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through analysis of single-
cell transcriptomics
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Yanbing Song1, Zhihan Wang1, Chaobo Liu1, Guangdong Hu1,
Jiajie Zheng1, Li Ren1 and Zilong Wei1*

1Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center,
Shanghai, China, 2Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University,
Hefei, China, 3Shandong University of Traditional Chinese Medicine, Jinan, China
Background: Glioblastoma (GBM), a prevalent malignant neoplasm within the

neuro-oncological domain, has been a subject of considerable scrutiny.

Macrophages, serving as the principal immunological constituents, profoundly

infiltrate the microenvironment of GBM. However, investigations elucidating the

intricate immunological mechanisms governing macrophage involvement in

GBM at the single-cell level remain notably limited.

Methods: We conducted a comprehensive investigation employing single-cell

analysis, aiming to redefine the intricate cellular landscape within both the core

and peripheral regions of GBM tumors. Our analytical focus extended to the

profound study of macrophages, elucidating their roles within the context of

oxidative stress, intercellular information exchange, and cellular trajectories

concerning GBM and its assorted subpopulations. We pursued the

identification of GBM prognostic genes intricately associated with

macrophages. Utilizing experimental research to investigate the relevance of

MANBA in the context of GBM.

Results: Our investigations have illuminated the central role of macrophages in

the intricate interplay among various subpopulations within the GBM

microenvironment. Notably, we observed a pronounced intensity of oxidative

stress responses withinmacrophages when compared to their GBM counterparts

in other subpopulations. Moreover, macrophages orchestrated intricate cellular

communication networks, facilitated by the SPP1-CD44 axis, both internally and

with neighboring subpopulations. These findings collectively suggest the

potential for macrophage polarization from an M1 to an M2 phenotype,

contributing to immune suppression within the tumor microenvironment.

Furthermore, our exploration unearthed GBM prognostic genes closely

associated with macrophages, most notably MANBA and TCF12. Remarkably,

MANBA appears to participate in the modulation of neuroimmune functionality

by exerting inhibitory effects on M1-polarized macrophages, thereby fostering
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tumor progression. To bolster these assertions, experimental validations

unequivocally affirmed the promotional impact of MANBA on GBM,

elucidated through its capacity to curb cell proliferation, invasiveness, and

metastatic potential.

Conclusion: These revelations represent a pivotal step towards unraveling

the intricate immunological mechanisms governing the interactions between

macrophages and diverse subpopulations within the GBM milieu.

Furthermore, they lay the foundation for the development of an innovative

GBM prognostic model, with MANBA at its epicenter, and underscore the

potential for novel immunotherapeutic targets in the ongoing pursuit of

enhanced treatment modalities for this formidable malignancy.
KEYWORDS

glioblastoma, macrophages, immune mechanism, oxidative stress response, single-
cell transcriptome sequencing
1 Introduction

Glioblastoma (GBM) is the most prevalent and aggressive

primary intracranial cancer in humans (1), comprising

approximately 57% of all gliomas and 48% of all primary

neurological malignancies. It represents one of the most advanced

and pernicious forms of brain tumors (2) GBM can be classified into

IDH wild-type and IDH-mutant subtypes. Histologically,

both subtypes exhibit features characteristic of high-grade

astrocytomas. The IDH wild-type GBM is predominantly

primary, while the IDH-mutant GBM is often associated with a

history of low-grade astrocytoma (3–5). Currently, standard

treatments for GBM primarily involve surgical intervention,

followed by adjuvant radiotherapy and chemotherapy.

Additionally, there are emerging modalities such as targeted

immunotherapy and electric field therapy. Unfortunately, due to

its malignant proliferation, infiltration into brain parenchyma, and

resistance to treatment, patients often experience unfavorable

outcomes, with a one-year survival rate of 40% and a five-year

survival rate of 5.6% (6, 7). In recent years, immunotherapy has

achieved significant success in improving the prognosis of many

cancer patients, emerging as a new ray of hope for numerous

individuals battling cancer. The immunotherapeutic strides achieved

in cancer have rendered immunotherapy particularly appealing for

GBM. Presently, immunotherapeutic approaches for GBM

encompass CAR-T cells, oncolytic viruses, cancer vaccines, and

immune checkpoint inhibitors. Unfortunately, the relative

immaturity of GBM immunotherapy persists due to the “immune

privilege” of the brain and the immunosuppressive microenvironment

within GBM (8, 9). Consequently, investigating the immune-related

mechanisms of GBM and developing novel immunotherapeutic

approaches to enhance the prognosis of GBM patients assumes

paramount importance.
02
Macrophages, as human immune regulatory effector cells, play a

crucial role in tumor occurrence and progression. In the tumor

microenvironment, macrophages make up more than 50% of

infiltrating immune cells (10), which can promote vascular

growth, tumor proliferation, metastasis, and drug resistance (11).

However, macrophages are also the main immune cells that

infi l trate the GBM microenvironment. Under normal

circumstances, peripheral macrophages find it challenging to

penetrate the central nervous system (CNS) due to the presence

of the blood-brain barrier (BBB). However, GBM can damage and

induce the BBB, which allows macrophages in the peripheral blood

to cross the BBB and accumulate in the tumor microenvironment

(12). Relevant research has demonstrated the crucial role of

communication between tumor cells and macrophages in the

malignant progression of GBM. Their functions include

supporting angiogenesis, nurturing tumor stem cells, and

promoting an immunosuppressive tumor microenvironment (13,

14). However, other studies have found that, due to diverse

inducing factors, macrophages within tumors can undergo

differentiation and mutual transformation between M1/M2

phenotypes. M1 macrophages are associated with tumor

suppression, whereas M2 macrophages may facilitate tumor

growth (12, 15). This suggests that the specific impact of

macrophages on GBM could be bidirectional, depending on their

differentiation direction. Moreover, these effects may be realized

through specific pathways and mechanisms within GBM.

Modulating or enhancing certain pathways or mechanisms could

potentially have therapeutic implications for GBM.

