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Background: Lupus nephritis (LN) is a common and severe glomerulonephritis

that often occurs as an organ manifestation of systemic lupus erythematosus

(SLE). However, the complex pathological mechanisms associated with LN have

hindered the progress of targeted therapies.

Methods: We analyzed glomerular tissues from 133 patients with LN and 51

normal controls using data obtained from the GEO database. Differentially

expressed genes (DEGs) were identified and subjected to enrichment analysis.

Weighted gene co-expression network analysis (WGCNA) was utilized to identify

key gene modules. The least absolute shrinkage and selection operator (LASSO)

and random forest were used to identify hub genes. We also analyzed immune

cell infiltration using CIBERSORT. Additionally, we investigated the relationships

between hub genes and clinicopathological features, as well as examined the

distribution and expression of hub genes in the kidney.

Results: A total of 270 DEGs were identified in LN. Using weighted gene co-

expression network analysis (WGCNA), we clustered these DEGs into 14

modules. Among them, the turquoise module displayed a significant

correlation with LN (cor=0.88, p<0.0001). Machine learning techniques

identified four hub genes, namely CD53 (AUC=0.995), TGFBI (AUC=0.997),

MS4A6A (AUC=0.994), and HERC6 (AUC=0.999), which are involved in

inflammation response and immune activation. CIBERSORT analysis suggested

that these hub genes may contribute to immune cell infiltration. Furthermore,

these hub genes exhibited strong correlations with the classification, renal

function, and proteinuria of LN. Interestingly, the highest hub gene expression

score was observed in macrophages.
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Conclusion: CD53, TGFBI, MS4A6A, and HERC6 have emerged as promising

candidate driver genes for LN. These hub genes hold the potential to offer

valuable insights into the molecular diagnosis and treatment of LN.
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Introduction

Systemic lupus erythematosus (SLE) is a complex autoimmune

disorder triggered by a variety of endogenous antigens (1, 2). Lupus

nephritis (LN) is a common and severe immune complex

glomerulonephritis that occurs as a target-organ manifestation of

SLE. It is characterized by symptoms, including hematuria,

proteinuria, and impaired renal function (3, 4). LN often appears

within five years of SLE diagnosis, affecting approximately 50% of

patients (4, 5). Despite progress in understanding the pathogenesis

of LN, treatment advancements have been limited (6). The

incidence of kidney failure remains unacceptably high, with about

one-third of individuals with severe LN at risk of developing end-

stage renal disease (ESRD) within a decade (7–9).

In individuals with SLE, the immune system produces

autoantibodies and immune complexes that gradually accumulate

within the renal glomeruli (10–12). This accumulation triggers an

inflammatory response, resulting in glomerular damage and

dysfunction. Commonly observed histopathological abnormalities

in the glomeruli consist of immune complex deposition, increased

proliferation of mesangial and endothelial cells, inflammatory cell

infiltration, cellular crescent formation, and injury to the

glomerular basement membrane (GBM). Therefore, the renal

glomerulus plays a crucial role in the onset and progression of

LN (13, 14).

Recent research has provided insights into the involvement of

susceptibility genes in LN, disrupting immune tolerance and

contributing to the disease’s development. These genes amplify

innate immune signaling pathways and promote lymphocyte

activation, ultimately resulting in renal damage (15–19).

Autoreactive leukocytes, immune complexes, complement

proteins, and various inflammatory mediators also play significant

roles in LN’s development (20, 21). Understanding the molecular

mechanisms underlying LN could lead to the development of more

effective treatment strategies.

The infiltration of immune cells plays a crucial role in the

development and progression of kidney diseases. Targeting specific

immune cell populations or manipulating their functions could

alleviate inflammation, decrease tissue damage, and improve the

prognosis for patients with kidney diseases (22–24).

The emergence of gene microarray technology and high-

throughput techniques has made bioinformatics methods essential

for efficiently identifying DEGs (25–28). In recent years, machine

learning (ML) has found wide application in addressing complex
02
problems in the biomedical field. ML’s capabilities in analyzing

large datasets and uncovering valuable relationships make it an

effective tool for elucidating patterns and providing explanations

(29–31). Integrating bioinformatics analysis with ML offers

prospective opportunities to enhance the accuracy, reliability, and

predictability of disease diagnosis. In this study, we utilized

bioinformatics methods to acquire gene expression matrices from

glomerular tissues of LN patients obtained from the GEO database.

We performed differential expression analysis, enrichment analysis,

and investigated candidate hub genes using weighted gene co-

expression network analysis (WGCNA). Two machine learning

algorithms, LASSO regression and random forest, were employed

to identify hub genes associated with LN. Glomerular immune

infiltration in LN and normal controls was quantified using the

CIBERSORT algorithm based on gene expression profiles.

