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Evaluating NetMHCpan
performance on non-European
HLA alleles not present in
training data
Thomas Karl Atkins1*†, Arnav Solanki1, George Vasmatzis2,
James Cornette3 and Marc Riedel1

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis,
MN, United States, 2Biomarker Discovery Group, Mayo Clinic, Center for Individualized Medicine,
Rochester, MN, United States, 3Department of Mathematics, Iowa State University, Ames,
IA, United States
Bias in neural network model training datasets has been observed to decrease

prediction accuracy for groups underrepresented in training data. Thus,

investigating the composition of training datasets used in machine learning

models with healthcare applications is vital to ensure equity. Two such

machine learning models are NetMHCpan-4.1 and NetMHCIIpan-4.0, used to

predict antigen binding scores to major histocompatibility complex class I and II

molecules, respectively. As antigen presentation is a critical step in mounting the

adaptive immune response, previous work has used these or similar predictions

models in a broad array of applications, from explaining asymptomatic viral

infection to cancer neoantigen prediction. However, these models have also

been shown to be biased toward hydrophobic peptides, suggesting the network

could also contain other sources of bias. Here, we report the composition of the

networks’ training datasets are heavily biased toward European Caucasian

individuals and against Asian and Pacific Islander individuals. We test the ability

of NetMHCpan-4.1 and NetMHCpan-4.0 to distinguish true binders from

randomly generated peptides on alleles not included in the training datasets.

Unexpectedly, we fail to find evidence that the disparities in training data lead to a

meaningful difference in prediction quality for alleles not present in the training

data. We attempt to explain this result by mapping the HLA sequence space to

determine the sequence diversity of the training dataset. Furthermore, we link the

residues which have the greatest impact on NetMHCpan predictions to structural

features for three alleles (HLA-A*34:01, HLA-C*04:03, HLA-DRB1*12:02).
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1 Introduction

Antigen presentation by the major histocompatibility complex

(MHC) class I and II proteins (referred to as HLA in humans) is one

of the crucial steps to activating the adaptive immune response, and

the genes which encode these proteins are some of the most

polymorphic genes in humans (1). As a result, the epitopes

presented to T cells are determined partly by the binding affinity

between the peptide fragment of the antigen and the host-specific

MHC protein, which is determined by the amino acid sequences of

both peptide and MHC. Because of the central role of this process in

adaptive immunity, the ability to predict which peptides will bind to

a given MHC allele has utility in diverse fields. For example,

peptide-MHC binding predictions have been used to select

peptides for a cancer neoantigen vaccine and to explain

asymptotic SARS-CoV-2 infection in individuals with a specific

HLA-B allele (2, 3). While molecular dynamics (MD) systems exists

for modelling these complexes (4, 5), the current consensus is that

neural network prediction models are accurate enough at predicting

binding affinity to be used in clinical settings (6). Many such tools

have been developed to predict peptide binding to both MHC class I

and MHC class II (6–9). Two neural-network based predictors,

NetMHCpan-4.1 and NetMHCIIpan-4.0 (here on out collectively

referred to as NetMHCpan) are hosted on a web server and are fast

to return predictions (10). The relative popularity of NetMHCpan

makes it a fitting choice for further investigation (Supplementary

Figure S1).

Despite its popularity, NetMHCpan does not rely on any

structural information about the peptide or MHC molecule, and

only takes an amino acid sequences for the peptide and MHC

protein as input, which limits the model’s ability to generate

mechanistic explanations for its binding predictions Additionally,

the tool is closed-source, exacerbating its “black box” nature and

prompting investigations into potential hidden biases. A previous

study has shown NetMHCpan-4.1 has a previously unreported bias

toward predicting hydrophobic peptides as strong binders,

suggesting the predictions of these models need to be examined

closely (11).