Redox homeostasis is fundamental to maintain normal cell

function and ensure cell survival (16). However, a high oxidative

stress state is often present in tumor cells (17). Excessive production

of ROS caused by oxidative stress imbalance may induce somatic

cell mutations (18) and destroy nuclear DNA and mitochondrial
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DNA, thereby increasing the risk of cancer (19, 20). However, some

researches show that, ROS may participate in inducing the

polarization of macrophages from the phenotype M1 to M2

except for its involvement in tumorigenesis, thus causing

suppressive tumor immune microenvironment (21). However,

clinical immunotherapy trials for GBM, including vaccines,

adoptive cellular therapy and immune checkpoint blockade, have

fewer actual benefits to patients (22, 23). Therefore, we suspect that

the oxidative stress response of macrophages may be involved in the

immunosuppression in the GBM microenvironment.

In this investigation, we showcase the glioblastoma multiforme

(GBM) core and its surrounding tissues’ associated cells. We delve

into the response of macrophages to oxidative stress and associated

transcription factors. Furthermore, we outline the trajectory

relationship between macrophages and other cells and establish a

GBM prognostic model that is associated with macrophage genes.

These findings will enable us to gain deeper insight into the immune

interaction mechanism between macrophages and GBM, thereby

facilitating the development of more targeted immunotherapy for

GBM and the creation of a prognostic model.
2 Methods

2.1 Data download and processing

Single-cell SRA file data of the tumor core and peritumoral

tissue of four GBM patients were downloaded fromGene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),

containing eight samples (SRR13194337-SRR13194344). The SRR

files were converted into fastq format and the downstream input

files were generated with cellranger (7.0.1) to compare GRCh38

human reference genomes under default settings. Gene expression

quantification RNA-Seq (HTSeqFPKM) and clinical data of GBM

were downloaded from TheCancer Genome Atlas Program(TCGA)

website https://www.cancer.gov/ccg/research/genome-sequencing/

tcga). The data were extracted and standardized using the R

software (R 4.1.1).
2.2 Quality control

To ensure the accuracy of downstream analysis, we utilized the

R package DoubletFinder to exclude capsule cells and filter out

low-quality cells. The filtering criteria used were: 1) The total

number of genes transcribed per cell is below 80,000. 2) The total

number of genes detected per cell is below 8,000. 3) The

proportion of mitochondrial gene count is less than 20%. 4) The

proportion of red blood cell gene count is less than 5%.
2.3 Dimensionality reduction, clustering
and annotation of data

The cells that had been filtered were normalized through the

application of the “NormalizeData” function of the Seurat R
Frontiers in Immunology 03
package. To identify the top 2000 highly variable genes, the

“FindVariableFeatures” function was utilized based on dispersion

degree and mean expression. The caladata function was used to

conduct standardized scaling. The CellCycleFeatures function was

utilized to calculate cell-cycle effects. Batch effect was eliminated

using the Harmony R package. Principal component analysis/

dimensionality reduction was performed using the RunPCA

function based on the expression of the top 2,000 hypervariable

genes, and clustering was done using the FindNeighbors and

FindClusters functions. The clustering of groups was annotated

with the help of the “singleR” R package and related literature data.

The differentially expressed genes with other different clusters were

calculated using the FindAllMarkers function.
2.4 Oxidative stress pathway scores

The R package AUCell was employed to score the activities of

various cellular oxidative stress pathways. The scores were

compared between the most active macrophages and other cells,

and va l i da t ed us ing the Per cen t ageFea tu r eSe t and

AddModuleScore functions.
2.5 Macrophage ratio and related
transcription factors (SCENIC analysis)

To investigate the distribution of cells within the tumor core

and peritumoral tissue, we utilized R software for visualization

purposes. Furthermore, we aimed to identify the macrophage-

associated transcription factor (TF) regulatory network, which

exhibited the most significant changes in proportion. This was

accomplished using the pyscenic method. Initially, GRNBoost was

utilized to identify potential targets for each TF. Subsequently,

potential direct binding targets were chosen based on DNA-motif

analysis and cellular regulons activities were scored using AUcell.

Finally, the top five with the highest scores were selected for

discussion of their expression in different cells.
2.6 Differential genes and
enrichment analysis

We identified differentially expressed genes (DEGs) in various

kinds of cells. DEGs must be detected in 25% of the cells and

P<0.01, false discovery rate (FDR)<0.05, | logFCfilter |> 1. Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

was performed.
2.7 Cell-cell interaction analysis

All intercellular interactions were analyzed using the R package

cellchat, which allowed us to predict the potential interaction

strength of macrophages with other cells based on the mean

expression number of receptors and ligands. Different incoming
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and outgoing signals of various cells were visualized to gain a better

understanding of the complex intercellular communication

networks in the GBM tumor microenvironment.
2.8 Cell trajectory analysis

We conducted cell trajectory analysis for different types of cells

using the velocyto method to study their transformation and

evolution process. Through dimensionality reduction and cluster

analysis of the data, we determined the cell-cell distance and RNA

transformation rate to indicate the direction of cell differentiation.

Furthermore, we employed the paga method to investigate the

confidence size of different intercellular trajectories. Finally, we

verified cellular differentiation lineage construction and pseudo-

time inference using cell clustering and spatial dimensionality

reduction information through the slingshot tool.
2.9 High-throughput weighted
co-expression network analysis

HdWGCNA is a systematic biological analysis method that can

be used to describe gene-associated patterns and identify co-

expressed gene modules. By hdWGCNA analysis of eight

samples, we obtained gene modules related to macrophages. They

were also scored by KME and visualized in terms of their expression

in various kinds of cells. Gene modules associated with

macrophages were further screened. The top 25 genes were

selected for network analysis according to their scores of KME.

Of which the top 25 genes were picked up for the network analysis.
2.10 The clinical relevance and
independent prognostic assessment

GBM were excluded. Then, the intersected genes were merged

with standardized GBM clinical data. The univariate Cox

proportional hazards regression analysis was performed using the

‘coxph’ function from the R package ‘survival,’ followed by

validation using least absolute shrinkage and selection operator

(LASSO)-penalized Cox regression to prevent overfitting issues.