Furthermore, associations between hub genes and immune

infiltration, as well as clinical and pathological features in LN,

were examined. The distribution and expression patterns of these

hub genes were also identified. The primary objective of these

analyses is to offer novel insights that can contribute to the

prevention and treatment of LN.
Materials and methods

Searching and downloading of
microarray data

The microarray datasets of LN were obtained from the National

Center for Biotechnology Information Gene Expression Omnibus

(GEO) database (http://www.ncbi.nih.gov/geo/) by utilizing the

keyword “lupus nephritis” as the search criteria. The datasets

were chosen based on the criteria that: (1) the study type is

expression profiling by array, (2) the attribute name is glomerular

tissue, and (3) the organisms are Homo sapiens. Four gene

expression datasets (GSE99339, GSE104948, GSE127797, and

GSE32591) were identified as eligible. These datasets comprise a

total of 133 patients with LN and 51 normal controls.
Data pre-processing

Initially, the probe matrix was transformed into a gene matrix

using the GEOquery package, and the probe annotation file was
frontiersin.org
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employed in the process. If multiple probes were associated with the

same gene, the gene’s expression value was determined by

calculating the average value across the probes. Secondly, since

these four datasets were obtained from different platforms and

exhibited batch effects, the sva package was employed to mitigate

batch effects across the various platforms.
Identification of differentially
expressed genes

The limma package was utilized for the analysis of DEGs

between patients with LN and normal controls. The criterion

used for selecting DEGs were a p-value < 0.05 and a fold change

(FC) > 1 in absolute value.
Enrichment analysis

The biological processes of Gene Ontology and Kyoto

Encyclopedia of Genes and Genomes of DEGs were enriched

using the clusterProfiler package in R. Pathways were considered

significantly enriched if the adjusted p-value was less than 0.05.
Construction of the Weighted Gene Co-
expression Network Analysis network

To identify the co-expression network and select genes from

different clusters, we used the top 5000 standard variance genes to

construct weighted gene co-expression network using the WGCNA

package (32). The selection of a soft threshold power (b) was

determined by applying the pickSoftThreshold function and

adhering to the scale-free topology criterion. Subsequently, gene

co-expression modules were identified through the utilization of the

one-step network construction method. Each module consisted of a

minimum of 30 genes, while any remaining ungrouped genes were

assigned to the grey module. We calculated correlation coefficients

between modules and phenotypes to identify modules that were

closely associated with LN. Additionally, the connection between

gene modules and LN patients was evaluated by assessing the values

of gene significance (GS) and module membership (MM).
Reactome pathway analysis among
different modules

The Reactome pathway analysis was conducted on the genes

from different modules using the clusterProfiler package in R. The

“compareCluster” function was used with the parameter “fun” set to

“enrichPathway” for the selection of enriched pathways.

Significantly enriched pathways were defined as those with an

adjusted p-value below 0.05.
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Construction training group and
validation group

The training and validation groups were divided utilizing the

caret package, a widely-used tool for statistics and machine

learning. The package provides a convenient and efficient

approach for training and evaluating models. The data splitting

strategy involved randomly assigning samples to the training and

validation groups in a ratio of 7:3. The createDataPartition function

was utilized to conduct random sampling, ensuring that the samples

were representative of the overall distribution in both groups.
LASSO regression screening of hub genes

LASSO regression is a commonly-used machine learning

algorithm employed to fit generalized linear models. It is

acknowledged for its capability to simultaneously perform variable

selection and complexity regularization (33). LASSO regression

utilizes the parameter l to adjust the complexity level. Increasing

the value of l imposes a higher penalty on linear models with a large

number of variables. This results in a reduced number of selected

genes, leading to a more concise and representative set of key genes in

the outcome. The glmnet package in R was used to conduct the

LASSO regression analysis of candidate hub genes in our study. The

optimal value of l was determined through ten-fold cross-validation,

selecting the value that resulted in the minimum criterion.
Random forest model screening of
hub genes

The random forest model is a machine learning approach that

uses multiple independent decision trees to predict classification or

regression (34). In this study, we utilized the R package

“randomforest” to construct our random forest model. To

determine the optimal number of variables, we calculated the

average error rate for candidate hub genes. We then assessed the

error rate for tree numbers ranging from one to 500, and selected the

number of trees with the lowest error rate. Once the parameters were

determined, we built the random forest tree model. Lastly, we

identified the feature importance scores for each candidate hub gene

and selected the genes with an importance value greater than 0.25.
Diagnostic value of hub genes in LN

In order to test the accuracy of the hub genes screened by

machine learning, the ROC curves were generated between the LN

patients and the normal controls in training group. The greater the

area under curve (AUC), the higher the accuracy of the gene as a

hub gene in LN. In the same method, its effectiveness was further

verified in the validation group.
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Gene set enrichment analysis

To investigate the association between hub genes and signaling

pathways, we divided the LN group into two subgroups using the

median value of hub gene expression. Subsequently, we performed

gene set enrichment analysis (GSEA) on each subgroup, with a

significance level set at adjusted p-value < 0.05.
Identification of immune cell infiltration

The CIBERSORT algorithm, which utilizes linear support

vector regression (SVR), is a widely used and trustworthy

machine learning method for deconvoluting the expression

matrix of 22 human immune cell subtypes (35). In this study, we

employed the CIBERSORT algorithm to determine the relative

proportions of different immune cells in the LN samples and

normal controls. To ensure accurate results, we performed

1,000 calculations.
Correlation analysis between hub genes
and infiltrating immune cells

