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The association between gut microbiota and central nervous system (CNS)

development has garnered significant research attention in recent years.

Evidence suggests bidirectional communication between the CNS and gut

microbiota through the brain-gut axis. As a long and complex process, CNS

development is highly susceptible to both endogenous and exogenous factors.

The gut microbiota impacts the CNS by regulating neurogenesis, myelination,

glial cell function, synaptic pruning, and blood-brain barrier permeability, with

implication in various CNS disorders. This review outlines the relationship

between gut microbiota and stages of CNS development (prenatal and

postnatal), emphasizing the integral role of gut microbes. Furthermore, the

review explores the implications of gut microbiota in neurodevelopmental

disorders, such as autism spectrum disorder, Rett syndrome, and Angelman

syndrome, offering insights into early detection, prompt intervention, and

innovative treatments.
KEYWORDS

CNS development, gut microbes, autism spectrum disorder, Rett Syndrome,
Angelman Syndrome
Abbreviations: CNS, Central nervous system; 5-AV, 5-Aminovalerate; 5-HT, 5-Hydroxytryptamine; ABX,

Antibiotic-treated; AS, Angelman syndrome; ASD, Autism spectrum disorder; BDNF, Brain-derived

neurotrophic factor; NDDs, Neurodevelopmental disorders; GF, Germ-free; GI, Gastrointestinal; HIP,

Hippurate; LA, Linoleic acid; LPS, Lipopolysaccharide; MIA, Maternal immune activation; RTT, Rett

syndrome; PG, Peptidoglycan; SCFAs, Short-chain fatty acids; SPF, Specific pathogen-free; TD, Typically

developing; TMAO, Trimethylamine-N-oxide; TMAV, N, N, N-Trimethyl-5-aminovalerate; WT, Wild-type.
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1 Introduction

The mammalian central nervous system (CNS), consisting of the

brain and spinal cord, exhibits unparalleled molecular, genetic,

behavioral, developmental, and evolutionary complexity. A well-

developed CNS is critical for survival, overseeing and directing

behaviors through the transmission, storage, and processing of

information. Recent research has emphasized the importance of

interactions between gut microbes and the CNS, highlighting their

ability to modulate host physiology, metabolism, immune function,

brain function, and behavior (1). Early life represents a period of

maximal bodily plasticity and heightened CNS sensitivity (2, 3). As

the primary molecular interface, the intestine can influence the

physiological environment during pregnancy, thus exposing the

fetus to microbial signals before birth. Postnatally, the intestinal

flora in infants undergoes rapid establishment and stabilization

during the first two years of life, creating a persistent association

between the host and commensal microbes (1, 3). The human gut

microbiota exhibits remarkable genetic diversity, with over 22 million

sequenced genes and an extensive library of unique enzymes capable

of producing and modifying diverse chemical structures (4). Over

evolutionary timeframes, microbial colonization has become

integrated with CNS development programming, facilitated by a

bidirectional connection between the gut and brain (4). In the

prenatal phase, the fetus is exposed to microbial derivatives (e.g.,

metabolites, peptidoglycan) and maternal immune responses, both of

which significantly influence CNS development (5, 6). Furthermore,

gut microbial colonization during early postnatal life can impact CNS

development and subsequent behavior (7, 8). Consequently, both

prenatal and postnatal periods emerge as pivotal windows wherein

gut microbes influence the CNS.

Neurodevelopmental disorders (NDDs) encompass a spectrum

of chronic conditions impacting CNS functions during

developmental stages, including motor skills, cognition,

communication, and behavior (9, 10). Gastrointestinal (GI)

comorbidities in NDDs, such as autism spectrum disorder (ASD),

Rett syndrome (RTT), and Angelman syndrome (AS), exhibit a

strong correlation with disease severity and pronounced symptoms

of irritability, anxiety, and social withdrawal (11). These observations

implicate the gut microbiome in the modulation of NDD severity and

associated GI symptoms. While NDDs are usually studied from a

genetic perspective, the above evidence has shifted attention toward

the potential link between NDDs and gut microbiota.

In this review, the relationship between brain development and

gut microbiome across various developmental stages is elaborated

upon, with an emphasis on the role and mechanisms of microbes in

related NDDs.
2 Gut microbial-brain interaction –
“microbiota-brain-gut axis”

The mammalian body functions as an expansive “biochemical

factory”. Beyond its native cells, it hosts trillions of microorganisms
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that create complex ecological niches both internally and externally

(12). The gut, in particular, is a complex and dynamic ecosystem,

inhabited by bacteria, archaea, viruses, and fungi (13, 14). This gut

microbiota influences multiple aspects of host physiology, including

nutritional balance, cellular metabolism, immune system, mucosal

barrier permeability, and bidirectional communication between the

gut and brain (15, 16).