Subsequently, a multivariate Cox proportional hazards regression

analysis was conducted to identify two macrophage-related

differential genes (MR-DEGs) associated with prognosis. To

compute the risk score of each sample (Risk Score = Xl, where
Xl represents the relative expression levels of prognostically

relevant genes and coefl represents the coefficients), we stratified

the samples into high and low-risk groups based on the median

score. Subsequently, we employed Principal Component Analysis

(PCA) to examine the distribution patterns within these groups. We

conducted an investigation into the survival outcomes and

expression profiles of MR-DEGs between the high and low-risk

groups. The results of this analysis were visually represented using

Kaplan-Meier survival curves. Furthermore, the specificity and
Frontiers in Immunology 04
sensitivity of our risk score-based prediction were assessed

through time-dependent receiver operating characteristic (ROC)

curves. In order to investigate the correlation between clinical

factors and the risk score, as well as to assess whether it can serve

as an independent prognostic indicator, we incorporated

demographic data including age, gender, and ethnicity from our

sample cohort. We then compared the differences in these factors

between the high and low-risk groups. To construct a predictive

nomogram for the prognosis of GBM patients and validate its

performance, we employed the R package ‘rms’. This nomogram

will enable us to estimate patient outcomes based on a combination

of the risk score and clinical variables, providing a comprehensive

tool for prognostic assessment in GBM.
2.11 The analysis of MR-DEGs in relation to
macrophages and associated risk

Through the application of the xCell and CIBERSORT

deconvolution algorithms, we have unveiled the landscape of

immune infiltration among patients in both high and low-risk

groups. Furthermore, we have conducted a meticulous calculation

to determine the associations between immune cell populations and

their respective risk scores, as well as the MR-DEGs. Subsequently,

based on our findings, we embarked on an exploration and

visualization of the interrelationships involving M1 macrophages,

MANBA expression, and risk scores. This multifaceted analysis

not only deepens our comprehension but also provides a

visual representation of these intricate connections. In addition,

we harnessed the “ESTIMATE” algorithm to calculate the

stromal score, immune score, and the overall microenvironment

score for both high and low-risk groups. Our investigation also

extended to the examination of their correlations with risk scores

and MNABA expression, thus shedding light on the complex

interplay between the tumor microenvironment, risk assessment,

and MNABA expression.
2.12 Differential gene enrichment analysis
in high and low-risk groups

We obtained differential gene expression profiles between high

and low-risk groups using the R package “limma,” with the following

filtering criteria: |log2 Fold Change| > 1 and a false discovery rate

(FDR) adjusted threshold of P.adj < 0.05. Subsequently, we

performed KEGG enrichment analysis and Gene Ontology (GO)

enrichment analysis, including biological processes, cellular

components, and molecular functions, using the “clusterProfiler” R

package. Furthermore, we employed the Gene Set Enrichment

Analysis (GSEA) algorithm to analyze the expression gene sets

from KEGG databases (c2.cp.kegg.v7.5.1.symbols.gmt) that were

collected as marker gene sets for low-risk and high-risk

populations. Statistically significant results were defined as FDR

< 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1288137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xing et al. 10.3389/fimmu.2023.1288137
2.13 Cell lines and cultures

Human glioma cell lines U87-MG and LN227 used in this study

were purchased from the Cell Center of Shanghai Institutes for

Biological Sciences (Shanghai, China). Glioma cells were cultured in

DMEM supplemented with 10% fetal bovine serum (FBS; WISENT,

Canada) and antibiotics (1% penicillin/streptomycin, Gibco, USA)

in a humidified atmosphere of 95% air and 5% CO2 at 37 °C. Cells in

this study were passaged when they reached ~70% confluency.

2.14 Transfection

Small interfering RNA (siRNA) used in this study was

synthesized by GenePharma. The procedure of transfection was

performed according to the instructions of lipofectamine 3000

(Invitrogen, USA).
2.15 Colony formation assay

Treated glioma cells were seeded into 6-well plates at a density

of 1000 cells/well. After 12 days of culture, cells were fixed by 4%

paraformaldehyde and stained with crystal violet for 30 minutes,

then photographed and counted. Each experiment was repeated for

three times.
2.16 Wound healing assay

Wound healing assay were operated 48 hours after transfection.

U87-MG and LN227 cells were seeded into each well until

confluence, 200ml pipette tip were used to draw a straight line.

Then the supernatant in each well was replaced. After the cells were

cultured in serum-free PRMI-1640 for 0, 48h, migration imagines

were captured. Each experiment was repeated for three times. The

cell-free areas were calculated and quantified by ImageJ software.
2.17 Transwell assay

Transwell chambers with a membrane pore size of 8mm (Corning,

USA) were coated with (transwell invasion assay) or without

(transwell migration assay) Matrigel (BD Biosciences, USA). A total

of 3×104 cells were seed into the upper chambers with serum-free

medium, whereas medium containing 10% FBS was used in the lower

chamber. After incubation for 48h, the cells on the bottom of chamber

were fixed, stained, and counted by inverted microscope.
3 Results

3.1 GBM cell classification (or GBM single
cell data analysis)

We downloaded the single cell data (T1: 21764, T2: 14612, T3:

14070, T4: 24336) in the tumor core and single cell data (TP 1:
Frontiers in Immunology 05
10746, TP 2: 11454, TP 3: 15998, TP3: 41926) in the peritumoral

tissue of four GBM patients from the Geo database. The capsule

cells were removed through R package DoubletFinder to obtain the

single cell data (T1: 21462, T2: 13072, T3: 12644, T4: 24336) in the

tumor core and the single cell data (TP 1: 10746, TP 2: 10543, TP 3:

14190, TP 4: 29074) in the peritumoral tissue (Supplementary

Figure 1). It was filtered using the R software (Supplementary

Figure 2A) to eventually obtain 127,566 single cell data. By cell

staging test, we found that the points in PCA map were more

concentrated (Supplementary Figure 2B). It indicates that cell

staging is smaller than our results. We selected the top 2,000

diversity genes (Supplementary Figure 2C) and performed the

dimensionality reduction per diversity genes by RunPCA

(Supplementary Figure 2D). The first 30 dimensions were finally

picked up to visualize (Supplementary Figure 2D). By clustering, we

divided all cells into 23 clusters (Figure 1A) which were further

annotated as 10 categories of cells by R package singleR and

literature review (Figure 1B). The type and number of cells

included macrophage (49,231), microglia (57,051), glia/Neuronal

cell (3,541), neutrophil (8,481), endothelial (3,204), T cell (1,240),

dendritic cell (643), mural cell (854), B cell (620) and immature

neurons (2701), respectively. In order to explore the differences in

the cell composition in the tumor core and peritumoral tissue, we

visualized the cells of different samples sources (Figures 1C, D), and

found that there was significant difference in cell distribution in the

tumor core and peritumoral tissue. The cells around the tumor

tissue were mostly microglia, glia/neuronal cell, endothelial and

mural cell while the cells in the core were mainly macrophage,

neutrophil, T cell, dendritic cell, B cell and immature neurons. We

discovered that immune cells aggregated more in the tumor core

tissue and the macrophages were particularly significant. Then we

studied the mitotic cycle of various types of cells (Figure 1E), and

found that immature neurons belonged to the tumor core cells and

the G2M stage accounted for more, indicating that its metabolism,

division and so on life activities were vigorous. We further explored

marker genes with higher average expression number and

percentage of expressed cells among different cells (Figure 1F),

and found that in the tumor core tissue, the genes VCAN,

SLC16A10 and LYZ were significantly coexpressed in

macrophages, dendritic cells and immature neurons; genes

IFITM2 and S100A8 were significantly expressed in neutrophils;

and genes H2AFZ and TUBB were significantly expressed in

immature nerve cells. In the peritumoral tissue, genes PDK 4 and

SERPINE1 were significantly expressed in microglia, glia/neuronal

cell, endothelial and mural cell, particularly evident in the microglia.
3.2 Oxidative stress pathway
activity analysis

In order to investigate the activity of oxidative stress pathways

in different cells of GBM, we scored them using the R package

AUCell (Figures 2A, B). And we found that the oxidative stress

activity of macrophages was significantly increased. Therefore, we

are interested in the specific role of oxidative stress in GBM. Then

we compared the oxidative stress activity scores (Figure 2C)
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between the macrophages and other cells, which were validated by

PercentageFeatureSet and AddModuleScore functions (Figures 2D,

E), and found that the oxidative stress scores of macrophages

calculated by the three methods were higher and more

significantly different than most other cells. This may suggest that

macrophages involve in oxidative stress response and play an

important role in the occurrence and development of the tumor.
3.3 Subset proportion and identification of
related transcription factors

By comparing the proportion of cell types in the GBM core

samples to the peripheral samples (Figures 3A, B), we discovered

that the proportion of macrophages in the tumor core tissue was

significantly elevated. In contrast, the proportion of microglia was

significantly reduced, suggesting that these two types of cells may
Frontiers in Immunology 06
have opposite effects on tumor progression. In addition, the

proportion of dendritic cells and immature neuronal cells was

also relatively increased in the tumor core tissue, which may

indicate a positive implication for tumor development. However,

glia/neuronal cell, endothelial, neutrophil, T cell, mural cell and B

cell showed a similar proportion in the tumor core and the

peritumoral tissue. The difference was not statistically significant

(P>0.05). We further studied the transcription factors of the

macrophage-related oxidative stress pathways (Figure 3C) and

selected the top five with highest scores, namely RXRA, RARA,

MXI 1, FOSL 2 and BHLHE40. In order to investigate the

relationship between these five transcription factors and GBM-

related cells, we further visualized the cell subsets expressed by

these five transcription factors (Figures 3D-H), and found that

they were transcriptionally expressed in the tumor core tissue,

mainly in the macrophage group and also partially distributed in

the neutrophils.
B

C D

E F

A

FIGURE 1

Single cell analysis of cell subsets in the GBM core and surrounding tissues. (A). The cells of the tumor core and peritumoral tissues are gathered to
23 clusters in four GBM patients. (B). Macrophage, Microglia, Glia/neuronal cell, Neutrophil, Endothelial, T cell, Dendritic cell, Mural cell, B cell and
immature neurons are annotated based on different cell surface genes. (C). Overall distribution of the peritumoral tissue and tumor core tissue
samples. (D). Distribution of tumor core and peritumoral tissues in four GBM patients. (E). The proportional size of different stages of G1 and G2MS in
each cell subset of GBM. (F). MARKER gene expression in GBM core and peritumoral tissues as well as each cell subset.
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3.4 Enrichment analysis of
differential genes

We screened the differential genes for different types of cells

(Figure 4A) and showed the top five genes with the highest and

lowest scores, respectively. Furthermore, KEGG enrichment analysis

was performed for each type of cells using these differentially expressed

genes (Figure 4B). We found that arthritis rheumatoid acted

significantly in macrophages, while apelin signaling pathway

enrichment was significant in microglia. We speculate that this may

be an antagonistic effect of microglia on the oxidative stress response of

macrophages, which has an inhibitory effect on the tumor progression.

3.5 GBM intercellular interaction analysis

In order to study the interaction among different cells in

GBM, we analyzed it using the R package cellchat (Figure 5A) and
Frontiers in Immunology 07
discovered that the interaction types and interaction intensity of

macrophages and other cells were rather high. Furthermore, we

summarized the afferent and efferent signal factors of different

cell subsets in GBM (Figure 5B) and found that the overall

intensity of macrophages receiving and sending signal factors

was higher than that of other cells, followed by microglia and

immature nerve cells. Based on these signaling patterns, we

focused on the interaction between interligand-receptor pairs of

macrophages and other cell subsets (Figure 5C) and discovered

that the SPP1-CD44 receptor-ligand pair had a higher

intercellular communication within macrophages. It was also

present in the interaction between the macrophages with T

cells, dendritic cells and immature immune cells. In addition,

we discovered that macrophages and microglia had the highest

number and intensity of receptor-ligand interactions. We believe

that there may be some antagonistic links between the two cells.