Correlation analysis between hub genes and immune cells was

performed using Spearman correlation coefficient.
Correlation of hub genes with
clinicopathological features

Based on the Nephroseq database(https://nephroseq.org/), the

correlations of hub genes with different pathological calcification,

renal function and proteinuria were analyzed in patients with

lupus nephritis.
Identification and distribution analysis of
hub genes in the kidney

Based on the raw single-cell RNA-seq data deposited in dbGAP

(accession code phs001457.v1.p1), and the processed data available for

viewing using an interactive browser at https://immunogenomics.io/

ampsle/ and https://singlecell.broadinstitute.org/single_cell/study/

SCP279/amp-phase-1, the distribution and expression of hub genes

were calculated (22).
Ethics statement

The present study solely relied on pre-existing data obtained

from publicly accessible sources, no specific ethical considerations

such as informed consent, confidentiality, or participant privacy

were applicable or involved in this research.
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Statistical analysis

Statistical analysis of the data from this study was performed

using R (Version 4.2.2). A t-test was conducted for continuous

variables between two groups, assuming they followed a normal

distribution. To investigate the correlation between gene expression

and immune cell fraction, the Spearman rank correlation test was

employed. The statistical significance level was set at p-value < 0.05.

The flow chart of this research was shown in Figure 1.
Results

Identification of DEGs between LN and
normal controls

The microarray datasets GSE99339, GSE104948, GSE127797,

and GSE32591 were obtained from the GEO database. These

datasets comprise 133 patients with LN and 51 normal controls.

After conducting quality control procedures on these four datasets,

it was observed that the expression levels remained consistent

among the samples. This consistency suggests that any potential

batch effects have been successfully mitigated, thereby facilitating

subsequent research (Figures S1A-F).

Following a principal component analysis (PCA) and

hierarchical clustering analysis on the combined samples, a clear

differentiation between patients with LN and normal controls is

evident (Figure 2A; Figure S1G). Furthermore, the transcriptional

profiles of patients with LN exhibit distinct characteristics

compared to those of normal controls, indicating a unique status

in LN (Figure 2B). Consequently, a differential expression analysis

was conducted, leading to the identification of 270 significantly

differentially expressed genes (DEGs) in LN. Out of these, 214 genes

showed significant up-regulation, including C1QA, IFI44L,

TYROBP, MS4A4A, and C1QB, which are known to be involved

in immune cell activation and the inflammatory response in the

glomerulus. Additionally, 56 genes displayed significant down-

regulation, including ALB, UMOD, PCK1, CXCL14, and DEFB1,

which are closely associated with the structure, function, and

metabolism of the glomerulus (Figure 2C).
Function enrichment analysis

Upon conducting KEGG analysis, we identified several enriched

pathways in LN compared to normal controls. These pathways

include antigen processing and presentation, neutrophil

extracellular trap formation, systemic lupus erythematosus,

complement and coagulation cascades, and NOD-like receptor

signaling pathway. Furthermore, there was a noticeable

upregulation of signaling pathways associated with cytokines and

chemokines in LN (Figure 2D).

In terms of GO: BP enrichment analysis, we observed a

significant up-regulation of immune responses, including the
frontiersin.org
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activation of immune response, myeloid leukocyte activation, and

cytokine-mediated signaling pathway. Conversely, glomerular

metabolism, particularly small molecule catabolic process,

carboxylic acid catabolic process, organic acid catabolic process,

and cellular amino acid metabolic process, showed significant

down-regulation (Figure 2E).

Taking all these findings into consideration, it suggests an

increase in the inflammatory immune microenvironment within

the glomerulus in LN. This increase is characterized by elevated

release of cytokines and chemokines, as well as increased infiltration

of immune cells, predominantly myeloid cells. Additionally, we

observed structural and metabolic damage in the glomerulus of

patients with LN, observations consistent with previous studies and

further validating our study’s convincing evidence (36–39).
Construction of WGCNA network of LN

To identify key genes associated with the LN phenotype more

precisely, we utilized WGCNA analysis on normal and LN samples.

We set the soft threshold to 9 to ensure a scale-free topology of the
Frontiers in Immunology 05
network, as indicated by the results of the scale-free topology

model fit and mean connectivity (Figure 3A). By assessing

gene correlation, we constructed a gene hierarchy clustering

dendrogram, which allowed us to identify 14 distinct gene

modules exhibiting similar patterns of co-expression (Figure 3B).

To comprehensively investigate the function of each module, we

performed a Reactome pathway enrichment analysis. The blue

module was associated with mitochondrial translation, while the

brown module demonstrated a relationship with diverse metabolic

processes, including amino acid and metal ion metabolism. The

green and yellow modules were primarily associated with cell cycle

regulation, encompassing AUF1 binding, mRNA destabilization,

mitotic anaphase, and metaphase. Furthermore, these modules

showed enrichment in the KEAP1-NFE2L2 pathway,

autodegradation of the E3 ubiquitin ligase COP1, and degradation

of GLI1 via the proteasome. The greenyellow modules were found

to participate in cytokine and chemokine-induced signaling

pathways, specifically involving the binding of chemokines to

interleukin and chemokine receptors. Additionally, these modules

exhibited involvement in immunoregulatory interactions between

lymphoid and non-lymphoid cells. On the other hand, the grey
FIGURE 1

Flow chart of the research study.
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module was associated with respiratory electron transport, the

salmon module was linked to mitosis, and the turquoise module

was related to interferon signaling, neutrophil degranulation, as well

as interferon alpha/beta signaling (Figure 3C).

