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Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary

endothelium and alveolar epithelium following edema formation and cell infiltration.

Currently, there are no effective treatments for severe ARDS. Pathologies such as

sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with

respiratory failure. The primary mechanism of edema clearance is the epithelial

cells’ Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the

electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions

across the cell membrane. Direct injury on alveolar cells or changes in ion transport

caused by infections decreases the NKA activity, loosening tight junctions in

epithelial cells and causing edema formation. In addition, NKA acts as a receptor

triggering signal transduction in response to the binding of cardiac glycosides. The

ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA.

Besides enzymatic inhibition, the NKA triggers intracellular signal transduction,

fostering proinflammatory cytokines production and contributing to lung injury.

Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung

injury, and intracellular signaling pathway activation leading to lung inflammation,

thus putting the NKA as a protagonist in lung injury pathology.
KEYWORDS
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1 Introduction

Acute respiratory distress syndrome (ARDS) is a lethal or disabling clinical syndrome

triggered by sepsis, pneumonia, and severe trauma (1) with a high morbidity and mortality

rate (2). The first report of patients with ARDS occurred in Denver, Colorado, in 1967 (3).

According to the updated Berlin definition, ARDS is a syndrome with bilateral diffuse
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infiltrates on the chest followed by non-cardiogenic respiratory

failure with mild, moderate, or severe oxygenation impairment (4).

Also, ARDS pathology is characterized as damage to the capillary

endothelium and alveolar epithelium with infiltrate accumulation in

the alveolar space, forming interstitial and alveolar edema (5).

Fluid management is one of the most critical measures

impacting ARDS, and dynamic monitoring of the lung fluid

balance seems to influence clinical outcomes (6). Alveolar edema

clearance depends on the vectorial transport of sodium and water

across the alveolar epithelium. It happens, in part, through apically

located sodium channels (ENaC) that drain the liquid into the lung

interstitium via the basolaterally located Na/K-ATPase (NKA) and

next to the capillary net through specific transcellular channels, as

the aquaporins (7). Pathological changes in the alveolar-capillary

barrier occur during pulmonary infection, altering NKA expression

and ion channels in epithelial cells, causing edema and impairing

alveolar fluid clearance (8).

Inhibitory NKA molecules are potential candidates to induce

lung injury (9) because they block alveolar edema fluid clearance,

which depends on the vectorial transport of sodium (7, 10).

Molecules altering NKA activity may induce or increase lung

edema and inflammation. Therefore, we link cell signaling

induced by NKA to triggering lung inflammation.
2 Physiology of fluid transport in the
lung/NKA as an ion transporter

The mammal’s respiratory system comprises the conductive

and respiratory portions, including the respiratory bronchiole and

alveoli (11). The nasal cavity is lined by pseudostratified columnar

ciliated cells, the bronchioles lined by simple columnar, cuboidal

epithelium, and the alveoli lined by a thin squamous epithelium

(12) formed by squamous type I cells and cuboidal type II cells.

Those cells are essential to homeostasis maintenance, antimicrobial

control, host defense, pathogen recognition (13), and tissue

repair (14).

The squamous type I cells are fragile and have large cytoplasmic

extensions, ideal for gas exchange (15). Also, it plays an active role

in water permeability and regulating alveolar fluid homeostasis

through the NKA, ENaC, and water channels of the aquaporin 3

and 5 (AQP3 and AQP5) (16). Cuboidal type II cells play a crucial

role in the lung immune response, participating in the tissue repair

process after pulmonary injury, producing and secreting pulmonary

surfactant, promoting transepithelial water movement, and

expressing immunomodulatory proteins for host defense (15). In

transepithelial water flux, these cells remove fluid from the alveolar

space through sodium transport ions by NKA and ENaC channels

(Figure 1) (17).

NKA maintains the electrochemical gradient and cell

homeostasis (18) through ions across the cell membrane (19). Its

structure is formed by three subunits, a subunit or catalytic (4

isoforms), b subunit or regulator (4 isoforms), and g subunit
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(FXYD1-7 proteins) that is auxiliary to the holoenzyme complex

with regulatory function (20). Like the NKA isoforms, each NKA

subunit is expressed tissue- and cell-specific. For example, the a1
and b1 isoform NKA is the predominant isozyme expressed in

alveolar epithelial cells type I and II, and the a2 subunit is present in
alveolar epithelial type I cells (21). The b3 isoform is found in rat

lungs, but its function remains unknown (22).