The gut and brain communicate bidirectionally through

integrated metabolic, endocrine, neurological, and immune

pathways. Key components of this system include the vagus

nerve, hypothalamic-pituitary-adrenal (HPA) axis, microbial

metabolites, immune mediators such as cytokines, and

enteroendocrine signaling (16, 17) (Figure 1). This interaction can

be categorized into three primary pathways: Firstly, microbial

metabolites can interface with the enteric nervous system (ENS),

activating the vagus nerve and subsequently communicating with

the CNS (18). Secondly, metabolites produced by gut microbes may

traverse the intestinal barrier, entering the circulatory system and

subsequently accessing the CNS via the blood-brain barrier (BBB)

to modulate its functions (19, 20). Lastly, microbial-associated

molecular patterns (MAMPs) such as lipopolysaccharide (LPS)

and other microbiota-produced metabolites can elicit responses

from the immune system, leading to cytokine release from immune

cells, which directly influence the CNS (1). The gut-brain axis is not

a linear system, but a circular feedback loop that communicates via

multiple pathways. The bacterial-associated factors enter the

circulation and modify peripheral immune cells via blood

transport. Modified peripheral immune status promotes

interactions with the BBB and neurovascular units (21). This

allows microbiome-induced factors, cytokines, and immune

substances to cross the BBB, affecting its integrity, transport rate,

and triggering the release of neuroimmune substances from barrier

cells (21). This involves simultaneously the nervous system, the

immune system and the circulatory system. Multiple pathways are

intertwined and together channel the bidirectional communication

between the gut and the CNS. Notable metabolites in this context

include short-chain fatty acids (SCFAs), bile acid metabolites,

nervous system agonist transmitters such as g-aminobutyric acid

(GABA), tryptophan precursors, 5-hydroxytryptamine (5-HT), and

catecholamines. These metabolites, by engaging in host signaling,

can influence host metabolic processes and immune responses

(22–25).

Within the regulatory framework of the microbiota-gut-brain

axis, the gut engages in bidirectional communication with the brain,

facilitating the influence of gut microbes on CNS development and

related diseases. Investigating the relationship between the gut

microbiota and CNS can offer insights into CNS pathologies and

new therapeutic strategies. However, several unresolved questions

remain: the exact mechanisms by which gut microbes influence

CNS development and associated disorders; the repercussions of

CNS-related diseases on the gut and its microbial community; and

the efficacy of interventions involving intestinal probiotics and

prebiotics for treating CNS diseases. These topics warrant

further research.
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3 CNS development and gut microbes

3.1 Complex and sensitive CNS
development process

CNS development is a long and complex process that

continues from the fetal stages to early adulthood (Figure 2A).

During embryonic development, the neural plate undergoes

longitudinal folding to produce the neural tube, which forms the

rudimentary CNS (26). Central neurodevelopment involves

neurogenesis, neuronal migration, dendritic and axonal formation,

synaptogenesis, and interneuronal connection formation (27, 28).

Notably, processes such as dendritic expansion, dendritic spine and

synapse formation, and synaptic pruning are the most time-

consuming steps in human neuronal development (29–31). As the

CNS matures, the developmental trajectories of neuronal and non-

neuronal cells intertwine, including events such as myelinogenesis,

angiogenesis, and blood-brain barrier formation (32). While most

brain neurons are formed during the fetal stages, postnatal CNS

development is dominated by an increase in glial cells and neural

outgrowth (33).
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Given the prolonged and complex nature of CNS

developmental processes, spanning both prenatal and postnatal

periods, they are highly sensitive and vulnerable to internal and

external environmental factors (34). Emerging evidence indicates

that the gut microbiota plays a crucial role in CNS development.

Germ-free (GF) mice serve as a valuable model for elucidating the

effects of microbiota on CNS function and development (35, 36).

