, Figure 4D). These findings

suggest that younger patients have increased mixing of both TCs

and CTLs in the TME, and potentially a more immune

primed environment.
CTL and TC engagement remains
increased in young patients with
microsatellite stable tumors

Deficiencies in MMR machinery produce tumors with high

mutational burden and MSI (14, 15), which leads to both an

enhanced inflammatory response and upregulation of

compensatory immunosuppressive elements (16, 17). Currently,

MSI status is used to determine candidacy for checkpoint inhibition

of PD-L1 and its receptor in mCRC (18–20), but there has yet to be

significant clinical efficacy with immunotherapy in the subset of

MSS patients with mCRC. To investigate age-related differences in

the TME for the MSS population, we analyzed both the rates of MSI

and MSS tumors by age, and cellular engagement in the TME

among the subset of MSS patients (Figures 5A, B). A subset of 78

patients were subjected to IHC for MMR proteins MLH1, MSH2,

MSH6, and PMS2, and deemed MSI if deficiency of one or more of

the proteins were noted. Expectedly, younger patients had a higher

percentage of MSI tumors (25% vs 6% in old, p=0.045, Figure 5C).
B

C D

A

FIGURE 4

Younger patients have an elevated G-function, higher mixing of CTLs and enhanced inflammation scores. G-function analysis was conducted to
measure mixing between CTLs to (A) APCs and (B) TCs in older patients (n=76) and younger patients (n=35). (C) ANOVA was used to compare
percent of total patients between younger and older patient populations with low CTL/TC mixing relative to high CTL/TC mixing. (D) Patient
inflammation scores between younger and older patients were categorized by terciles (low, medium, and high). P values are shown for each.
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In the subset of MSS patients, there was no difference in proportion

of CTLs of all T cells (17.9% in young vs 14.4% in old, p=0.2786,

Figure 5D). However, there was increased CTL engagement with

TCs among MSS tumors in the younger population (26.9% vs 15.9%

in the old, p=0.0043, Figure 5E). Stated another way, young patients

with MSS tumors had increased proportion of tumors with high

CTL/TC engagement than older patients with MSS tumors (33.3%

in young vs 13.6% in old, p=0.0302, Figure 5F). Because of limited

sample size, it was difficult to evaluate differences in spatial

relationships in patients with MSI tumors. However, using the

entire cohort (including those between 50 and 65), we were able to

show that a similar trend was seen in MSI tumors (Supplementary

Figure 1A, B). These data suggest that amongMSS tumors, CTL and
Frontiers in Immunology 08
tumor cell interactions and anti-tumor immunity are increased in

younger patients.
Discussion

While age is a risk factor in the development of CRC (24), there

has recently been a disproportionate increase in CRC incidence in

patients under 50 years of age (25). Epidemiologic studies suggest

that these younger patients tend to present with a more aggressive

tumor biology, with more frequent lymphovascular invasion,

synchronous tumors, and metachronous metastases (26, 43).

Similarly, studies of molecular characteristics reveal differences
FIGURE 5

Representative images of MSS (A) and MSI (B) tumors. Younger patients with MSS have increased CTL/TC cellular engagement than older patients
with MSS. (C) Percent of total patients between younger and older patient populations with Microsatellite Instability (MSI) and Microsatellite Stability
(MSS). While there is (D) no difference in mean concentration of CTL present in the mCRC TME relative to all T-cells between younger (n=29) and
older patients (n=75) with MSS, (E) percent of CTL/TC engagement in younger patients with MSS is significantly higher than in older patients with
MSS. (F) ANOVA was used to compare percent of total patients excluding MSI patients with low CTL/TC mixing relative to high CTL/TC mixing.
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based upon age, with younger patients more likely to have MSI high

and mucinous tumors (27, 28). A recent article by Ugai et al.

assessed cellular phenotypes in the TME in early-onset (<50 years),

intermediate-onset (50-54 years), and later-onset CRC (≥55 years)

(44). Although the differences did not reach statistical significance,

there was a trend towards less tumor-infiltrating lymphocytes and

peritumoral lymphocytic reactions in the early-onset compared to

the later-onset group. Despite these age-related changes, complex

characterization of immune infiltration in the TME of young

patients with mCRC is lacking.

In this study, we performed cellular phenotyping and spatial

modeling in the TME of a large cohort of patients, stratified by age,

who underwent curative intent resection for colorectal liver

metastasis. Although younger patients tended to have higher

nodal disease burden and a higher number of metastatic deposits,

all macroscopic disease was removed at the time of resection to limit

disease-specific outcomes as a confounder. We identified unique

characteristics present in the TME of younger patients that suggest

a more immunologically active environment.