Many times when medical and biological neural network based

prediction systems have been evaluated, researchers have uncovered

numerous examples of racial bias in machine learning algorithms

(12–14). Furthermore, datasets from prior genomic studies often

fail to capture the genetic diversity of the human population, often

focusing on individuals of European descent (15–17). As these two

significant effects intersect to produce models that overfit to

overrepresented populations, it is vital that neural-network

models be carefully investigated to determine the extent to which

there is bias in the training dataset, and if it exists, the extent to

which this bias affects the model predictions.

To determine the impact of training dataset bias on

NetMHCpan’s predictions, we examined the geographic

distribution of NetMHCpan’s training dataset and determined

which populations are likely to have alleles not represented in

NetMHCpan’s training dataset. We then measured the performance

of NetMHCpan on alleles not present in its training dataset, and

compared the performance to binding predictions for alleles present
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in its training dataset. To better understand these predictions, we

created a map of HLA sequence space to determine the diversity of

the dataset at the sequence level. Finally, for each of three MHC

molecules not in NetMHCpan’s training dataset, we determined the

residues of that molecule that have disproportionate impact on

NetMHCpan’s predictions.

This paper presents a geographic imbalance in the HLA types

present in NetMHCpan’s training data, yet fails to find a

meaningful drop in the accuracy of the network’s peptide binding

predictions for alleles not present in the training data compared to

the accuracy of the models’ prediction on alleles present in the

training dataset. Furthermore, the results suggest two possible

explanations for this finding. First, while the model may be

lacking in geographic diversity, the alleles represented in the

training dataset cover a large range of HLA sequences. Second,

the model gives attention to residues structurally involved in

peptide-MHC complexes for novel alleles.
2 Materials and methods

2.1 MHC allele population demographics

Data on HLA allele population frequencies were downloaded

from the National Marrow Donor Program (NMDP) (18). The

dataset contains HLA-A/B/C/DRB1 population frequencies from

n =6.59 million subjects from the United States. Population

frequencies are reported 21 self-reported racial groups, which are

combined into six larger ethnicity categories, given in Supplementary

Table S1. Because NetMHCpan uses a motif deconvolution algorithm

for training, there exist data points in the eluted ligand dataset where

a peptide corresponds to multiple MHC alleles (10). In this case, we

conservatively counted an allele as present in the training dataset if

there is at least one positive example of a peptide binding to the

associated cell line.
2.2 Evaluating NetMHCpan performance

2.2.1 Evaluation datasets
In order to evaluate the performance of NetMHCpan, we used a

dataset from Sarkizova et al. (19). The dataset consists of eluted

ligand (EL) data for 31 HLA-A alleles, 40 HLA-B alleles, and 21

HLA-C alleles, with a median of 1,860 peptides per allele, generated

by cell lines engineered to express only one HLA type. Of these

alleles, 7 (A*24:07, A*34:01, A*34:02, A*36:01, C*03:02, C*04:03,

and C*14:03) have no representation in NetMHCpan’s training data

(binding affinity or eluted ligand). We compute but do not report

the results for HLA-B, as all forty of the HLA-B alleles had some

presence in the NetMHCpan training data. We have an average of

2179 peptides per MHC class I allele, with all alleles having at least

918 peptides (Supplementary Tables S1, S2).

As no similar dataset exists for MHC class II, we created an

evaluation set by downloading peptides from IEDB (20). For each

allele, the filters used were “Include Positive Assays”, “No T cell

assays”, “No B cell assays”, and “MHC Restriction Type: [allele]
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protein complex.” To choose DRB1 alleles of interest, we selected

alleles for which NetMHCIIpan-4.0 had eluted ligand data from a

cell line engineered to express only one HLA-DRB1 allele. To obtain

data for HLA-DRB1*12:02, the only HLA-DRB1 allele not in

NetMHCIIpan-4.0’s training dataset for which sufficient peptide

binding data exists, we use a eluted ligand dataset from cell line C1R

expressing HLA-DR12/DQ7/DP4 (21). Because the cell line

expressed both HLA-DRB1*12:02 and HLA-DRB3*02:02:01,

Gibbs Cluster was used to separate the two groups (22)

(Supplementary Figure S2, Supplementary Data Sheet 6). The

group belonging to DRB1*12:02 was identified by the absence of

F at P1, the absence of N at P4, and the presence of Y/F at P9. We

have an average of 8094 peptides per HLA-DRB1 allele, with a

minimum of 8094 (Supplementary Table S3).