To identify modules closely associated with LN, we performed

correlation analysis between each module and phenotypes. Our

analysis revealed that the “turquoise” module, consisting of 1063

genes, exhibited the highest clinical relevance to LN. This

determination was based on a correlation coefficient of 0.88 and a

p-value of 2e-59, indicating a strong correlation between module

feature values and LN phenotypes (Figures 3D, E). Additionally, a

significant correlation was observed between gene significance (GS)

and module membership (MM) within the “turquoise” module,

with a correlation coefficient of 0.88 and a p-value of 1e-200

(Figure 3F). Therefore, we identified the “turquoise” module as a

key module associated with LN. Furthermore, the genes that

appeared in both the DEGs and the turquoise module were

considered as candidate hub genes in LN (Figure 3G).

Additionally, based on our findings, we discovered that the

turquoise module contains 1,063 genes, of which 197 overlap with

DEGs, accounting for a significant proportion (approximately 73%)

of DEGs. This validates the crucial role of the turquoise module in

LN further, as other modules show lower overlap with DEGs. By
Frontiers in Immunology 06
filtering the overlapping genes, the turquoise module can more

precisely identify genes closely associated with lupus

nephritis progression.
Identification and validation of hub genes
in LN

To further identify hub genes associated with LN, we applied

two machine learning methods - LASSO regression and random

forest - to the genes that overlap between the turquoise module and

DEGs. LASSO analysis identified 17 hub genes (Figures 4A, B),

while the random forest approach identified 27 hub genes

(Figures 4C, D). By comparing the results, we found that the

genes CD53, TGFBI, MS4A6A, and HERC6 were common to

both methods and thus selected as the final hub genes associated

with LN (Figure 4E).

To validate the accuracy of the final hub genes, we examined

their expression levels in the training set. We observed that CD53,

TGFBI, MS4A6A, and HERC6 were significantly upregulated in LN

patients compared to the normal controls, suggesting their potential

role in LN (Figure 4F). Furthermore, we calculated the area under

the receiver operating characteristic curve (AUC-ROC) for each
A B

D E

C

FIGURE 2

Identification of the DEGs in lupus nephritis. (A) The principal component analysis (PCA) showing the distribution of samples in patients with lupus
nephritis and normal controls. (B) The heatmap illustrating the top 1000 genes with the highest standard deviation changes among individuals
diagnosed with lupus nephritis and normal controls. (C) The volcano showing the expression of DEGs between lupus nephritis and normal controls.
(D) The bar graph illustrating the significantly upregulated KEGG pathways in lupus nephritis compared to the normal controls. (E) The lollipop graph
illustrating the upregulated(right) and downregulated(left) GO terms in lupus nephritis compared to the normal controls.
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hub gene, resulting in values of 0.995 for CD53, 0.997 for TGFBI,

0.984 for MS4A6A, and 0.999 for HERC6 (Figure 4G). These AUC-

ROC values indicate high diagnostic efficiency of the hub genes in

predicting LN.
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We also evaluated the diagnostic efficiency of these hub genes in

the validation group. Consistent with the training group, these hub

genes exhibited higher expression levels in LN patients (Figure 4H).

The AUC-ROC values in the validation group were 0.991 for CD53,
A B

D

E F G

C

FIGURE 3

Identification of candidate hub genes based the WGCNA analysis. (A) The soft threshold power(left) and mean connectivity(right) of WGCNA
network. (B) The cluster dendrogram of WGCNA network. (C) The dot plot showing the top enriched reactome pathways among different modules.
(D) The heatmap depicting the relationship between the modules and clinical traits, specifically lupus nephritis and normal controls. (E) The bar chart
illustrating the gene significance among different modules in lupus nephritis. (F) The scatter plot between gene significance (GS) and module
members (MM) in turquoise module. (G) The venn diagram of the intersection of DEGs, turquoise module genes.
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FIGURE 4