Using this mouse model, key neurodevelopmental processes,

including neurogenesis, cell migration, myelin formation, and

microglia activation, have been linked to gut flora composition

(37–40). Compared with conventional (specific pathogen-free; SPF)

mice, GF mice display increased antidepressant-like behavior, risk-

taking behavior, and hyperactivity, accompanied by deficits in

learning and memory (22, 41, 42). Notably, these mice also show

variations in the expression of 5-hydroxytryptamine receptors (5-

HT 1A), synaptophysin, and neurotrophic factors (e.g., BDNF) in

the hippocampus, as well as impaired blood-brain barrier

functionality and increased myelin formation in the prefrontal

cortex (42, 43). From a transcriptome sequencing perspective, the

increase of certain immediate early response genes (e.g. Fos, Fosb,

Egr2 or Nr4a1) in the GF mice amygdala is associated with
FIGURE 1

Microbiota-gut-brain axis. The bidirectional connection between the gut and the brain involves three major systems: the immune system, the
circulatory system, and the nervous system. Multiple direct (e.g. vagus nerve) and indirect (e.g. short-chain fatty acids, cytokines, and key dietary
amino acids, such as tryptophan) pathways exist to modulate the CNS with gut microbiota and to affect the gut microbial environment through the
CNS. BMEC, brain microvascular endothelial cell; HPA, hypothalamic pituitary adrenal axis; SCFAs, short-chain fatty acids; 5-HT,
5-Hydroxytryptamine.
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increased CREB signaling, and suggests a link between the

microbial establishment during early life and neurodevelopmental

disorders (44). Studies have also highlighted the potential

involvement of the microbiome in neurological disorders, such as

depression, anxiety, schizophrenia, ASD, Alzheimer’s disease,

Huntington’s disease, Parkinson’s disease, and multiple sclerosis

(45, 46). Such findings underscore the pivotal contribution of the

gut microbiota in CNS development and provide novel insights into

the pathogenesis and therapeutic strategies for congenital

CNS disorders.
3.2 Prenatal maternal gut microbes in
offspring CNS development

3.2.1 Maternal gut microbe-associated molecules
in fetal brain development

The absence of fetal microbiota is commonly acknowledged.

Nonetheless, the fetus is inevitably exposed to maternal-origin
Frontiers in Immunology 04
microbial-associated molecules, including metabolites,

peptidoglycan (PG), and LPS (47–49) (Figures 2B–D). Various

studies have established an association between maternal gut

microbiota and abnormalities in offspring brain function and

behavior. However, the precise mechanistic pathway by which

this maternal impact shapes fetal brain development during the

crucial prenatal period remains unknown.

During gestation, maternal gut microbial metabolites not only

regulate maternal health but also exert effects on fetal brain

development. While the molecular mechanisms underlying the

effects of gut microbial metabolites on the brain remain elusive,

certain metabolites, such as TMAO (Trimethylamine-N-oxide),

TMAV (N, N, N-Trimethyl-5-aminovalerate), and HIP

(Hippurate), have been implicated in neurological disorders and

neurite growth (50) (Figure 2B).

Fetal brains from antibiotic-treated (ABX) dams exhibit

decreased NTNG1 gene expression, which encodes the Netrin G1

protein essential for neuronal axonal growth, and fewer
B C

D E

A

FIGURE 2

Associations between different stages of CNS development and gut microbiota. (A). Critical processes in CNS development; (B). Influence of
maternal gut microbial metabolites on fetal brain development; (C). Influence of bacterial LPS on fetal brain development; (D). Influence of maternal
gut microbial mediation of immune system on fetal brain development; (E). Influence of establishment of gut microbes in early postnatal life on host
CNS development. ABX, antibiotic-treated; TMAO, trimethylamine-N-oxide; TMAV, N, N, N-Trimethyl-5-aminovalerate; HIP, hippurate; 5-AV, 5-
Aminovalerate; PG, peptidoglycan; PAFR, platelet activating factor receptor; BMEC, brain microvascular endothelial cell; MIA, maternal immune
activation; SFB, segmented filamentous bacteria; FMT, fecal microbiota transplantation.
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thalamocortical synapses relative to those from SPF dams (51–53).

In vitro co-cultures pairing the thalamus with the striatum and

hypothalamus demonstrate that thalamic neurons from ABX dams

inadequately discern associated elements from the striatum and

hypothalamus (53). Deficiencies in the maternal microbiome

impede fetal thalamic reactions to tissue-related factors, leading to

a reduction in thalamocortical synapses due to the lack of synaptic

guidance signals (53). Specific microbial colonization, notably

Clostridia, during pregnancy can ameliorate these alterations (53).

Maternal serum and fetal cerebral concentrations of TMAO,

TMAV, and HIP are diminished in ABX group relative to SPF

group (53, 54). However, intraperitoneal delivery of TMAO, 5-AV

(5-Aminovalerate), and HIP, or specialized gut microbe

colonization in ABX dams, rescues these abnormalities, restoring

fetal cerebral metabolite concentrations, thalamic synaptic

densities, and tactile sensitivity in adults (53). These findings

emphasize that the impact of maternal gut microbiota on fetal

brain metabolic profiles and gene expression commences during the

prenatal phase, underscoring the critical importance of gestation as

a period during which maternal microbiota actively fosters

fetal neurodevelopment.