To provide negative controls for both MHC class I and II, the

real peptides were combined with randomly sampled peptides from

the human proteome so that the ground truth peptides made up 1%

of the final evaluation set. We found that sampling random amino

acid strings compared to entire peptides made a small difference in

the relative rankings of allele performance, but did not meaningfully

alter our conclusions (Supplementary Figure S3). For the MHC

class II dataset, the length distribution of the randomly generated

peptides was fixed to be equal to the length distribution of the

ground truth peptides.

2.2.2 Log rank predictions, motif entropy
correction, and AUPRC

As a result of the above preprocessing steps, we obtained a

dataset for 31 HLA-A alleles, 40 HLA-B alleles, 21 HLA-C alleles,

and 11 HLA-DRB1 alleles, each dataset being made up of 1%

peptides experimentally verified to bind to the HLA allele in eluted

ligand assays, and 99% randomly generated peptides to serve as a

control (Supplementary Figure S4). For each allele, we used

NetMHCpan-4.1 or NetMHCIIpan-4.0 to generate an eluted

ligand (EL) score for each peptide in the training dataset, and

ranked all peptides by their EL scores. That is, each peptide was

assigned a (fractional) rank score as:

ranki =
o100n

j=1 (ELi < ELj)

100n
(1)

where ELi is the EL score of the i-th peptide and n is the number

of experimentally verified peptides in the dataset. Thus, peptides

with higher binding scores will have lower ranks.

We then measured performance based on the distribution of

log10 ranks for the experimentally verified peptides. For example, if

the model is a perfect predictor, all real peptides will have a log10
rank below -2, and if the model is a random predictor, 90% of real

peptides will have a log10 rank between 0 and -1.

To correct for any discrepancies in difficulty predicting ligands

based on selectivity of the MHC binding motif, we calculated the

information of the binding motif for each allele by using the

Kullback–Leibler divergence, so

I =o
n

i=1
o
a
pa,i log2

pa,i
qa

� �
, (2)
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where pa,i is the frequency of amino acid a at position i in the

allele-specific experimentally verified binding peptides, and qa is the

background frequency of amino acid a in the human proteome

(Supplementary Figures S5–S8). No correlation exists between the

number of peptides in the allele dataset and the allele motif

information, suggesting that low motif information is not a

results of small sample size (Supplementary Figure S8).

We then performed a linear regression for the log-rank against

the information (Supplementary Figure S9). For both MHC class I

and class II, we found alleles with higher information (more

predictable) motifs were associated with better predictions, as

expected. Therefore, for each allele we calculated a correction

factor C such that:

Callele = a + bIallele − m (3)

where Iallele is the KL divergence of the allele motif against the

human proteome amino acid frequency distribution, a and b are

the coefficients computed from the linear regression, and µ is the

mean of all log ranks for all alleles. Including the µ term ensures that

our predictions remain on the same scale after subtracting the

correction factor.

Additionally, because MHC proteins bind a core motif that can

contain additional amino acids on the ends that do not affect the

binding prediction, we encountered cases in the prediction datasets

where multiple versions of a peptide contained the same core

sequence. Therefore, in these cases, we chose to weight the

peptides based on NetMHCpan’s reported binding core such that

each core was weighted equally.

To determine a 95% confidence interval for the difference

between the median of the ranks of the alleles with and without

training data, a bootstrap procedure was used. Data were sampled

with replacement for a number of times equal to the size of the data,

and the difference between the medians of the bootstrap samples

was calculated. This was repeated 106 times, and the 0.025 and 0.975

quantiles were reported as the 95% confidence interval.