Alveolar cells NKA are located on the basolateral membrane

and actively contribute to alveolar edema clearance (7).

Additionally, ENaC and cystic fibrosis transmembrane

conductance regulator (CFTR) are located apically (23, 24),

contributing to edema clearance. Finally, the AQP5 transports

water across the apical membrane in epithelial cells (16).

However, the foremost mechanism of lung edema clearance is the

transport of ion sodium and ion chloride across epithelial cells type

I and II (7, 25), bringing water from the lungs into the

capillaries (Figure 1).
3 NKA and tight junction integrity

NKA also has an essential role in regulation and the formation

of tight junctions (26). Tight junctions are barriers between cells

that control the passage of substances between alveolar and

interstitial spaces through active transport (27, 28). Abnormal

regulation of tight junction barrier allows the passage of

pathogens and antigens through epithelial monolayers favoring

disease development (28). Tight junctions also act as scaffolding

platforms for cell signaling and docking stations for transport

vesicles (29). Structurally, they comprise heteromeric occludin

and claudin protein complexes that form a sealed interface

between adjacent airway epithelial cells (30).

Together with the adapter proteins, the tight junctions can

regulate tension, selective permeability, cell signaling, and gene

expression (31, 32). However, insults such as lung injury (25),

mechanical stress (33), fungal infection (34), viral and bacterial

infection (35), and kinases activation (36) cause dysregulation tight

endothelial junctions (37, 38) worsening lung disease.

The NKA b1 subunit overexpression upregulates tight epithelial

junctions decreasing lung permeability independent of NKA

pumping function (39). Also, NKA effects on tight junction

formation depend on sodium concentration in the cell,

preventing the formation of the stress-bundled fibers (40).

Sodium increase during NKA inhibition changes epithelial cells’

polarity (41). The disruption of tight junction complexes at the lung

epithelial cells is deleterious and leads to lung edema formation in

ARDS (42). In addition, establishing the tight junction drives

epithelial polarization (43). Thus, the NKA influences the epithelial

polarity, regulation, and tight junctions, strengthening the alveolar-

epithelial barrier in a mechanism involving b1 subunit and myotonic

dystrophy kinase-related cdc42-binding kinase a (39). Conversely,

NKA inhibition leads to tight junctions’ integrity loss, increasing the

alveolar permeability and worsening acute lung injury/ARDS.
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4 Molecules that affect NKA and
induce or amplify lung injury

Cardiac glycosides are known worldwide as classical inhibitors of

the NKA (44). They were identified as a plant secondary metabolite,

and later on as an endogenous mammalian substance produced by

adrenal gland, hypothalamus, and hypophysis (45). The cardiac

glycosides bind to the NKA a subunit, increasing the intracellular

concentration of ions calcium and sodium (44), resulting in reactive

oxygen species (ROS) production due to intracellular signaling

activation (46). Also, they inhibit ion-pumping (7), decreasing

edema fluid clearance (8). The cardiac glycoside concentration

directly impacts NKA’s effect, triggering cell signaling at low

concentrations and blocking the ionic pump at high concentrations

(47). Our group recently reviewed the role of NKA in cell adhesion,

motility, and migration in cancer cells (48). Cardiac glycosides induce

apoptosis and autophagy in transformed cells, involving molecular

pathways inducing deleterious effects on lung cancer cells (48). In

addition, different cardiac glycoside concentrations can also have pro-

or anti-inflammatory effects on lung (45).

In 1985, Tamura and co-workers showed that free unsaturated

fatty acid such as linoleic acid (LA) and oleic acid (OA) in plasma
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inhibits NKA promoting increased extracellular fluid accumulation in

hogs (49). Also, OA inhibits the NKA in vitro (50, 51). Furthermore,

our group and others showed that lung NKA inhibition induces lung

injury and an inflammatory microenvironment in the lungs (52–56).