Throughout pregnancy, maternal infections and inflammation

can influence fetal health and development (55). Bacterial

components produced during maternal infections can traverse the

placental barrier, activating the fetal innate immune system and

potentially impacting brain development and postnatal cognition

(Figure 2C). These bacterial components are not only from

maternal infection but may also be from the release of normal gut

microbes (56, 57). Research has indicated that prenatal maternal

exposure to PG is correlated with cognitive deficits in progeny.

Notably, bacterial cell wall PG can cross the placenta, entering the

developing fetal brain and inducing neuronal proliferation in the

frontal cortex by increasing FOXG1 expression, a process

dependent on Toll-like receptor 2 (TLR2) (58). FoxG1 is a

transcription factor crucial for embryonic telencephalon

development and patterning and a known spatiotemporal hub

gene in the brain (59). Dysregulation of FoxG1 is associated with

certain disorders, such as medulloblastoma and ASD (60, 61). These

observations enhance our understanding of the link between

maternal gut microbes and fetal brain and immune development,

as well as the interactions between PAMPs and neuronal tissues and

the discovery of novel cellular signaling pathways.

3.2.2 Maternal gut microbes mediate the
maternal immune system to participate in fetal
brain development

The maternal immune system is strongly associated with gut

microbes and fetal development (Figure 2D). Activation of the

maternal immune system during pregnancy can impact offspring

physiology, neuropathology, behavior, and microbial composition.

Epidemiological studies have shown that maternal prenatal

infections and inflammation can significantly increase the risk of

offspring developing schizophrenia and ASD (62). Researchers have

developed primate and rodent maternal immune activation (MIA)

models using synthetic double-stranded RNA (polyinosinic:
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polycytidylic acid (poly (I:C)) or TLR ligands (e.g., LPS).

Offspring from these MIA models display behavioral anomalies

indicative of NDDs, including diminished social behaviors,

heightened repetitive actions, and communication irregularities

(63–65). Changes in the gut microbiota of these offspring can

significantly influence their serum metabolomic profiles (66, 67).

While segmented filamentous bacteria in the prenatal gut of MIA

dams can lead to atypical behaviors in offspring, intervention with

Bacteroides fragilis can ameliorate some of these adverse effects (66,

67). The presence of gut microbes, combined with pro-

inflammatory signals during pregnancy, induces TH17 cells,

leading to elevated maternal plasma IL-17a concentrations (67).

Certain gut microbes that promote TH17 cell proliferation may

thereby increase NDD risks in MIA offspring. These findings

indicate that MIA models can provide valuable insights into how

the gut microbiome and immune response collaboratively impact

the physiology, behavior, and neuropathology of offspring.
3.3 Influence of early postnatal gut
microbe establishment on host CNS
development and behavior

The commensal microbiota in organisms emerges through

increasing interactions with the environment in early life,

fostering enduring interactions between host and gut microbes.

Influences on gut microbiota composition include host genetic

susceptibility, environmental factors, lifestyle, diet, and antibiotic

and non-antibiotic drug use (68) (Figure 2E). The early

establishment of gut microbiota coincides with a crucial period of

CNS development, during which antibiotic intervention and

probiotic supplementation can have profound effects on brain

development, structure, and function (69).

Research has linked antibiotic use in early life and adolescence

with subsequent depression and behavioral challenges (70–72).

Administering non-absorbable antibiotics to adult mice over a 7-

day period is sufficient to reduce anxiety-like behavior, although

this effect reverts to baseline upon cessation of antibiotic use and

recovery of the gut microbiome within two weeks (65). Long-term

antibiotic treatment from weaning to adulthood disrupts gut

microbiota structure and affects brain development and behavior

in mice (72). Similarly, GF animals exhibit distinctive behaviors and

developmental phenotypes compared to SPF animals (22, 41, 42).

Furthermore, imbalances in gut bacteria during early brain

development may heighten neurodegeneration susceptibility in

later life. Probiotic interventions can modulate or mitigate specific

adverse conditions in both mice and humans by enhancing specific

microbial populations, either temporarily or permanently (73).