Finally, we calculate the AUPRC and PPV metrics for each

allele. We calculate AUPRC as the area under the precision-recall

curve. The precision is defined by P = TP/(TP + FP), and the recall is

defined by R = TP/(TP + FN). True positives are defined as

experimentally verified peptides with a motif entropy-corrected

score greater than a given cutoff, and false positives as randomly

generated peptides with an motif entropy-corrected score greater

than a given cutoff. True negatives are defined as randomly

generated peptides with a motif entropy-corrected score less than

a give cutoff, and false negatives as experimentally verified peptides

with a motif entropy-corrected score less than a given cutoff. We

calculate the positive predictive value PPV as the number of

experimentally verified peptides with corrected rank less than

0.01 divided by the number of experimentally verified peptides.
2.3 MDS of HLA alleles

Using the NMDP frequency database, HLA-A, B, C, and DRB1

alleles with a frequency greater than 0.01% in any population were
frontiersin.org
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selected (n = 135 HLA-A, n = 258 HLA-B, n = 66 HLA-C, n = 118

HLA-DRB1). The IPD-IMGT/HLA alignment tool was used to

create an alignment of the selected HLA full protein sequences (23).

In cases where large gaps occurred at the beginning or end of the

alignment, gaps were filled with the most common amino acid

occurring at that residue. Similarity between sequences was

measured by summing the values of the PAM100 matrix for each

pair of amino acids in the two sequences (24). Sequence distance

was then measured as the difference between the maximum

similarity and the computed similarity, normalized so that the

maximum distance was reported. For peptides which has

associated binding data, motif distance was computed as the

Jenson Shannon divergence. The R cmdscale function with

default parameters was used to compute the MDS (25, 26).
2.4 NetMHCpan residue
substitution sensitivity

Here, we describe a technique similar to the occlusion

sensitivity technique common in the field of computer vision. We

chose the alleles HLA-A*34:01, HLA-C*04:04. and HLA-

DRB1*12:02 for the following experiments, as NetMHCpan

performed the poorest on these three alleles. For each allele, we

used NetMHCpan to predict the eluted ligand score for all peptides

found to bind to the allele in the evaluation datasets described

above. Next, for residues 1-205 (29-125 for DRB1*12:02), we asked

NetMHCpan to predict the eluted ligand score for all

experimentally verified peptides, using a version of the MHC

sequence where for each residue, each of the other 19 amino

acids was substituted. From this, we took the 5 amino acids for

which NetMHCpan predicted the lowest scores, and calculated the

mean difference between EL scores for the mutated and unmutated

predictions, as to investigate the effect of replacing residues with

dissimilar amino acids. Repeating this for every residue, we then

obtained a metric for the relative importance of the residue to

NetMHCpan’s predictions. HLA tertiary structures were generated

using PANDORA and visualized using PyMOL (4, 27).
2.5 Software versions

The following software versions were used: NetMHCpan (4.1),

NetMHCIIpan (4.0), PANDORA (2.0), GibbsCluster (2.0), PyMol

(2.6.0a0). For all tools, a local version was downloaded instead of

using a web server.
3 Results

3.1 Common European Caucasian HLA
types are overrepresented in NetMHCpan
training data

As neural network prediction biases are often enforced by

disparities in the amount of model training data, we first
Frontiers in Immunology 04
investigate NetMHCpan’s training dataset to determine whether

the data is representative of the global population. To do this, we

used allele distribution data from the National Marrow Donor

Project (NMDP) (18). Codes for population groups can be found in

Supplementary Table S4. For each population, we calculated the

fraction of people who have at least one HLA-A/B/C/DRB1 allele

for which there is no data in NetMHCpan’s training set.

There exists a substantial disparity between the most and least

represented populations in NetMHCpan’s training dataset.

European Caucasian individuals are most likely to see their

genotypes represented in the training set, while Southeast Asian,

Pacific Islander, South Asian, and East Asian individuals are least

likely to have genotypes represented in the training set (Figure 1)

(Supplementary Data Sheet 2). Using the NMDP categories, only

0.4%/0.9%/0.6%/2.6% of European Caucasian individuals have an

HLA-A/B/C/DRB1 allele not found in NetMHCpan’s training data,

while 5.1%/27.7%/12.1%/33.6% of Vietnamese individuals and

30.1%/39.3%/10.8%/16.1% of Filipino individuals have an HLA-

A/B/C/DRB1 allele not found in NetMHCpan’s training data.