In addition, we found that VEGFB-VEGFR1 and ANXA1 FPR1
B

C

D

E

A

FIGURE 2

Oxidative stress pathway scores of GBM cell subsets. (A, B). AUCELL algorithm score distribution diagram of oxidative stress pathway activity.
(C). Difference in AUCELL scores of oxidative stress between the macrophages and other cell subsets. (D). Difference in oxidative stress scores by
PercentageFeatureSet function between the macrophages and other cell subsets. (E). Differences in oxidative stress scores by AddModuleScore
function between the macrophages and other cell subsets. **p<0.01; ****p<0.0001.
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receptor-l igand pairs appeared more frequently when

macrophages interacted with a variety of cells.
3.6 GBM-associated cell trajectories

In order to understand the trajectory relationship between the

macrophages and other GBM cell subsets, we conducted the

trajectory analysis for GBM core tissue and peripheral tissue cells

by velocyto method (Figures 6A, B), and found that macrophages

seemed to be in the center of the trajectory and progressed to the
Frontiers in Immunology 08
surrounding subsets. It seems to confirm the results of the

macrophages interacting with a variety of cells described

previously. We further explored the confidence size of the cell

trajectory among the subsets by paga method (Figure 6C), and

found that the macrophages were closely related to the other

subsets. We also verified the cell-to-cell trajectory by slingshot

(Figures 6D, E), and found that the five cell trajectories reached

the macrophages and then flowed to other cell subsets. The

macrophages can be the starting point of the bifurcation of the

cell trajectory. We speculate that it may be related to the

interactions between the macrophages and other cells.
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FIGURE 3

Proportion of each cell subset of GBM and transcription factor identification. (A, B). The proportion and difference of each cell subset between the
GBM core and surrounding tissues. (C). Macrophage-associated oxidative stress pathway transcription factor scores. (D–H). Expression of the top
five scored transcription factors in each cell subset.
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3.7 Weighted co-expression
network analysis

Macrophage-related modules were obtained through WGCNA

analysis of data from eight samples. A soft threshold was set to 7

(Figure 7A), minimum number of module genes to 100, depth in

split to 2, and combined similarity less than 0.5. We obtained a total

of 5 non-gray gene modules M1-M5 (Figure 7B);, completed the

KME scores for the five gene modules to determine the highly

connected genes within the modules (Figure 7C), and found that the

M3 module had the highest score. Through further visualizing the

expression of five gene modules in cell subsets (Figure 7D), it was

found that the M1 gene module was mostly expressed in the tumor

core tissue and concentrated in the macrophage subsets. We

speculate that the M1 and M3 gene modules are related to

macrophages. We verified the relationship between the five gene

modules and each cell subset of GBM. The results are consistent

with our hypothesis (Figure 7E). We screened the top 25 genes
Frontiers in Immunology 09
(Figures 7F, G) of the M1 and M3 gene modules based on the KME

scores for the next survival prognostic analysis.
3.8 Prognostic analysis

By intersecting the top 25 genes from the M1 and M3 modules

with differentially expressed genes (DEGs) obtained from the

TCGA database for Glioblastoma Multiforme (GBM), we

collectively acquired 50 Most Relevant Differentially Expressed

Genes (MR-DEGs). Subsequently, employing univariate Cox

regression analysis, we meticulously sieved through these genes

and identified 5 MR-DEGs that displayed prognostic associations

(Figure 8A). To further ascertain their robustness, we conducted

LASSO Cox regression analysis, the results of which affirmed the

stability and reliability of these genes (Figures 8B, C). Ultimately,

through a multivariate Cox regression analysis, we conclusively

identified two MR-DEGs significantly associated with prognosis:
B

A

FIGURE 4

Differential genes and enrichment analysis in each cell subset of GBM. (A). Differentially expressed genes in each cell subset of GBM. (B). KEGG
enrichment analysis of differential genes in each subset of GBM.
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the high-risk gene MANBA and the low-risk gene TCF12. We

computed risk scores for each sample, stratifying them into high

and low-risk groups based on the median score (Figure 8D).

Furthermore, we utilized Principal Component Analysis (PCA) to

validate the distinct distribution of patients from different risk

groups along two divergent axes (Figure 8E). We evaluated the

relationship between survival status and survival time among high

and low-risk groups (Figure 8F). Notably, we observed that with

increasing risk scores, there was a greater concentration of deceased

patients, indicating a correlation between higher risk scores and

poorer survival outcomes. Subsequently, we delved deeper into the

expression patterns of the two prognostically relevant MR-DEGs

within the high and low-risk groups (Figures 8G, H). It was

discerned that MANBA exhibited elevated expression levels in the

high-risk group, while TCF12 demonstrated higher expression

levels in the low-risk group, with statistically significant

differences noted. The Kaplan-Meier survival curve (Figure 8I)

clearly illustrates that the survival rate in the high-risk group is

consistently lower than that in the low-risk group at different time

points, with a significant statistical difference of P < 0.01. This

underscores the meaningfulness and clinical relevance of our

results. The results from the ROC curves for the 1-year, 3-year,

and 5-year survival predictions (Figure 8J) yield respective areas

under the curve (AUC) values of 0.72, 0.67, and 0.64. These findings

signify that our predictive model exhibits stability and excellence.

Furthermore, we conducted an in-depth examination of the

correlations between various clinical factors and risk scores

(Figures 8K-M). Subsequently, based on the risk scores and

clinical factors, we constructed a nomogram plot to enhance the

prediction of survival rate changes over 1 year, 3 years, and 5 years

for different patients (Figure 8N). To further assess the predictive

performance of our model, we generated ROC curves for each year’s

survival prediction (Figure 8O). The results revealed AUC values of
Frontiers in Immunology 10
0.68, 0.68, and 0.65 for 1 year, 3 years, and 5 years, respectively,

indicating favorable sensitivity and specificity of our predictive

model. Additionally, decision curve analysis (Figure 8P) was

employed to compare the clinical net benefits of different

prediction models. The results clearly demonstrate that the new

model outperforms the old model in terms of clinical diagnostic

value, affirming the predictive worth of our prognostic model.
3.9 The analysis of the correlation between
MANBA and M1 macrophages

We observed significant differences in the distribution of the

tumor microenvironment and M1 and M2 macrophages between

the high and low-risk groups (Figure 9A). This piqued our interest,

leading us to explore the correlation between different immune cell

types and risk scores (Figure 9B). We found that M1 macrophages

exhibited a negative correlation with risk scores, whereas M2

macrophages displayed a positive correlation, aligning with our

earlier hypotheses. Furthermore, we delved into the relationships

among risk scores, immune cells, and MR-DEGs (Figure 9C).