Ouabain, a cardiac glycoside, induced lung injury in mice (52). In

addition, OA in vivo causes lung injury with immune cell

accumulation, edema formation, inflammatory mediators production

that amplify inflammatory response, such as tumor necrosis factor alfa

(TNF-a), interleukin 1 beta (IL-1b), leukotriene B4-(LTB4), and

intracellular pathways activation ((mitogen-activated protein kinase

(MAPK), phosphoinositide 3’ kinase (PI3K), extracellular signal-

regulated kinase 1/2 (ERK1/2), factor nuclear kappa B (NF-kB)) in
lung tissues (56, 57). Thus, these data reinforce the importance of NKA

activity for lung edema clearance and make it a potential molecular

target for lung injury treatment (Figure 1).

Changes in the alveolar–capillary barrier happen during

pulmonary infection and cause altered expression of epithelial NKA,

decreasing alveolar fluid clearance. TGF-b, TNF-a, interferons, or IL-
1b are produced after infection with Streptococcus pneumoniae,

Klebsiella pneumoniae, Mycoplasma pneumoniae, influenza A virus,

pathogenic coronaviruses, or respiratory syncytial virus and amplify

alveoli-capillary disturbances and damage (8).
FIGURE 1

Na+/K+-ATPase signalosome. NKA acts as an ion pump and signal transducer, triggering lung inflammation. The binding of cardiac glycosides, GLP,
oleic, and linoleic acid to NKA signalosome located in caveolae transduces signals to multiple pathways. The CG binding to NKA activates Src
tyrosine kinase – EGFR complex is associated with inflammatory response and proinflammatory mediator production. Activated EGFR recruits’
protein adaptors that activate Ras - RAF (MAPK). RAF directly regulates MEK transactive JNK, p38, and ERK being the last activating NFkB. MAPK
activation triggers the opening of mitochondrial ATP-sensitive potassium channels (mitoKATP) through increased intracellular Ca++, producing ROS
production and casp 1 activation. ROS release stimulates ERK, AKT, and NFkB activation. Moreover, AKT can activate PI3K and NFkB or be
phosphorylated by PI3K, essential to inflammation and edema formation. Another critical pathway that triggers lung injury is JAK/STAT3. JAK/STAT3
is regulated by Src upstream and ends with NFkB activation. NKA, Na+, K+ ATPase; Ca++, calcium; Src, non-receptor tyrosine kinases; EGFR,
epithelial growth factor receptor; JAK, Janus kinase; STAT, signal transducer and activation of transcription; RAS, rat sarcoma virus; RAF, proto-
oncogene serine; MAPK, mitogen-activated protein kinase; MEK, MAPK–ERK activating kinase; ERK, extracellular signal-regulated kinases; p38,
mitogen-activated protein kinase; JNK, c-Jun n-terminal kinase; mitoKATP, mitochondrial ATP-sensitive potassium channel; ROS, reactive oxygen
species; Casp-1, caspase-1; NFkB, factor nuclear kappa B; PI3K, phosphoinositide 3′ kinase; AKT, protein B kinase; FFAR, free fatty acid receptor.
Created with BioRender.com.
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5 NKA as a receptor and
signal transducer

Cardiac glycosides activate the signalosome, a NKA protein

complex restricted to the caveolae, triggering intracellular signaling

pathways (19). The cell signaling from NKA occurs through the

interaction of signalosome proteins such as NKA, caveolin-1, non-

receptor tyrosine kinases (Src), rat sarcoma virus protein (RAS)

binding of small guanosine triphosphate (GTP) (19), and epidermal

growth factor receptor (EGFR) (58). EGFR is a transmembrane

protein with cytoplasmic kinase activity that stimulates cell

proliferation, differentiation, growth, and migration (59).

Caveolin-1, an integral protein cell membrane, interacts with

several tyrosine kinases, like EGFR, and connects Src kinase in

the MAPK pathway activation. Src belongs to the Src family kinase

(SFKs) (60). The caveolin-1 forms a spontaneous complex with

NKA and interacts with Src kinase forming the active NKA-

caveolin-1-Src Figure 1 (58).