These disparities are not likely to have arisen by chance alone,

given the fractions of the populations for which no data exists are

correlated between HLA groups (Supplementary Table S5). For all

pairs of groups there exists a positive correlation, with the strongest

correlation between HLA-A and HLA-B (0.750) and the weakest

correlation between HLA-A and HLA-DRB1 (0.238). Because the

disparities are found in all four HLA groups examined and are

correlated with each other, this suggests a common systemic factor

driving the extreme imbalance of the training dataset.
3.2 NetMHCpan-4.1 and NetMHCIIpan-4.0
accurately predict peptide binding to
novel alleles

Because there exists such a vast disparity in the representation

of populations in NetMHCpan’s training data, we hypothesized

NetMHCpan is overfitting to the training set, making the model

unable to make accurate predictions for peptides binding to novel

MHC proteins. Therefore, we investigated whether there is a

decrease in prediction quality for HLA sequences not found in

the training data. To do this, we performed an experiment in which

NetMHCpan was tasked to predict eluted ligand binding scores for

a dataset consisting of 1% peptides experimentally verified to bind

to their corresponding MHC proteins and 99% randomly generated

peptides, as is the standard to test MHC-peptide prediction models

(10, 28). We then measured the rank of the predictions for the

experimentally verified peptides, which we use as our metric for the

accuracy of the predictions (after a correction for motif information

described in the Methods section), as well as the area under the

precision-recall curve for each set of predictions (AUPRC).

We ran the MHC class I peptide experiment on a large HLA

class I eluted ligand dataset (19). In the dataset are n = 39617

peptides for 27 HLA-A and 18 HLA-C alleles with training data in

NetMHCpan-4.1’s training set, and n = 8652 peptides for 4 HLA-A

alleles and 3 HLA-C alleles without data in NetMHCpan-4.1’s

training set. All together, these novel alleles represent up to 28.8%
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of HLA-A alleles, and up to 11.7% of HLA-C alleles for some

populations (Supplementary Figure S10). Because there are no

HLA-B alleles present in the dataset but absent from

NetMHCpan-4.1’s training set, we do not report information

about HLA-B in the results (although we do use these alleles in

the information correction).

NetMHCpan-4.1 accurately recalls experimentally validated

peptides from a training dataset containing validated peptides and

randomly generated peptides for these 7 alleles. For both HLA-A

and HLA-C, the alleles for which NetMHCpan-4.1 has no training

data are roughly evenly distributed amongst the other alleles in

terms of performance (Figure 2) (Supplementary Data Sheet 3).

Overall, the predictions of binding peptides for the alleles for which

NetMHCpan-4.1 has no training data only slightly underperform

compared to the predictions for alleles for which it does have data

(Supplementary Figure S11A), with a 95% bootstrap confidence

interval for the difference in the medians of the two sets being

(-0.039, -0.014) (Supplementary Figure S12A). On average,

NetMHCpan-4.1 ranks experimentally verified peptides for alleles

for which data exists in its training dataset only 1.06 times higher

than it ranks peptides which have no data in the training set. In

almost all cases, there is a large difference between the raw EL scores

between the true binders and the randomly generated peptides

(Supplementary Figure S13). Furthermore, the general trend of the

results hold without the correction for motif information

(Supplementary Figure S14). In summary, we fail to find evidence

that the imbalance in the training dataset leads a decrease in the

quality of NetMHCpan-4.1 predictions for novel alleles.