Within M1 and M2 macrophages, only the correlation between

M1 macrophages, risk scores, and MANBA was statistically

significant. Based on this, we postulate that MANBA may inhibit

the generation, transformation, and activity of M1 macrophages,

thereby promoting tumor growth and adversely affecting the

prognosis of GBM patients. Consequently, we analyzed the

correlation between M1 macrophages, MANBA, and risk scores,

illustrated in the scatter plot in Figure 9D. The results demonstrated

a negative correlation between M1 macrophages and MANBA as

well as risk scores, with statistical significance, in line with our

hypotheses. We further investigated the differences in the tumor

microenvironment between the high and low-risk groups
B

CA

FIGURE 5

Information interaction among each cell subset of GBM. (A). Diagram of the cell interaction trajectory of each cell subset of GBM, with the number
of cell interaction species indicated on the left and the cell interaction intensity on the right. (B). Cell transmission signal factors of each subset,
efferent on the left and afferent on the right. (C). Bubble chart of the interaction between the macrophages and receptor-ligand pairs in each
cell subset.
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(Figure 9E). We observed that the scores in the low-risk group were

consistently lower than those in the high-risk group, with statistical

significance. This leads us to speculate that the tumor

microenvironment in GBM may provide a conducive milieu for

tumor growth, with MANBA possibly playing a role therein.

Building upon these findings, we conducted an investigation into

the correlation between the tumor microenvironment and

MANBA, as well as risk scores (Figure 9F). Our analysis revealed

a positive correlation between stromal scores, immune scores,

overall scores, and risk scores. Additionally, these scores displayed
Frontiers in Immunology 11
a positive correlation with MANBA, with statistical significance (P

< 0.05), thus underscoring the meaningfulness of these results.
3.10 Functional enrichment analysis

In order to investigate the potential mechanisms and pathways

associated with the expression of the MANBA gene, we selected

genes that showed differential expression among patients in the

high and low-risk groups. Subsequently, we subjected these genes to
B

C D

E

A

FIGURE 6

The trajectory of each subset of GBM cells is analyzed using three different algorithms. (A, B). The trajectory direction map among GBM cells
calculated by the velocyto method, with the tip representing the direction and the trajectory color representing the velocity scale. (C). The
confidence of the trajectory of each subset calculated by the paga method. The thicker the line is, the closer the correlation will be. (D). The 5
trajectory charts are calculated in each cell subset by slingshot methods. (E). Cell subsets pass through the five cell trajectories, with red indicating
close to the end point and blue close to the start point.
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GO and KEGG enrichment analyses. GO analysis unveiled

significant enrichment in pathways related to “collagen-

containing extracellular matrix”, “chemokine-mediated signaling

pathway” and “chemokine activity” among others (Figure 10A).

Meanwhile, KEGG analysis demonstrated notable enrichment in

pathways such as the “IL-17 signaling pathway” and the

“Chemokine signaling pathway” (Figure 10B). We further

subjected the gene sets of high and low-risk patient groups to
Frontiers in Immunology 12
Gene Set Enrichment Analysis (GSEA). Notably, we observed

significant enrichments in the high-expression group for

processes related to “Cell Chemotaxis,” “Humoral Immune

Response,” and “Response To Chemokine,” (Figures 10C-E).

Conversely, in the low-expression group, there were marked

enrichments associated with “Glutamate Receptor Signaling

Pathway,” “ Cell Differentiation In Spinal Cord,” and “Neuron

Fate Commitment,” (Figures 10F-H).
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FIGURE 7

The weighted co-expression network analysis of macrophage-related genes and the establishment of gene modules. (A). Macrophage-associated
WGCNA analysis of data from eight samples, with a soft threshold set to 7. (B). Dendrogram of the five non-gray macrophage gene modules.
(C) KME scores of the five gene modules and the top ten genes with a higher score. (D, E). Expression of genes within the five gene modules in each
cell subset of GBM. (F, G). Network map of the top 25 genes within the M1 and M3 gene modules.
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FIGURE 8

Clinical relevance of genes and independent prognostic analysis. (A). Forest plot of five macrophage-related genes, highlighting genes associated
with the prognosis of GBM through univariate Cox analysis. (B). A coefficient spectrum distribution of the five genes using LASSO analysis. (C).
Parameter selection in the optimal cross-validated LASSO regression. (D). Patients were stratified into high and low-risk groups based on their risk
scores. (E). Distribution of patients in the high and low-risk groups. (F). Expression profiles of prognostic-related genes in the high and low-risk
groups. (G). Heatmap depicting the distribution of prognostic-related genes. (H). Differential expression of prognostic-related genes in the high and
low-risk groups. (I). Kaplan-Meier survival analysis curves for the high and low-risk groups. (J). Time-dependent ROC curves with AUC values of
0.723, 0.707, and 0.618 for 1-year, 3-year, and 5-year intervals. (K-M). Analysis of the correlation between risk scores and factors such as gender,
age, and ethnicity. (N). Survival curve plots for GBM patients at 1-year, 3-year, and 5-year intervals. (O). Time-dependent ROC curve plots with AUC
values of 0.68, 0.68, and 0.65 for 1-year, 3-year, and 5-year intervals. (P). Decision curve analysis plot used to assess independent prognostic factors.
ns, no statistical difference; *p<0.05.
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3.11 Experimental validation of the role of
the MANBA gene in GBM