Current studies have also explored the potential reconstruction of

healthy gut flora through fecal microbiota transplantation (FMT)

(74, 75) (Figure 2E). These findings highlight the strong association

between the gut microbiome in early postnatal life and CNS

development and behavior. Approaches that utilize gut probiotics,

prebiotics, and gut flora restoration are emerging as promising

strategies for CNS disease treatment.
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4 Gut microbes in NDDs

4.1 ASD and gut microbes

ASD represents a cluster of complex heterogeneous NDDs. The

primary clinical manifestations of ASD include impaired social

interactions, disordered language development, and restricted

repetitive behaviors (76). Epidemiological studies indicate an

increasing incidence of ASD in recent years. The World Health

Organization (WHO) estimates a global ASD prevalence of about

1%, with a recent survey estimating a prevalence of 1%–5% in

developed countries, potentially associated with changes in

diagnostic criteria, improvements in screening and diagnostic

tools, and increased public awareness (77, 78). The etiology and

pathogenesis of ASD are complex, with contributions from genetic,

epigenetic, and environmental factors. Environmental factors may

increase the incidence of ASD by increasing genetic susceptibility

(76). While the interval from prenatal and early postnatal life is

considered critical for environmental impacts on ASD, the precise

timing and mechanisms of action of these factors are yet to be

fully elucidated.

Studies have shown that GI symptoms are strongly associated

with autism severity, irritability, anxiety, and social withdrawal (79,

80). Interestingly, in addition to genetic differences, ASD patients

also exhibit significant differences in gut bacterial species and

abundance compared to typically developing (TD) individuals

(81). Such findings have triggered further research on the link

between ASD and gut microbiota as well as NDDs and gut

dysbiosis. At the phylum level, the gut microbiota in ASD
Frontiers in Immunology 06
patients predominantly consists of Bacteroidetes, Firmicutes, and

Actinobacteria, and Tenericutes (82), with a higher ratio of

Bacteroidetes to Firmicutes in ASD than in TD (82, 83). At the

genus level, ASD individuals exhibit higher levels of Bacteroides,

Parabacteroides, Dorea, Phascolarctobacterium, Clostridium,

Faecalibacterium, Ruminococcus, Lachnospiracea incertae sedis,

Roseburia, and Lactobacillus, but lower relative abundances of

Bifidobacterium, Coprococcus, Blautia, Veillonella, Dialister,

Escherichia/Shigella, Prevotella, Clostridium XIVa, Streptococcus,

Akkermansia, Sutterella, and Enterococcus (82–85) (Figure 3). The

gut flora in ASD rodent models shows similar significant differences

relative to normal rodents (81).

Dysbiosis in ASD-associated gut microbiota is characterized by

an overabundance of pathogenic bacteria and a reduced presence of

beneficial bacteria. Research indicates that GF mice receiving FMT

from ASD mice display decreased communication and increased

repetitive behaviors compared to GF mice receiving FMT from TD

mice (81, 86). Treating ASD mice with Bacteroides fragilis has been

shown to correct intestinal mucosal barrier defects and improve

ASD symptoms, such as stereotyped behavior and anxiety (66, 87).

Certain metabolites from the order Clostridiales are correlated with

repetitive behaviors and GI issues in ASD, which can be reversed

following antibiotic use (88). Elevated concentrations of propionic

acid (PPA), primarily produced by the phylum Bacteroidetes, are

recognized as significant neurotoxic SCFAs (89). SCFAs, when

transported to the brain via the circulatory system, influence

brain development by modulating serotonin and dopamine

synthesis (90). Both animal models and clinical trials involving

probiotics, such as Lactobacillus and Bifidobacterium, report
FIGURE 3

Venn diagram showing shared clinical and microbial features among ASD, RTT, and AS. NDDs with similar clinical features show some microbial
compositional features that are enriched/reduced in the same taxa. The main overlap, both clinical and microbial. Among the three NDDs, ASD, RTT
and AS, multiple studies have shown increased abundance of Bacteroides and decreased abundance of Streptococcus. Different colored circles
represent different NDDs; pink, ASD; green, RTT; purple, AS. Overlapping regions have the same abundance trend. Red arrows, increasing relative
abundance, blue arrows, decreasing relative abundance.
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improvements in mood, anxiety, sleep quality, and depression