In the case of MHC class II predictions, we focus exclusively on

DRB1 because HLA-DR is the only MHC class II protein to vary

only in the beta chain, which simplifies the testing process, as we do

not have to test combinations of alleles. While a comprehensive

eluted ligand dataset exists for the MHC class I peptidome, no

analogous dataset exists for HLA-DRB1. Therefore, we used IEDB

to gather data for alleles which were present in NetMHCIIpan-4.0’s
Frontiers in Immunology 05
training data, and data from a recent C1R cell line eluted ligand

study for peptides binding to DRB1*12:02, an allele not represented

in NetMHCIIpan-4.0’s training set (20, 21). All together, we have n

= 45286 peptides from 10 alleles with training data in

NetMHCIIpan-4.0, and n = 32402 peptides from allele DRB1*12:02.

In contrast to NetMHCpan-4.1, the predictions generated by

NetMHCIIpan-4.0 for peptides corresponding to alleles for which it

has no data are slightly worse than average, when measured by

median log-rank (Supplementary Figure S11B). However, when

measured by AUC, DRB1*12:02 ranks around average, with

NetMHCIIpan-4.0 predictions for this allele better than 6 other

alleles and worse than 4 other alleles (Figure 3) (Supplementary

Data Sheet 3). A 95% bootstrap confidence interval for the

difference in the medians between peptides corresponding to

alleles with and without data in NetMHCIIpan-4.0’s training set

is (-0.372, -0.321) (Supplementary Figure S12B). However, the

middle 50% of ranks for DRB1*12:02 contains all other median

ranks, suggesting the difference in prediction quality is relatively

minor compared to the variability in predictions for a given allele.

Furthermore, there exists an allele with data in NetMHCIIpan-4.0’s

training dataset, DRB1*04:04, for which NetMHCIIpan-4.0 is less

accurate at distinguishing real peptides than for DRB1*12:02. Like

MHC class I predictions, in almost all cases there is a large

difference between the raw EL scores between the true binders

and the randomly generated peptides (Supplementary Figure S15),

and the results hold without the correction for motif information

(Supplementary Figure S16).

While problems of skewed datasets have affected quality of

numerous other machine learning based predictions algorithms, we

find no evidence this is true of NetMHCpan. By testing the ability of

NetMHCpan to recall experimentally verified binding peptides to

alleles for which the algorithm has no training data, we fail to

conclude there exists a meaningful difference between alleles for

which NetMHCpan has training data, and those for which it

does not.
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FIGURE 1

NetMHCpan training data fails to cover common HLA alleles: Proportion of populations (as defined by the National Marrow Donor Program) that
have at least one HLA class A, B, C, or DRB1 allele with no data in the NetMHCpan-4.1 or NetMHCIIpan-4.0 training datasets.
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3.3 NetMHCpan training data covers a
large subset of HLA allele space

As a lack of diversity in training data often leads machine

learning models to overfit to their training set, we seek to

understand why this does not appear to be true for NetMHCpan.

Therefore, we visualize the training dataset by measuring sequence

similarity between HLA alleles with frequency greater than 0.01% in

any population, and use these computed similarities to perform

multidimensional scaling (MDS) in order to visualize the sequence

space as a two-dimensional map (25) (Supplementary Data Sheet 4).

For all four HLA types measured, alleles tend to organize into

clusters, a majority which contain at least one allele with data in

NetMHCpan’s training dataset (Figure 4A). This suggests that while

NetMHCpan may be missing data for many alleles common in non-

European populations, the alleles for which it has data are

sufficiently similar to the missing alleles as to allow the model to

make reasonable inference about the biochemical properties of

alleles without data.

Although we measure the distance between two alleles as the

distance between their sequence, we recognize that measuring the

distance between their associated motifs is potentially a more
Frontiers in Immunology 06
informative metric. As this metric is not available for alleles with

no known binding peptides, we consider whether sequence distance

is a good metric to approximate motif distance. For all pairs of

alleles for which we have motifs, we compute the distance between

their amino acid sequences and the distance between their motifs

(Figure 4B). We find that there is moderate agreement between

these two metrics (Pearson correlation coefficient r = 0.54),

suggesting that sequence distance is a reasonable metric to use

when motif distance is unavailable. We also compute an MDS using

motif distance, and find that it generally agrees with our sequence

MDS (Supplementary Figure S17).