Identification of final hub genes by lasso regression analysis and random forest analysis. (A) Path diagram of the LASSO coefficients for the hub
genes associated with lupus nephritis in training group. (B) LASSO regression cross-validation curve. Optimal l values were determined using 10-fold
cross-validation in training group. (C) The error rate confidence intervals for random forest mode in training group. (D) The lollipop graph illustrating
the relative importance of genes in the random forest model within training group. (E) The venn diagram of the intersection of LASSO and random
forest signature genes. (F) Expression levels of four hub genes in lupus nephritis patients compared with normal controls in training group. (G) ROC
analysis of four hub genes in training group (H) Expression levels of four hub genes in lupus nephritis patients compared with normal controls in
validation group. (I). ROC analysis of four hub genes in validation group.
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0.983 for TGFBI, 0.979 for MS4A6A, and 0.973 for HERC6,

respectively (Figure 4I). These findings further support the

remarkable diagnostic efficiency of the identified hub genes in

predicting LN.
GSEA analysis of hub genes

Based on the results of the GSEA analysis, we identified

significant correlations between the hub genes and various

signaling pathways associated with LN. CD53 showed significant

correlations with pathways such as MHCI class protein complex

assembly, MyD88-independent Toll-like receptor signaling pathway,

regulation of lymphocyte chemotaxis, T cell chemotaxis, and TRAIL-

activated apoptotic signaling pathway (Figure 5A). TGFBI exhibited

significant correlations with pathways such as dendritic cell

chemotaxis, eosinophil chemotaxis, GM-CSF production, positive

regulation of MCP-1 production, and regulation of dendritic cell

processing and presentation (Figure 5B). MS4A6A showed significant

correlations with pathways such as dendritic cell chemotaxis, MHCII

class protein complex assembly, monocyte chemotaxis, myeloid

leukocyte-mediated immunity, and Toll-like receptor 2 signaling

pathway (Figure 5C). Lastly, HERC6 displayed significant

correlations with pathways such as IFN-g mediated signaling
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pathway, MyD88-independent Toll-like receptor signaling pathway,

NLRP3 inflammasome complex assembly, response to IFN-a, and
response to IFN-b (Figure 5D).

These findings provide valuable insights into the potential

mechanisms underlying LN, as the identified hub genes are

involved in distinct signaling pathways associated with the disease.
Analysis of immune infiltration in LN

In the glomerulus of the kidneys, the differential analysis

revealed significant differences in immune cell infiltration

between patients with LN and normal controls. Specifically, LN

patients showed a significant increase in infiltrating monocytes (p <

0.001), macrophages M2 (p < 0.001), activated mast cells (p <

0.001), memory B cells (p < 0.01), and gdT cells (p < 0.05)

(Figure 6A). On the other hand, CD8+ T cells (p < 0.001), naive

B cells (p < 0.05), follicular helper T cells (p < 0.001), regulatory T

cells (p < 0.01), and resting memory CD4+ T cells (p < 0.001) were

significantly higher in normal controls. These results suggest that

myeloid cells including monocytes and macrophages M2 are the

main infiltrating immune cells in the glomerulus of LN affected

kidneys. These cells may significantly contribute to LN disease

pathogenesis (22, 40, 41).
A B

DC

FIGURE 5

The GSEA of hub genes in lupus nephritis. (A) The GSEA of CD53 in lupus nephritis. (B) The GSEA of TGFBI in lupus nephritis. (C) The GSEA of
MS4A6A in lupus nephritis. (D) The GSEA of HERC6 in lupus nephritis.
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Correlation of hub genes with infiltrating
immune cells in LN

The analysis of immune cell infiltration in the glomerulus of the

kidneys revealed interesting associations between the hub genes
Frontiers in Immunology 10
(CD53, TGFBI, MS4A6A, and HERC6) and specific immune

cell types.

CD53 exhibited positive correlations with the infiltration of gdT
cells, resting dendritic cells, M1 macrophages, and eosinophils,

while displaying negative correlations with the infiltration of
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FIGURE 6

The immune cell infiltration association with hub genes. (A) The immune cell infiltration between lupus nehritis and normal controls. (B) The
association between CD53 and different immune cell infiltration in lupus nephritis. (C) The association between TGFBI and different immune cell
infiltration in lupus nephritis. (D) The association between MA4A6A and different immune cell infiltration in lupus nephritis. (E) The association
between HERC6 and different immune cell infiltration in lupus nephritis. * p < 0.05;** P < 0.01;*** P < 0.0001.
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activated NK cells, T NK cells, Tregs, naive B cells, and CD8 T cells

(Figure 6B). Similarly, TGFBI showed positive correlations with the

infiltration of activated memory CD4 T cells, M0 macrophages, gdT
cells, follicular helper T cells, resting mast cells, and eosinophils.

However, it displayed a negative correlation with the infiltration of

resting memory CD4 T cells and activated NK cells (Figure 6C).

Moreover, MS4A6A exhibited positive correlations with the

infiltration of M2 macrophages, activated memory CD4 T cells,

gdT cells, and memory B cells, while showing negative correlations

with the infiltration of naive B cells, resting memory CD4 T cells,

Tregs, and activated natural killer cells (Figure 6D). Lastly, HERC6

displayed positive correlations with the infiltration of activated

dendritic cells, activated mast cells, and monocytes, but showed a

negative correlation with the infiltration of naive B cells and resting

mast cells (Figure 6E).

Altogether, based on the functionality of genes (Figure 5) and

the correlation between immune infiltration and gene expression

(Figure 6), we have reached the following conclusions: CD53

primarily facilitates the infiltration of gd T cells by engaging in

MHC class I antigen presentation (42, 43). TGFBI plays a significant

role in the infiltration of mast cells and eosinophils. MS4A6A is

involved in the infiltration of M2 macrophages in the glomerulus

through the TLR2 signaling pathway and MHC class II antigen

presentation (44–46).While, HERC6, which operates via the

MyD88-dependent Toll-like receptor signaling pathway, broadly

mediates the infiltration of myeloid-derived immune cells,

including monocytes and mast cells (47).