(91, 92). These findings further underscore the correlation

between gut flora and neuropsychiatric and behavioral shifts in

affected individuals.
4.2 RTT and gut microbes

Methyl-CpG binding protein 2 (MECP2) is an important gene

in the pathogenesis of ASD and RTT and critical for regulating

synaptic activity in early postnatal life (93). RTT is a progressive

neurological disorder primarily caused by mutations in the MeCP2

gene on the X chromosome. GI dysfunction and constipation are

commonly observed in RTT patients, suggesting a link between

neurological abnormalities with intestinal function and gut

microbiota (94). Research has documented structural alterations

in the gut microbiome of human RTT subjects and MECP2-

mutated animal models, characterized by diminished abundance

and diversity (95, 96). At the phylum level, while Actinobacteria

predominates in RTT and Firmicutes predominates in TD, RTT

exhibits an increased relative abundance of Actinobacteria and

Firmicutes, a reduced presence of Bacteroidetes, and a notably

elevated Firmicutes/Bacteroidetes ratio, indicating gut ecological

dysregulation associated with RTT (95, 96). At the genus level,

Bacteroides, Bifidobacterium, Parabacteroides, Lachnospiracea

incertae sedis, Blautia, Escherichia/Shigella, Actinomyces ,

Clostridium XIVa, Enterococcus, Clostridium, and Sutterella show

an increase in relative abundance in RTT, but a decrease in

Faecalibacterium, Streptococcus, Ruminococcus, Prevotella,

Gemmiger, and Alistipes (94, 95, 97) (Figure 3) Functional

disruptions in MeCP2 modify the gut microbial community

structure, which, in turn, alters SCFA production and

gastrointestinal pathophysiology in RTT, leading to constipation,

inflammation, and host cytokine dysregulation (95). This

impairment in MeCP2, mediated through the gut-brain axis,

manifests as a dysregulated gut ecology in RTT patients.

RTT primarily affects females, with males harboring the

MECP2 mutation tending to succumb shortly after birth. MECP2

is widely expressed in mammals, predominantly in the nervous

system, with higher expression in neurons than in glial cells (93).

Studies have shown that male ASD patients exhibit diminished

MECP2 expression in brain astrocytes, concomitant with high

methylation of the MECP2 promoter in the frontal cortex,

alongside the genetic mutation observed in RTT patients (98, 99).

Such evidence suggests that MECP2 DNA hypermethylation in

astrocytes may underlie ASD pathogenesis in males. Several studies

have shown that reintroducing MECP2 expression in astrocytes of

MECP2-deficient mice can ameliorate certain behavioral and

molecular abnormalities (100). In Mecp2-deficient mice, increased

glutamine uptake by microglia can induce toxic effects due to

glutamate overproduction in hippocampal neurons, leading to

dendritic and synaptic damage (101, 102). Notably, glutamate, an

excitatory neurotransmitter, is highly susceptible to gut microbes

and can be metabolized by bacterial glutamate decarboxylase to

produce gamma-aminobutyric acid (GABA). Subsequent research

has shown that GABA-producing bacteria can reduce depression-
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and anxiety-like behaviors in mouse models (103, 104). Exploration

into RTT immune dysfunction using targeted glial cell activation

has also revealed that LPS stimulation can induce a dramatic

increase in mixed astrocyte-microglia pro-inflammatory cytokine

release in MECP2-deficient mice (105). These findings offer

promising avenues for RTT treatment, potentially ameliorating

physiological functions in patients or influencing disease

progression through gut flora modulation.

Cholesterol is an important component of the brain,

involved in membrane transport, signal transduction, myelin

formation, dendritic remodeling, neuropeptide formation, and

synaptogenesis (106). While evidence suggests that nascent

neurons autonomously synthesize cholesterol, this capability

diminishes with development, leading to a reliance on astrocytes

for cholesterol production (107). This down-regulation is absent in

RTT brains, leading to lipid accumulation and metabolic

dysregulation (108). Intestinal microbes maintain cholesterol

homeostasis in the body, playing a key role in bile acid

(cholesterol derivative) metabolism and the conversion of

cholesterol into distinct metabolites through dehydrogenase

activity encoded by the IsmA gene (109). Previous studies have

suggested that fecal metabolites are altered in Mecp2-mutated

females and associated with lipid defects in the brain (108).

Recent studies have applied RTT mouse models to investigate the

role of the gut microbiome and metabolome perturbations in RTT

disease progression.

Glial cell lesions and dysregulated brain lipid metabolism due to

MECP2 dysfunction have been implicated as primary drivers of

RTT and ASD pathogenesis (110, 111). Gut microbes play a critical

role in RTT disease progression, which warrants further study.