As sequence and motif distance are correlated, measuring

pairwise sequence distances between all alleles also provides

context for the performance of NetMHCpan on novel alleles

reported above. To measure the extent to which an allele is novel,

we calculate the sequence distance to the nearest allele in the

training data for each allele not in NetMHCpan’s training data

(Figure 4C, Supplementary Data Sheet 7). Therefore, while the

choices of which alleles without training data to test were driven by

data availability, we demonstrate the alleles tested are less similar to

the training data than other HLA alleles. Thus, the accuracy of

NetMHCpan’s predictions for these alleles is not driven by greater
frontiersin.or
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FIGURE 2

Evaluating NetMHCpan-4.1 performance on novel alleles: NetMHCpan-4.1 was tasked with separating peptides identified as true binders using LC-
MS/MS (from Sarkizova et. al.) from randomly generated peptides for 52 HLA class I alleles. (A) Box-and-whisker plot of log ranks of the true
peptides, corrected for entropy of the allele binding motif (lower is better). Whiskers show the middle 95% of data for each allele. Alleles with
training data in NetMHCpan-4.1’s training dataset are shown in blue, alleles without are shown in pink. (B) Area under the precision-recall curve
(AUPRC) for each allele. (C) Positive predictive value (PPV) for each allele.
g
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than average similarity of these alleles to alleles found in the training

dataset. While we lack a sufficient number of alleles to establish a

relationship, we hypothesize that sequence and motif distance

between an allele with no training data and the nearest allele is

the training set are negatively correlated with performance

(Supplementary Figure S18).
3.4 NetMHCpan correctly identifies MHC
residues involved in peptide binding

Finally, we aim to understand the extent to which NetMHCpan

identifies residues structurally involved in peptide binding. As

NetMHCpan allows for direct input of an MHC protein

sequence, we perform an experiment in which we mutate each

residue of a given HLA sequence individually, and measure how

much NetMHCpan’s EL scores for experimentally verified peptides

change compared to the unmodified sequence (Supplementary Data

Sheet 5). We focus on three case studies, HLA-A*34:01, HLA-

C*04:03, and HLA-DRB1*12:02, as these alleles constitute the

worst-performing allele for each HLA type.

In each case, the MHC residues which have the greatest impact

on NetMHCpan’s prediction are all residues that make physical
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contact with the peptide (Figure 5, Supplementary Tables S6-S8).

This suggests that the accuracy of NetMHCpan’s predictions on

novel alleles is partly driven by its ability to selectively pay attention

to residues involved with the physical process of binding. Of special

interest is the observation that many residues which affect the

predictions for peptides binding to DRB1*12:02 are residues

previously identified to determine the binding motif of DR12,

namely, 13G, 57V, 70D, 71R, 74A, and 86V (21). Therefore, we

conclude NetMHCpan implicitly learns the MHC residues

structurally involved in binding, and its ability to generalize these

findings to novel alleles increases its prediction accuracy.
4 Discussion

We report NetMHCpan fails to include a geographically diverse set

of HLA alleles in its training data. We find individuals from

underrepresented populations, predominantly from Asia, are twenty

times more likely to carry HLA alleles not present in NetMHCpan’s

training data. Furthermore, we observe correlation between population

representation between all four alleles measured, suggesting that the

dataset bias is a result of systemic underrepresentation of minority

groups in the NetMHCpan training dataset.
A
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FIGURE 3

Evaluating NetMHCIIpan-4.0 performance on novel alleles: NetMHCIIpan-4.0 was tasked with separating peptides identified as true binders using
LC-MS/MS (from IEDB) from randomly generated peptides for 10 HLA-DRB1 alleles with data in NetMHCIIpan-4.0’s training set, and one allele
without training data. (A) Box-and-whisker plot of log ranks of the true peptides, corrected for entropy of the allele binding motif (lower is better).
Whiskers show the middle 95% of data for each allele. Alleles with training data in NetMHCIIpan-4.0’s training dataset are shown in blue, alleles
without are shown in pink. (B) Area under the precision-recall curve (AUPRC) for each allele. (C) Positive predictive value (PPV) for each allele.
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A B
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FIGURE 4