These findings shed light on the associations between the hub

genes and specific immune cell infiltrations in the glomerulus of the

kidneys in LN. The identified correlations provide valuable insights

into the potential roles of these genes in the immune response and

pathogenesis of LN.
The relationships between hub genes and
clinical and pathological features in LN

The prognosis of LN is influenced by factors such as pathologic

classification, renal function, and proteinuria levels. To investigate

the connections between hub genes and clinical as well as

pathological features, an analysis was conducted using the

Nephroseq database.

The expression levels of CD53 were notably higher in patients

with class III and IV LN compared to those with class II. Similar

trends were observed when comparing patients with CKD stage 2

and stage 1, where CD53 expression levels were significantly

elevated. Although CD53 expression increased in patients with

CKD stage 3 and 4 compared to stage 1, the difference did not

reach statistical significance. Furthermore, a correlation was found

between CD53 expression and proteinuria, with significantly higher

levels in patients experiencing nephrotic proteinuria compared to

those with subnephrotic proteinuria (Figure 7A).

A significant increase in TGFBI expression levels was observed

in patients with class III and IV LN compared to those with class II.

However, despite relatively high CD53 expression in patients with

CKD stages 2, 3, and 4 compared to stage 1, the difference did not
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reach statistical significance. Additionally, there was a correlation

between TGFBI expression and proteinuria, with significantly

higher levels in patients with nephrotic proteinuria compared to

those with subnephrotic proteinuria (Figure 7B).

Similarly, the expression levels of MS4A6A were significantly

elevated in patients with class III lupus nephritis compared to those

with class II. However, despite observing higher MS4A6A

expression in patients with CKD stages 2, 3, and 4 compared to

stage 1, the difference did not reach statistical significance. There

was an association between MS4A6A expression and proteinuria,

with notably higher levels in patients with nephrotic proteinuria

compared to those with subnephrotic proteinuria (Figure 7C).

Conversely, no linear relationship was found between HERC6

expression and pathological classification, stages of CKD, or

proteinuria (Figure 7D).

Overall, these hub genes are strongly associated with the

prognosis of LN.
The distribution and expression of hub
genes in kidney

From the publicly available single-cell RNA sequencing

(scRNA-seq) data of LN, a total of 21 immune cell clusters were

identified (22). These clusters primarily consisted of macrophages,

dendritic cells (DCs), T cells, natural killer (NK) cells, and B cells.

Additionally, there was a single cluster of epithelial cells that was

identified as well (Figure 8A).

CD53 was found to be widely distributed in immune cells. In

contrast, TGFBI was predominantly expressed in various

macrophage subsets, including inflammatory CD16+ macrophages

(CM0), phagocytic CD16+ macrophages (CM1), tissue-resident

macrophages (CM2), conventional dendritic cells (CM3), M2-like

CD16+ macrophages (CM4), and plasmacytoid dendritic cells

(CB2b). Similarly, MS4A6A showed primary expression in CM1,

CM2, CM3, CM4, and CB2b. On the other hand, HERC6 exhibited

primary expression in ISG-high CD4+ T cells (CT6) and ISG-high B

cells (CB3), with lower expression observed in other types of T cells

and NK cells (Figures 8B-E).

To analyze the distribution of the gene signature represented by

the hub genes, we calculated the average expression levels of these

genes. The results indicated that CM0, CM1, CM2, CM3, CM4, and

CB2b exhibited the highest scores, suggesting the importance of

these cell types in LN (Figure 8F). These findings emphasize the

potential significant role of macrophages, dendritic cells, and ISG-

high lymphocytes in LN.
Discussion

The study employed comprehensive bioinformatics and

machine learning techniques to identify four hub genes: CD53,

TGFBI, MS4A6A, and HERC6. These genes were found to be

upregulated in LN and played a significant role in mediating the

inflammatory response and immune activation. The findings also

indicated a strong association between these genes and immune cell
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infiltration, particularly in macrophages, monocytes, and gdT cells.

Moreover, the study revealed a significant correlation between these

genes and various clinicopathological features of LN, especially in

terms of classification, renal function, and proteinuria, suggesting

their potential involvement in the prognosis of LN. Additionally,

macrophages and DCs exhibited the highest hub gene expression
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scores, further implicating these four hub genes in the development

of LN. Consequently, these genes have the potential to serve as

novel candidate driver genes.