In addition, Src kinases and NKA act together to transduce

outside-in signaling by ouabain (19). Then, Src binds to the a-
subunit of NKA and triggers the Src/EGFR-MAPK pathway

signaling (61). Src activation affects different cellular processes

such as adhesion, migration, cell differentiation (60), and ROS

formation (61). EGFR activates Ras-proto-oncogene serine (Raf)-

MAPK, PI3K (59), which increases ROS production (62), NFkB
activation, and proinflammatory cytokine production (63).

Activation of the PI3K pathway by ouabain can also result in the

endocytosis of the NKA-Src complex (19), blocking NKA signaling

in the myocyte. Also, ouabain triggers EGFR-Src-Ras-Raf-MAPK–

ERK activating kinase (MEK)-extracellular signal-regulated kinases

(ERK1/2) pathway and Src-independent activation of PI3K1A and

Akt, leading to fibroblast proliferation (Figure 1) (64).

The cardiac glycosides activate Src and trigger the ERK 1/2

signaling through the Ras-Raf-MEK pathway-independent

intracellular calcium fluctuations (65). ERK activation induces the

production of proinflammatory mediators and can be activated by

MEK-MAPK (66), EGFR (67), and ROS (68). Also, EGFR

transactivation by Src activates ERK 1/2 through the activation of

Ras-Raf-MEK cascade (69). In addition, the MAPK activation

induces an increase in calcium concentration, favoring the

opening of mitochondrial adenosine triphosphate (ATP)-sensitive

K+ channels, which increases nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase activity and generates mitochondrial

ROS (70).

The specific NKA cell signaling is related to disease etiology

(71). Despite several studies denoting the link between NKA and

intracellular signaling pathways activation (72), some details in the

signaling cascade remain to be unveiled.
6 NKA in signal transduction during
lung injury

Summarizing what has been introduced before, the NKA

activity on edema fluid clearance is crucial to lung injury (7, 9).
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The impairment of the alveoli-capillary barrier and damage to the

alveolar epithelium occur during acute lung injury and ARDS,

resulting in the accumulation of protein-rich edema fluid (73),

impairing gas exchange (7). Epithelium cells type I and II, through

NKA activity, remove salt and water from the alveoli (74).

Furthermore, cell signaling from NKA of the epithelium cells type

I and II activate proinflammatory pathways in the lung, which is

harmful to the lung. Lung injury happens by inhibiting or triggering

intracellular signaling. Interestingly the ion-pumping function

increases due to NKA cell signaling activation (75). In addition,

cardiac glycosides, OA, and LA in the lung inhibit NKA and induce

injury through NKA signaling cascade activation (55, 76)

(77) (Figure 1).

Besides cardiac glycosides, FXYD proteins modulate NKA

activity. FXYD5 overexpression in mice damages the alveoli-

epithelial barrier and causes lung inflammation. LPS stimulation

of alveolar epithelial cells and mice lungs increased FXYD5 plasma

membrane expression, NF-kB activation, and cytokine production.

FXYD5-deficient cells have not responded to LPS. FXYD5

overexpression increased the monocyte migration to the lung, and

in turn, FXYD5 silent mice showed less CCL2, monocytes, and

protein extravasation after LPS stimulation. As it occurred in vitro,

the FXYD5 effect depended on NF-kB, and they were not just

involved in the LPS-inflammatory effect and cytokines, reinforcing

the role of a NKA modulator in inflammation (78).

NKA activates Src and ERK. Activating Src and ERK leads to

lung injury and inflammation (79). Src activates ERK signaling (80)

and induces proinflammatory cytokine production (81). Also,

neutrophil migration, edema, lipid body formation, and cytokine

IL-6 production in lung injury depend on ERK activation in an OA-

induced lung injury animal model (57). Furthermore, JNK, p38, p65

(77), and p50 phosphorylation (82) is linked to a decrease of lung

alveolar permeability and neutrophil accumulation in the

bronchoalveolar lavage fluid (BALF). Inhibiting those pathways

reduces lung vascular leak and suppresses the NF-kB pathway (82).

ARDS patients that express high angiotensin-converting

enzyme (ACE) in BALF have Ras phosphorylated (83, 84).

Furthermore, it suggested that Ras protein regulates pulmonary

vascular tone, which can contribute to the pathogenesis of ARDS

(84). Raf and MEK phosphorylation and the release of IL-1b, IL-4,
IL-6, and TNFa are increased in LPS-induced acute lung injury

(85). In addition, RAF activates JNK and p38 and ERK, activating

NF-kB, contributing to increased lung permeability and

inflammation in ARDS (86).