Visualizing the training space of NetMHCpan: (A) MDS plot of HLA alleles, with smaller distances corresponding to greater sequence similarity. Alleles
included in NetMHCpan’s training data are marked with pink triangles, alleles tested in Figures 2, 3 with no training data are marked with blue
squares, and other alleles are marked with purple circles. Marker size corresponds to maximum frequency of the allele in any NMDP population (log
scale). (B) Comparison of sequence similarity (measured by PAM100 distance) and motif similarity (measured by symmetric KL divergence) of pairs of
HLA alleles. Each point corresponds to a pair of HLA alleles for which peptide binding data exists. (C) Histogram of distance to closest allele to data
in NetMHCpan’s training set for all alleles without training data. Alleles previously tested are shown with vertical dashed blue lines.
A B C

FIGURE 5

Impact of substituting residues on NetMHCpan predictions for HLA alleles of interest: Structure of (A) HLA-A*34:01 (B) HLA-C*04:03 and (C) HLA-
DRB1*12:02. Residues are colored by impact of substitution on NetMHCpan predictions. Yellow resides indicate a large change to NetMHCpan predictions
when replaced, purple resides indicate a small change. Sidechains are shown for residues of interest.
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Numerous previous examples of training dataset racial bias

affecting machine learning model predictions led us to hypothesize

NetMHCpan would make less accurate predictions on alleles which

were not present in its training dataset (12–14). Furthermore,

previous work showed NetMHCpan is subject to systemic biases

regarding hydrophobicity, suggesting that other biases may be

lurking (11). Unexpectedly, we fail to find evidence that there is a

substantial difference in the ability of NetMHCpan to discriminate

experimentally verified binding peptides from randomly generated

peptides. Instead, we observe a slight increase in the prediction

ability for MHC class I alleles with no data present in the training

set, and only a slight decrease for MHC class II alleles. While both

effects are statistically significant, we allege neither is large enough

to have a substantial effect on prediction quality.

To explain this unexpected result, we characterize the sequence

space of common HLA alleles. While NetMHCpan’s training

dataset fails to include many alleles common in underrepresented

populations, we show that the alleles for which training data exist

are well-distributed throughout sequence space. We thus

hypothesize that MHC sequence diversity in the training dataset

partially explains the failure to observe a drop in prediction quality.

Furthermore, we establish a connection between the residues that

impact NetMHCpan’s predictions and the residues that physically

contact the peptide for three HLA alleles not present in

NetMHCpan’s training data.

The discrepancies in the diversity of HLA eluted ligand datasets

that compelled this study also constitute a major limitation, as only

eight novel HLA alleles were tested, with no novel HLA-B alleles.

Furthermore, our study design was limited to only testing one allele

at a time, and so we did not investigate complex effects that could be

associated with linkage disequilibrium in MHC class II molecules

formed by two interacting chains, including HLA-DQ and HLA-DP

(29). We only tested the ability of NetMHCpan to distinguish

experimentally verified peptides from randomly generated

peptides, and did not perform any experiments to characterize

the model’s ability to predict binding affinity. Finally, NetMHCpan

is closed source, and so we were unable to view the internal network

structure, needing to rely on an occlusion sensitivity-like metric to

determine how the network makes predictions.

We present evidence of a strong bias in NetMHCpan’s

training dataset toward European Caucasian individuals. While

we fail to find evidence this bias affects the accuracy of

NetMHCpan’s predictions, the bias in the training dataset

highlights the need for MHC eluted ligand datasets that contain

data for alleles for underrepresented populations. Furthermore,

given the outsized impact of NetMHCpan on the training data

generated for other MHC binding prediction tools, future work

must investigate the composition of training datasets and

potential bias in other tools (30). Finally, we recommend all

tools that utilize a dataset involving HLA alleles as part of their

pipeline clearly report the composition of any datasets they utilize

for training, and perform additional testing in the presence of

biased training data to ensure model predictions do not

substantially decline for underrepresented groups.
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