The advancement of gene microarray technology and high-

throughput techniques has made bioinformatics methods crucial

for efficiently identifying differentially expressed genes (DEGs) in
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FIGURE 7

Relationships between the expression of hub gene and pathological classification, stage of chronic kidney disease(CKD), and proteinuria. (A) The
scatter plots depicting the relationship between the expression level of the CD53 and three variables: pathological classification (eft), stage of CDK
(center), and proteinuria (right). (B) The scatter plots depicting the relationship between the expression level of the TGFBI and three variables:
pathological classification (left), stage of CKD (center), and proteinuria (right). (C) The scatter plots depicting the relationship between the expression
level of the MS4A6A and three variables: pathological classification (left), stage of CKD (center), and proteinuria (right). (D) The scatter plots depicting
the relationship between the expression level of the HERC6 and three variables: pathological classification (left), stage of CKD (center), and
proteinuria (right). * p < 0.05;** P < 0.01.
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LN (22, 48). In our study, we identified the top five up-regulated

DEGs in LN as C1QA, IFI44L, TYROBP, MS4A4A, and C1QB.

C1QA and C1QB are components of the classical complement

system, which plays a critical role in activating immune responses,

promoting inflammatory reactions, and facilitating immune cell

infiltration (49–52). These genes are extensively expressed in
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macrophages, indicating the potential significant role of

macrophages in LN (53, 54). IFI44L promoter methylation has

been reported as a potential blood biomarker for SLE and has been

identified and validated as a biomarker for LN (55–57). TYROBP

encodes a transmembrane signaling polypeptide that binds to NK

cell activity receptors and activates signal transduction (58, 59).
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FIGURE 8

Distribution and expression of hub genes based on the single-cell RNA sequencing data. (A) t-SNE plot showing the 22 identified cell clusters. (B)
Featureplot, bar plot and dot plot showing the distribution and expression of CD53. (C) Featureplot, bar plot and dot plot showing the distribution
and expression of TGFBI. (D) Featureplot, bar plot and dot plot showing the distribution and expression of MS4A6A. (E) Featureplot, bar plot and dot
plot showing the distribution and expression of HERC6. (F) Violin plots showing combined expression scores of hub genes.
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Previous studies have shown a strong correlation between TYROBP

and proteinuria in SLE (60). On the other hand, MS4A4A is

expressed during the differentiation of monocyte-macrophage

cells and is upregulated by M2-like signals, including IL-4 and

dexamethasone (61–64). Although the exact mechanism of

MS4A4A’s upregulation in LN remains unclear, our research

findings confidently confirm the significant roles played by the

complement system, interferon signaling pathway, and immune cell

infiltration in LN.

Using a combination of bioinformatics techniques and

sophisticated machine learning methods, we have successfully

identified four hub genes: CD53, TGFBI, MS4A6A, and HERC6.

CD53, also known as OX44 or TSPAN25, is an exclusive

tetraspanin protein expressed in the immune system. It is found

on the surface of B cells, CD4+ T cells, CD8+ T cells, DCs,

macrophages, and NK cells, suggesting a broader role within the

immune system (65–67). CD53 interacts with integrins and other

adhesion molecules interacts with integrins and other adhesion

molecules, particularly LFA-1, on NK cells and various types of

immune cells, enhancing the adhesion, migration, and proliferation

of immune cells (68–70). Additionally, CD53 acts as a regulator of

immune cell signaling. Recent studies have identified CD2, IL-7R,

MHC-I, and MHC-II proteins as partners of CD53, demonstrating

its role in modulating downstream intracellular signaling pathways

(71–74). Our research revealed an upregulation of CD53 expression

in LN and its widespread presence in immune cells, highlighting its

crucial role in regulating the migration of immune cells, including

gdT cells, DCs, and macrophages, and promoting immune

activation. Furthermore, a comprehensive analysis of the clinical

implications of CD53 shows a positive correlation between its

expression and proteinuria, a negative correlation with renal

function, and an association with adverse renal pathology. In

conclusion, our findings strongly suggest that CD53 may

contribute to the exacerbation of LN by orchestrating immune

cell migration and promoting immune activation.

TGFBI, a protein that is produced in response to transforming

growth factor beta (TGF-b), has been shown to have significant

implications in various kidney diseases (75–77). It can be detected

in both serum and urine, making it accessible for diagnostic

purposes (76). In our research, we observed an upregulation of

TGFBI expression in LN, particularly in macrophages, cDCs, and

pDCs, indicating its crucial role in these cell types. Moreover, we

have observed that TGFBI plays an essential role in regulating DC

migration and eosinophil chemotaxis, which further suggests its

involvement in the diagnosis and pathogenesis of LN. Furthermore,

a comprehensive analysis of the clinical relevance of TGFBI has

revealed significant associations. Higher TGFBI expression showed

a positive correlation with proteinuria but a negative correlation

with renal function. Additionally, increased levels of TGFBI

expression were associated with more severe pathological features.

These findings provide a solid foundation for future research and

development in this field, with the aim to utilize TGFBI as a

diagnostic tool and explore its therapeutic potential

MS4A6A encodes a member of the membrane-spanning 4A

gene family, which exhibits distinct expression patterns among

hematopoietic cells and nonlymphoid tissues (78, 79). Previous
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studies have reported associations between MS4A6A and the

development and progression of neurodegenerative diseases,

including Alzheimer’s and Parkinson’s (80–82). Furthermore,

MS4A6A is also associated with kidney disease. In the context of

impaired kidney transplant outcome, complement-activating anti-

HLA donor-specific antibodies (DSAs) have been linked to

MS4A6A, as they are highly associated with circulating

complement-activating anti-HLA DSAs (83). In our research, we

have confirmed an upregulation of MS4A6A expression in LN.