The signaling of cardiac glycosides occurred through the NKA/

a-1-Src kinase complex in immune cells to produce ROS and

inflammatory cytokines. NKA a-1 knock-down or the specific

inhibition of the NKA a-1-Src kinase complex by pNaKtide, or

even the Src inhibitor PP2 impaired the inflammatory effect of

cardiac glycoside telecinobufagin (TCB) in macrophages. TCB,

ouabain, digoxin, and marinobufagenin activated NF-kB via NKA

a-1-Src kinase complex (87).

PI3K, a NKA downstream signaling protein, is essential in lung

inflammation and edema (88). Its inhibition may alleviate lung

injury with lower leukocyte accumulation and edema formation in

the lungs (56). PI3K, through AKT activation, regulates broad
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cellular processes, including apoptosis, proliferation, and

differentiation (89).

Different pathways activated by NKA signaling are similar to

LPS-triggered ones and crosstalk with pathways triggered by LPS

during lung cell and immune cell stimulation. Ouabain activated

NF-kB, leading to proinflammatory cytokine synthesis (MCP-1/

CCL-2, TNF-a, IL-1b, and IL-6) by murine peritoneal macrophages

and human monocyte-derived macrophages. Macrophages partially

deficient in NKA lacked ouabain-induced NF-kB activation, and

consequently the synthesis of proinflammatory mediators (90).

Ouabain in fact may have either pro or anti-inflammatory role

(76, 91, 92). Ouabain challenged the monocytes to produced IL-1b,
TNF-a, IL-10 and VEGF, showing its immunomodulatory role

(92). Ouabain also inhibits proinflammatory monocyte activation,

downregulating membrane CD14 and CD16 in early time points

(91). Others showed NKA binding of cardiac glycosides leads to IL-

1b production and release. The mechanisms of the cardiac glycoside

digoxin and others include activation of the NLRP3 inflammasome

in macrophages at concentrations used in clinical treatment. The

result is the induction of the programmed cell death pathway

through caspase-1, called pyroptosis. Which causes inflammation

and tissue damage showing the direct correlation of NKA signaling

to the induction of IL-1b via inflammasome (93). In turn, inhibiting

inflammasome activity reduced ischemic damage (94). IL-1b
expression in the lungs is associated with neutrophil recruitment

and induction of acute lung injury (95), acting as a biomarker of

barrier integrity loss in the lungs via interaction with EGFR and

claudins (96). Also, IL-1b stimulates the IL-6 and TNF-a release

(97). The claudins are proteins that form intercellular junctions

supporting the permeability and ion selectivity of paracellular pores

of the large airways (98). Among them, cldn-18 is highly expressed

in the alveolar epithelium, while cldn-4 is vital in regulating

paracellular permeability during alveolar fluid clearance

supporting the resolution edema (25). In addition, IL-18 controls

the release of IL-1b (97), being both (IL-1b and IL-18) activated by

caspase-1 (97), which is critical to the development of sepsis/

ARDS (99).

The leptospiral endotoxin glycolipoprotein (GLP) binds to

NKA and causes organ dysfunctions during leptospirosis.

Metabolic alterations increase free fatty acid levels in the blood

and lipotoxicity. During the infection, inflammasomes are formed,

and NKA once again leads to pro-inflammatory and metabolic

alterations and involves inflammasome activation. NKA is related

to the severity and considered a therapeutic target (100).

Activation of NKA triggers JAK/STAT3 pathway signaling, an

inductor of lung injury (101, 102). STAT activation induces IL-6

release (103), and mutation in STAT3 impairs IL-6 activity and

recurrent infections in the lungs (104). Also, IL-6 and TNF-a
release are regulated by JNK (105) and p38 (77, 106). The p38

causes deleterious effects and cell death (107). When p38 is

activated, the lung neutrophils induce tissue damage through the

secretion of ROS and IL-8 (108), promoting endothelial and

epithelial barrier dysfunction (109), and worsening ARDS. ROS

upregulates the expression of proinflammatory cytokines and

adhesion molecules, amplifying the tissue damage and pulmonary

edema (109). Once released, IL-8 decreased cell viabilityand
Frontiers in Immunology 05
inhibited the expression of surfactant proteins A and B (33). The