Considering the involvement of MANBA in glioblastoma, we

opted to study the effects of MANBA knockdown on two

glioblastoma cell lines, namely U87 and LN229. Employing

siRNA, we successfully reduced the expression of MANBA in

these cell lines (Figures 11A, B). Subsequently, colony formation

assays revealed a noteworthy decrease in the growth potential of the

MANBA knockdown U87 and LN229 cells. Moreover, transwell

assays confirmed the inhibitory effects of MANBA knockdown on

tumor cell migration. Furthermore, scratch assays demonstrated a

significant reduction in the invasive capability of glioblastoma cells

upon MANBA inhibition (Figures 11C-E). Accordingly, we

proceeded with further experiments to validate the role of

MANBA in fostering the proliferation, invasion, and metastasis of

glioblastoma cells (Figures 11F, G).
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4 Discussion

Glioblastoma multiforme (GBM) is a prevalent primary

malignancy affecting the nervous system, with an estimated

annual mortality rate of up to 10,000 individuals in the United

States (www.braintumor.org). Approximately 81% of malignant

brain tumors are caused by GBM, despite surgical resection,

radiotherapy, and chemotherapy, patients with GBM have a mean

survival time of only 14.6 months (24, 25). In theory,

immunotherapy may represent a promising treatment option for

GBM due to the ability of immune cells to cross the blood-brain

barrier and target GBM cells (26). However, GBM is considered

an immune cold tumor due to the cellular composition

o f macrophages and microg l i a in the sur round ing

microenvironment, resulting in limited efficacy of many

immunotherapies (23, 27). In light of these challenges, we

conducted a secondary analysis of data from Xie et al. (60),
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FIGURE 9

Immunocellular correlation analysis. (A). Heatmap depicting differences in prognostic genes, tumor microenvironment, and immune cells between
high and low-risk groups. (B). Graph illustrating the expression relationship between immune cells and risk scores, with positive and negative
decimals denoting positive and negative correlations, respectively. (C). Diagram depicting the relationships between immune cells, prognostic genes,
overall survival (OS), and risk scores, with red indicating positive correlations and blue indicating negative correlations. (D). Scatterplot illustrating the
correlations between MANBA, Macrophage M1, and risk scores. (E). Boxplot of tumor microenvironment scores in high and low-risk groups.
(F). Scatterplot illustrating the correlations between tumor microenvironment scores, MANBA, and risk scores. *p<0.05; **p<0.01;****p<0.0001.
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integrating cell trajectory and communication analyses to identify

potential mechanisms underlying the effects of macrophages and

microglia on GBM. Moreover, we aimed to establish a prognostic

model based on these findings.

Through the annotation of cells in the tumor core tissue and

peritumoral tissue, we have found that the macrophage distribution is

concentrated in the tumor core tissue. This has aroused our interest.

We have therefore further contrasted the activity of oxidative stress

pathways in macrophages and other subsets. Oxidative stress

response is actually a double-edged sword in terms of tumors,

which may either lead to cellular genetic mutations or inhibit the

immune response, thus promoting tumor growth. Excessive ROS in
Frontiers in Immunology 15
turn may induce the tumor cell death and enhance their sensitivity to

chemotherapy (28–30). Through three computational methods, we

have found that the oxidative stress score of macrophages is higher

than that of the other subsets. Moreover, the macrophages are tumor

core cells, which seems to indicate that oxidative stress plays a side

effect in GBM. Kuo (31) et al. have concluded that the activation of

ROS is often accompanied by vascular proliferation, inhibition of

immune microenvironment function and polarization of M1 to M2

cells. These functions will greatly promote the progress of GBM. In

addition, the ROS may also induce the secretion of extracellular

carriers and further enhance the production of IFN and IL-6 in

macrophages, thereby inhibiting the immune response in the tumor
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FIGURE 10

Functional enrichment analysis of differentially expressed genes in high and low expression groups. (A). Functional Enrichment Analysis using GO
terms. (B). Functional Enrichment Analysis using KEGG pathways. (C-E). Gene Set Enrichment Analysis (GSEA) for the High Expression Group. (F-H).
Gene Set Enrichment Analysis (GSEA) for the Low Expression Group.
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microenvironment (21, 32, 33). Griess (34) et al. have discovered that

ROS is the best second messenger required for M2 polarization in the

IL-4 signaling pathway. Eliminating ROS by oxidation-reduction

drugs may selectively inhibit the polarization of M2 and promote

the tumor growth. However, reactive oxygen species (ROS) can also

induce lipid peroxidation or disrupt intracellular proteins and nucleic

acids, leading to cell necrosis or apoptosis (61). Research has

identified several associated pathways; for example, Guan et al.
Frontiers in Immunology 16
discovered that ROS can activate the Fas/FasL pathway, leading to

caspase activation and inducing cell apoptosis (62). Similarly,

Angkeow et al. found that activated NF-kB can bind to the

corresponding DNA, promoting the transcription of target genes

and thereby inducing cell apoptosis (63). Likewise, in GBM, elevated

ROS levels can also lead to mitochondrial apoptosis, thereby causing

the demise of GBM cells (35). Therefore, we speculate that the

oxidative stress pathway is closely related to macrophage
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FIGURE 11

MANBA promotes malignant biological behavior of glioma cells. (A, B). The effect of silencing MANBA on the proliferation of glioma was performed
through colony formation assay (A) and relative quantification (B). (C-E). The effect of silencing MANBA on the migration and invasion ability of
glioma was performed through transwell assay (C) and relative quantification (D, E). (F, G). The effect of silencing MANBA on the migration ability of
glioma was performed through wound healing assay (F) and relative quantification (G). **p<0.01; ***p<0.001.
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polarization and inhibition of immune function in GBM. By a

moderate modulation of the degree of oxidative stress response, it

may induce the mitochondrial apoptosis to kill tumor cells as well as

prevent the excessive polarization and immunosuppressive activities

of M2. This is a good research direction.