Specifically, MS4A6A exhibits predominant expression in

macrophages and DCs, and plays a role in the migration of

myeloid leukocytes and myeloid leukocyte-mediated immunity.

Analysis of immune infiltration has revealed a robust correlation

between MS4A6A expression and macrophage infiltration.

Additionally, a comprehensive analysis of the clinical relevance of

MS4A6A has shown a positive correlation between MS4A6A

expression and proteinuria. Moreover, elevated levels of MS4A6A

expression were found to be linked to more severe pathological

features. However, the precise pathogenic mechanism remains

unclear and warrants further investigation. It is speculated that

the high expression of MS4A6A in macrophages and DCs may

facilitate the migration of immune cells, contributing to the

augmentation of the inflammatory immune microenvironment at

the site of injury in LN.

HERC proteins belong to the HECT family and serve as

ubiquitin E3 ligases. The HERC family of ubiquitin ligases plays a

crucial role in various essential cellular processes, including

neurodevelopment, DNA damage response, cell proliferation, cell

migration, and immune responses. HERC6 is a member of the

HECT family (84, 85). Several studies focusing on LN have observed

elevated expression levels of HERC6 (57, 86, 87). Our research

findings support the notion that HERC6 expression is increased in

individuals with LN. Specifically, HERC6 shows predominant

expression in ISG-high CD4+ T cells and ISG-high B cells, where

it plays a role in IFN-related signaling pathways such as IFN-a/b/g,
as evidenced by GSEA analysis. Numerous studies have

demonstrated the critical involvement of the IFN signaling

pathway in the development and progression of LN (21, 37, 88–

90). However, our correlation analysis between HERC6 and clinical

information did not reveal any significant correlations. This lack of

correlation may be attributed to the complex functionality of

HERC6, suggesting that its relationship is not simply linear. In

terms of immune infiltration analysis, HERC6 exhibits a positive

correlation with the infiltration of activated DCs, activated mast

cells, and monocytes. Our hypothesis posits that the overexpression

of HERC6 in ISG-high immune cells initiates inflammation and

immune responses via the interferon signaling pathway. This

subsequently results in the infiltration of myeloid-derived

immune cells, specifically monocytes, macrophages, and dendritic

cells, into the renal glomeruli, thereby exacerbating LN.

In LN, immune cell infiltration, particularly monocytes and

macrophages, plays a crucial role in disease progression by

accumulating in the kidney and promoting inflammation through

the production of chemokines and cytokines (40, 41, 91–94).

Additionally, LN patients’ pDCs produce type I interferons,

which can activate B cells and lead to the production of
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autoreactive antibodies (95–97). Although the presence of other

lymphocytes in LN kidney biopsies, such as innate lymphoid cells

and gdT cells, has been observed, their exact contribution to the

disease remains unclear (98–102). In our study, we observed a

significant increase in monocytes and M2 macrophages as the main

infiltrating immune cells in the glomeruli of patients with LN.

Additionally, we found a significant increase in mast cells and gdT
cells, as well as a decrease in Tregs. Furthermore, the hub gene was

predominantly expressed in the aforementioned major infiltrating

immune cells, highlighting the crucial role of the inflammatory

immune microenvironment in the development of LN. However,

contrary to previous research findings, we observed a decrease in

CD8+ T cells in LN. Further investigation is required to determine

the underlying cause of this phenomenon.

Our research has successfully identified 270 DEGs, providing

valuable insights into the specific transcriptional profile of LN.

During our investigation, we focused specifically on four

upregulated hub genes: CD53, TGFBI, MS4A6A, and HERC6 in

LN. These genes have significant roles in regulating the chemotaxis

of monocytes and macrophages, orchestrating interferon signaling

pathways, and activating inflammatory responses. Importantly,

they are closely associated with adverse outcomes in LN. The

expression of CD53, TGFBI, MS4A6A, and HERC6 in

macrophages, DCs, and ISG-high lymphocytes correlates with the

known immune cell infiltration patterns observed in LN. Based on

this observation, we propose that CD53+ immune cells, TGFBI+ or

MS4A6A+ monocytes and macrophages, and HERC6+ ISG-high

lymphocytes may play a crucial role in the development of

glomerular lesions in LN. Consequently, these hub genes and

immune cell populations have the potential to be targeted for

immunotherapy in LN patients, opening up new avenues for

therapeutic interventions. Further studies are needed to validate

these hypotheses and explore their clinical applications.
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Distribution and expression of datasets of lupus nephritis from GEO. (A) Box
plot showing the distribution and expression of GSE99399. (B) Box plot

showing the distribution and expression of GSE104948. (C) Box plot

showing the distribution and expression of GSE32591. (D) Box plot showing
the distribution and expression of GSE127797. (E) Box plot showing the

distribution and expression of merged data before batch removal. (F) Box
plot showing the distribution and expression of merged data after batch

removal. (G) Hierarchical clustering showing the distribution of patients with
lupus and normal controls.
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