Changes in the intestinal microbiota of RTT patients may reflect

clinical presentations and potentially impact disease evolution. A

future research challenge is the restoration of intestinal flora or

colonization with specific probiotics as a novel approach for

RTT management.
4.3 AS and gut microbes

AS is a rare genetic neurodevelopmental syndrome resulting

from the gene expression deletion of maternally inherited ubiquitin

ligase E3A (UBE3A) in brain neurons (112). While paternally

inherited UBE3A is expressed in most peripheral organs, it is

silenced in the CNS by long non-coding antisense transcripts

(UBE3A-ATS) due to brain-specific imprinting. Thus, deletion of

maternally inherited UBE3A can lead to complete loss of UBE3A

expression in the brain (113). Clinical manifestations of AS include

microcephaly, severe developmental delays, expressive

communication deficits, distinct facial features, motor and

coordination deficits, hypotonia, generalized epilepsy, and sleep

disturbances (114). Beyond neurodevelopmental effects, GI issues

are also frequently reported in AS patients (115). The gut

microbiome is critical for the establishment of GI physiology and

function, and alterations in microbial colonization are common in

NDDs. At the phylum level, the gut microbiota of AS animal models

shows an increased abundance of Bacteroidetes and Actinobacteria
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and a decreased abundance of Firmicutes compared to wild-type

(WT) controls, leading to a lower Bacteroidetes to Firmicutes ratio

in AS (116). At the genus level, AS animal models exhibit a

decreased abundance of Lactobacillus, Bifidobacterium, Dubosiella,

Streptococcus, and Akkermansia compared to WT controls, but

increased levels of Bacteroides, Trichoderma, Lachnospiraceae,

Desulfovibrio, Odoribacter, Faecalibacterium, Roseburia, Blautia,

Ruminococcus, and Turicibacter (116) (Figure 3). Notably,

Lactobacillus is associated with several diseases, including major

depressive disorder and non-alcoholic fatty liver disease (117),

while Desulfovibrio is associated with Parkinson’s disease, with its

abundance in the gut directly related to disease severity (118).

Furthermore, Odoribacter is associated with attention deficit and

hyperactivity disorders, and can disrupt dopamine and serotonin

levels in the gut (119). The changes observed in the AS gut

microbiome are similar to those detected in the gut flora of

other NDDs.

Most AS patients exhibit symptoms of impaired coordination,

imbalance, and gait ataxia (120). PIEZO2, a mechanosensitive ion

channel, is necessary for maintaining coordination and balance (121).

Reduced PIEZO3 activity has been identified in sensory neurons from

UBE3A-deficient mice and stem cell-derived neurons from AS

patients. Linoleic acid (LA)-rich diets have been shown to increase

PIEZO2 activity and mechanical excitability in male AS mice,

ameliorating gait abnormalities. Furthermore, LA supplementation

has been shown to increase PIEZO2 function in sensory neurons

from UBE3A-deficient mice and in stem cell-derived neurons from

AS patients (119). The gut microbiota has the capacity to metabolize

lipids into bioactive metabolites (121). Recent studies have

highlighted that LA-derived microbial metabolites can influence

host lipid metabolism via the augmentation of peroxisomal b-
oxidative metabolism (121). These metabolites also improve CNS

self-immunity in multiple sclerosis mouse models, as evidenced by

improved gut barrier function, attenuated inflammation, and

increased in intestinal myeloid-derived suppressor-like cells (122).

Strategic modulation of the gut microbiome may alleviate

neurological and gastric symptoms in AS patients, thereby

enhancing their overall quality of life.

Interestingly, NDDs with similar clinical features often exhibit

microbial compositional similarities with enrichment or reduction

in the same taxa (82–85, 94, 95, 97, 116). The main overlap, both

clinical and microbial (Figure 3). The figure considers only the

microbial changes reported in most studies (i.e., discarding

inconsistent results). Bacteroides enrichment is frequently

reported in the reviewed NDDs (82–85, 94, 95, 97, 116). This

taxon, together with Clostridium, possesses remarkable proteolytic

ability, leading to potentially toxic compounds that can disrupt gut

homeostasis and permeability and affect the survival of other

beneficial microorganisms, such as lactic bacteria (123, 124).

Conversely, a decrease in the relative abundance of Streptococcus,

including Streptococcus thermophilus, is common among NDD

patients. While Streptococcus thermophilus is known to ferment

lactose and sucrose (125), the overall relationship between

Streptococcus and GI health remains largely unexplored.

Remarkably, although Streptococcus species are generally non-

pathogenic, some strains are associated with multiple metabolic
Frontiers in Immunology 08
disorders (126). Streptococcus thermophilus can increase the

abundance of gut probiotics, including Bifidobacterium and

Lactobacillus, via b-galactosidase (127). Predominant shifts in gut

microbial communities can induce an increase of pro-inflammatory

species and a decrease in probiotic species, which may promote

alterations in gut permeability and barrier functionality.