One such finding was a higher prevalence of cells expressing the

immune checkpoint PD-L1. Binding of the immune checkpoint

PD-1 and its ligand PD-L1 creates an immunosuppressive

microenvironment by inhibiting T cell growth and CTL activation

and limiting cytokine secretion (8, 45). Although it was initially

thought that PD-L1 expression was important only on TCs,

evidence suggests that APCs with PD-L1 expression also directly

mediate T cell suppression (9, 10). Thus, over-expression of PD-1

and PD-L1 is a mechanism of tumor escape from immune

surveillance (10). In CRC, PD-L1 expression is associated with

worse prognosis with higher stage and grade tumors, more distant

metastasis, aggressive tumor biology, and reduced overall survival

in CRC (11–13, 46, 47). Our findings of a higher proportion of PD-

L1+ APCs of all APCs within the younger cohort, and a trend

towards increased expression on TCs, suggest a potentially more

immunosuppressed TME. However, the decreased intercellular

distance, increased engagement, and increased mixing between

tumor cells and APCs with CTLs in the younger cohort suggest

greater immune activation. While we have previously shown that

increased engagement and cellular mixing of CTLs and TCs is

associated with immune activation and improved disease-specific

outcomes in mCRC (35, 36), it is possible that compensatory

upregulation of PD-L1 related to higher CTL activity may be

counteracting the beneficial CTL activity. This hypothesis is

consistent with prior studies showing that PD-L1 expression has

paradoxically been associated with higher CTL tumor infiltration in

CRC (48, 49). It is this immune evasion that may underlie the more

aggressive biology we tend to see in younger patients with colorectal

c a n c e r . T h i s ma y a l s o o ff e r a n op po r t u n i t y f o r

therapeutic intervention.

The molecular subtype in CRC is important in predicting

response to immunotherapy. Defects in the MMR machinery lead

to MSI and high neoantigen burden (14, 15). These MMR-deficient

tumors are more susceptible to immunotherapies like the

checkpoint inhibitors, which have shown great promise in

treatment for advanced CRC with MSI, demonstrating a response
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rate of 33-55% and durable complete remissions (18–21). Recently,

upfront, single-agent nivolumab has been shown to induce a

complete clinical response at 6-25 month follow-up in a series of

12 patients with MMR-deficient locally advanced rectal cancer (50).

However, MSI tumors comprise only 15% of CRC (51, 52). The

larger population of MSS and MMR-proficient tumors are less

susceptible to immunotherapy (53), associated with higher rates of

local recurrence (54, 55), and worse clinical outcomes independent

of disease stage (28, 56). Current treatment guidelines from the

National Comprehensive Cancer Network recommend

immunotherapy only for those pat ients with tumors

demonstrating MSI (57). However, prior trials included relatively

few colorectal cancers and a vast majority of patients were over 50

years of age. The true role for potential immunotherapy in young

pa t i en t s w i th MSS co lorec ta l cance r has no t been

adequately studied.

When looking at only MSS tumors, increased CTL engagement

with TCs persisted in the young cohort. This finding is independent

of CTL infiltration, as there was no increase in the proportion of

CTLs among T cells. Similarly, it is independent of APC infiltration,

as we have previously shown a lack of association with MSI status

(35). As the increased CTL engagement in the young cohort

persisted regardless of microsatellite status, in the setting of a

paradoxical increase in PD-L1 expression, a cohort of young

patients with MSS disease may benefit from checkpoint

inhibitor therapy.

It is possible that these differences in cellular engagement could

relate to age, as aging is associated with both immunosenescence

and immune dysregulation that decrease T-cell activation and

proliferation (33, 58). In contrast, however, aging is also

associated with low-grade chronic inflammation and increased

inflammatory signaling (59), as well as increased tumor

mutational burden and expression of immune checkpoint genes

(60). There is also contradictory evidence of the impact of age on

response to immunotherapy in clinical trials. For instance, in

melanoma, two studies found a more significant survival benefit

of anti-PD-1 immunotherapy in patients over 60 (61, 62). However,

other meta-analyses of anti-PD-1 therapy in solid tumors did not

show age-related differences in overall survival (63, 64). These

findings suggest further investigation of age-related differences is

needed to better understand responsiveness to immunotherapy.

Although there was no difference in the proportion of patients

receiving preoperative chemotherapy, this study is limited by

chemotherapy as a confounder. It is possible that age-related

differences in response to chemotherapy could alter the TME and

influence immune cell interactions (Supplementary Figure 1C, D).

Additionally, mfIHC can only query a small panel of antibodies,

limiting investigation of specialized populations like polarized

dendritic cells and B lymphocytes. TMAs capture only a small

portion of the tumor and although use of triplicate cores can help

decrease effects of intratumoral variability, it likely falls short of

whole slide imaging. Additionally, as this TMA was constructed to

evaluate the broader population of patients with metastatic colon

cancer, the ages are skewed towards older, which created some

imbalance in sample size. Finally, because these patients were
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selected to undergo curative intent metastasectomy, they may not

be truly representative of the general population of stage 4 colon

cancer patients.
Conclusions

In this large cohort of patients undergoing curative-intent

resection of colorectal liver metastasis, cellular phenotyping and

spatial characterization of immune cells demonstrated decreased

intercellular distance and increased cellular engagement between

TCs and CTLs, as well as TCs and APCs, in young patients with

mCRC. Young patients also demonstrated an increased proportion

of PD-L1+ APCs of all APCs. These trends were independent of

microsatellite instability. These findings may suggest a more

favorable microenvironment for immune based therapy in young

patients with metastatic colon cancer.
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