By comparing the proportion of each cell subset in GBM, we have

found that macrophages account for the largest proportion in the

tumor core tissue. It is suspected that this may be correlated with

some signaling molecules. Therefore, we have further explored the

cell interaction signals between the macrophages and GBM subsets,

and found that SPP1-CD44 is not only interacted significantly among

the macrophages, but also interacted significantly between the

macrophages and other tumor core cells such as T cells and

dendritic cells. Secreted phosphoprotein 1 (SPP1) is also called

osteopontin (OPN). It is a multifunctional cytokine, which is found

to be highly expressed in a variety of cancers (36–38). It is positively

associated with the poor prognosis of GBM (39). SPP1 factors also

interact with CD44 receptor to activate downstream signaling

pathways and regulate cell adhesion, tumor progression and

metastasis of (40, 41). Interestingly, M2-like macrophages

associated with SPP1 are discovered in a variety of cancers and

located in the tumor core tissue (42, 43). Moreover, Zhang (44) et al.

have found that SPP1 upregulation promotes the polarization of M1

to M2 in macrophages. Whereas, M1 to M2 transformation mostly

predicts GBM progression and poor prognosis. Furthermore, CD8+

cytotoxic T cells are the primary immune cells used to eradicate

tumors (45, 46). While the process activated from naive T cells to

CD8+ cytotoxic T cells may be inhibited by SPP1 ligands (47), thus

causing immunosuppression. However, our study reveals that the

SPP1-CD44 interaction of macrophages is especially significant in

GBM. We therefore hypothesize that SPP1-CD44 is associated with

immunosuppression of the GBM microenvironment. The SPP1-

CD44 interaction among the macrophages could promote the

transformation of M1 to M2, resulting in a poor prognosis in

patients. This is consistent with the results of He (48) et al.

However, we have also found a strong SPP1-CD44 interaction

between the macrophages and T cells in GBM. We believe it is also

one of the key points for GBM progression and it can exist as a key

target for therapy.

Alternatively, GBM can attract macrophages to aggregate and

activate (49) by producing cytokines, and together with other

subsets to constitute an immune microenvironment of GBM. In

this microenvironment, macrophages are forced to intensify from

M1 to M2 and secrete cytokines such as IL-10, macrophage colony

stimulating factors, TGF- b to help tumors escape (15, 50). This

may be why there are trajectories within macrophages. Its excretory

factors such as IL-10 may also inhibit the proliferation of T cells and

enhance the activity of regulatory T cells (Treg), thus playing a role

of immunosuppression (51, 52). At the same time, we have studied

the evolution process of each cell subset in GBM and found that the

macrophages are located in the center of the trajectory through the

analysis results of the three methods. They are related to all cell

subsets in GBM. This indicates that macrophages are the core of

each cell subset in GBM, and their functional activities may affect

the surrounding subsets and strengthen immunosuppression,
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thereby affecting the trend of the entire GBM. If the aggregation

of macrophages can be avoided and their polarization process is

reversed, it should have a positive effect on preventing the

generation of the inhibitory immune microenvironment and

improving the immune function of the surrounding subsets.

We have further explored the prognostic genes associated with

macrophages. Through analysis, we have finally identified two genes,

including the high-risk gene MANBA and the low-risk gene TCF 12.

MANNBA is a gene encoding ß -mannosidase. A gene deficiencymay

cause b -mannoside storage disease, which can be accompanied by a

wide range of neurological symptoms (53). In some studies, the role of

MANBA in cancer has been reported, such as being involved in the

occurrence andmetastasis of colorectal cancer and human esophageal

squamous cell carcinoma (54, 55). Wielgat (56) has discovered that

the glycosidase activity is positively correlated with the malignancy of

glioma, which is consistent with our findings. In addition, some

studies have found that MAMBA is associated with neutrophil

degranulation and may affect the activity of lymphocytes (57–59).In

addition, We observed a significant negative correlation between M1

macrophages, risk scores, and MANBA expression, highlighting

substantial distinctions. This not only validates the favorable impact

of M1 macrophages on the prognosis of GBM patients but also

elucidates that heightened MANBA expression results in the

inhibition of M1 macrophage generation, transformation, and

activity. Consequently, we hypothesize that MANBA potentially

engages in functional regulation, suppressing the generation and

activation of M1 macrophages while comparatively promoting M2

transformation. This suggests an immunosuppressive effect, thereby

fostering tumor proliferation and progression.

Furthermore, we carried out experimental validations to

confirm the role of MANBA in GBM, and the results were

consistent with our initial hypotheses. Knocking down MANBA

had a suppressive effect on the proliferation, migration, and

invasion capabilities of GBM cells. This underscores the

significant role of MANBA in the progression of GBM,

potentially involving immune functions such as the inhibition of

M1 macrophage transformation and activity. However, the specific

mechanisms remain incompletely understood, necessitating further

experimental verification. In conclusion, our findings anticipate a

pivotal role for macrophages in GBM, uncovering key pathways and

signaling molecules that influence macrophage transformation.

Additionally, we provide critical prognostic genes associated with

these processes, offering new research and therapeutic directions for

targeted immunotherapy and prognosis diagnosis of GBM in the

future. However, this study has some limitations. The overall

sample size was limited, and results may be influenced by certain

incidental factors. Furthermore, the single-cell samples analyzed

primarily originated from CD31+ endothelial cells in GBM, making

it challenging to encompass all cell types within GBM. In

subsequent investigations, we aim to enhance our research

outcomes by analyzing a more extensive array of single-cell

samples. We also plan to refine associated experiments to delve

into the specific immunological mechanisms involving the MANBA

gene. Addressing these limitations is a priority in our future

research endeavors.
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5 Conclusion

In summary, our study has comprehensively characterized the

different cell subpopulations present in both the GBM core and

surrounding tissues. We have investigated the relationship

between macrophages and GBM and their associated

mechanisms. Our findings reveal that macrophages play a

critical role in the trajectory of each cell subset within GBM. We

have examined the oxidative stress response in macrophages and

investigated the immunosuppressive effects of interaction signals

such as SPP1-CD44 on macrophage polarization and the cell

subsets in the GBM tumor microenvironment. Additionally, we

have identified the macrophage-related prognostic genes MANBA

and TCF12. Furthermore, we postulate that MANBA assumes a

critical role in promoting GBM progression, potentially by being

involved in immunosuppressive functions through the inhibition

of M1 macrophage generation and transformation. Our

experimental validation of MANBA’s enhancement of GBM

proliferation, invasion, and metastatic capabilities indirectly

corroborates our conjectures. In conclusion, our research delves

into novel immunological mechanisms within GBM, thereby

providing insights into the identification of new prognostic

markers and immunotherapeutic targets for GBM.
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