Alterations in gut flora are associated with NDDs (e.g., ASD,

RTT, AS) and GI disorders, highlighting the important role of gut

microbes in gut-brain communication (11, 79, 80, 94, 115, 116).

Whether these shifts in gut flora cause GI symptoms in NDDs and

influence disease progression remains unclear. Based on current

findings, evaluating gut flora alterations is necessary to study the

effects of gut microbiota on GI physiology and motor behavior in

NDD patients and related animal models.
5 Summary and future directions

In summary, the gut microbiota is closely linked to CNS

development and related diseases. Gut microbes and their

metabolites play a crucial role in brain-gut axis interactions. While

exploration of the gut-brain axis remains at an early stage, certain

basic circuits have begun to emerge and specific neurodevelopmental

pathways may require a response from gut microbial signals.

Mammalian CNS development is a long process that begins during

pregnancy with the differentiation of neural progenitor cells and

extends into late adolescence, potentially persisting across the whole

life cycle. These developmental processes entail relevant gene

expression and environmental inputs, with disruptions in any of

these events fundamentally altering neural outcomes (128).

Functioning as an environmental determinant, the gut microbiome

is highly likely to exert an enduring influence on the structure and

functionality of the CNS (129). Many studies have indicated that

changes in the maternal gut microbiota can modulate offspring gut

microbiota, neurodevelopment, and behavior (130). In humans and

rodents, perinatal administration of antibiotics can affect the health

and immune status of offspring (131). In mouse models, maternal

exposure to antibiotics alters gut microbiota and reduces motility in

dams and offspring, with anxiety-like behavior and motor deficits in

the latter (132). As previously discusses, important processes (e.g.,

synaptic growth and neuronal proliferation) in fetal CNS

development are affected by maternal microbial-associated

molecules (e.g., metabolites, PG, and LPS), with maternal gut

microbes contributing to fetal brain development through the

maternal immune system. Furthermore, the establishment of gut

microbiota in early postnatal life can influence host CNS

development and behavior. These examples underscore the critical

role of the gut microbiome in both prenatal and postnatal CNS

development. Currently, the connection between gut microbes and

the pathogenesis in CNS diseases is progressively gaining prominence

as a frontier of scientific research. NDDs (e.g., ASD, RTT, AS) can

disrupt gut microbial balance, potentially aggravating disease

progression. By modulating gut microorganisms, it may be possible

to attenuate CNS disease development and enhance host immunity,

thereby ensuring human and animal well-being. Nonetheless, current

clinical data regarding probiotic supplementation for disease
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treatment remain limited, with a lack of standardized probiotic

protocols. Consequently, in-depth study of the regulatory

mechanisms underpinning CNS diseases and gut microbiota holds

profound implications not only for advancing gut health promotion

but also for expanding the scope of CNS-related disease prevention.
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31. Petanjek Z, Judas M, Kostović I, Uylings HB. Lifespan alterations of basal
dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific
pattern. Cereb Cortex (2008) 18(4):915–29. doi: 10.1093/cercor/bhm124

32. Taverna E, Götz M, Huttner WB. The cell biology of neurogenesis: toward an
understanding of the development and evolution of the neocortex. Annu Rev Cell Dev
Biol (2014) 30:465–502. doi: 10.1146/annurev-cellbio-101011-155801

33. Jena A, Montoya CA, Mullaney JA, Dilger RN, Young W, McNabb WC, et al.
Gut-brain axis in the early postnatal years of life: A developmental perspective. Front
Integr Neurosci (2020) 14:44. doi: 10.3389/fnint.2020.00044

34. Rodier PM. Vulnerable periods and processes during central nervous system
development. Environ Health Perspect (1994) 102 Suppl 2(Suppl 2):121–4. doi: 10.1289/
ehp.94102121

35. Huang Y, Wu J, Zhang H, Li Y, Wen L, Tan X, et al. The gut microbiome
modulates the transformation of microglial subtypes. Mol Psychiatry (2023) 28
(4):1611–21. doi: 10.1038/s41380-023-02017-y

36. Lee J, Venna VR, Durgan DJ, Shi H, Hudobenko J, Putluri N, et al. Young versus
aged microbiota transplants to germ-free mice: increased short-chain fatty acids and
improved cognitive performance. Gut Microbes (2020) 12(1):1–14. doi: 10.1080/
19490976.2020.1814107

37. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O'Leary OF. Adult
hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry (2015) 78
(4):e7–9. doi: 10.1016/j.biopsych.2014.12.023
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