absence of surfactant protein in the lung increases the surface

tension, resulting in the alveolar and peripheral airway collapse

(110). TNF-a also downregulates the surfactant protein (111),

potentializes the release of chemokines and cytokines, increases

lung vascular permeability, and modulates the recruitment and

activation of neutrophils, contributing to lung injury. NKA

signaling activation may induce multiple signaling cascades that

may cause lung injury and cause the product ion of

proinflammatory mediators by structural cells and recruited

leukocytes that amplify the inflammatory response in the lung

(Figure 1). Further research may unveil additional molecular

mechanisms and other receptors involved in the lung

injury processes.

Fatty acids, such as the NKA ligands LA and OA, also bind to

free fatty acid receptors (FFARs). Four FFARs have physiological

importance in biological processes (FFAR1, FFAR2, FFAR3, and

FFAR4, formerly known as GPR40, 43, 41, and 120) (112, 113). The

long-chain free fatty acid (FFA) preferentially binds to FFAR1 and

FFAR4, while short-chain fatty acid binds to FFAR2 and FFAR3

(114). Also, FFARs are similarly expressed in metabolic tissues and

immune cells, regulating energetic metabolism and inflammatory

responses (115). The FFARs exhibit overlapping functions through

signaling pathways involving the activation of Ca+2, cAMP, or

ERK1/2 responses, with G protein-dependent or independent

pathways acting more as modulators rather than initiators of

biological processes (116). For instance, OA generates an

aggressive phenotype in prostate cancer cells via the PI3K/Akt

signaling pathway depending on FFA1/GPR40 (117).

Non-Esterified Fatty Acids (NEFA) are FFA with elevated levels

in obese individuals, and long-chain FFAs act as endogenous ligands

of the FFAR1. OA, LA, and GW9508 (FFAR1/FFAR4 dual agonist)

induced human airway smooth muscle cell proliferation, dependent

on p70S6K phosphorylation through MEK/ERK and PI3K/Akt

signaling pathways (118). Saturated fatty acids (SFA) are thought

to reduce vascular reactivity by decreasing insulin signaling via

vasodilator pathways (PI3K/Akt/endothelial nitric oxide synthase

(eNOS)) and enhancing pro-inflammatory pathways. In

comparison, OA promotes signaling via the PI3K/Akt/eNOS

pathway (119). Fatty acids induced IKKb activity, with palmitic

acid showing greater activation than OA and LA, reducing nitric

oxide production (120). FFAR1 and FFAR4 are expressed in the lungs

(113). FFAR4 is highly expressed in murine lungs and appears to be

restricted to the airway epithelium, mainly on mucous-secreting

goblet cells and ciliate columnar epithelial cells (121, 122).

Saturated and unsaturated long-chain fatty acids may bind FFAR1

and FFAR4 and activate intracellular signaling, such as PI3K, ERK,

and PKC (116, 123). Thus, FFAR1 and FFAR 4 activation may

activate intracellular pathways with crosstalk with NKA signalosome.

Interestingly, FFAR4 activation promotes bronchial epithelial

repair after epithelial injury, and this event possibly occurs by fatty

acid-specific induction through FFAR4 (124). High levels of FFAR4

expression in the lungs will be linked with airway function and

dysfunction (123), so the specific type of FFA (saturated,

unsaturated, or polyunsaturated) that binds and activates FFAR4

may have a positive or a negative impact on lung injury.
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7 Conventional treatments and NKA as
a possible therapeutic target

Several preventive therapies were tested unsuccessfully in

patients with lung injury at the initial stages aiming to prevent

acute lung injury and the progression of ARDS (125). Previous

studies showed the effectiveness of the treatments based on

exogenous surfactant, inhaled nitric oxide, intravenous

prostaglandin E1, glucocorticoids, ketoconazole, lisofylline, n-

acetylcysteine, and activated protein C. However, effectiveness

could not be confirmed when these potential treatments were

advanced to phase III clinical studies (126). Therefore, new

therapeutic approaches have been suggested for acute lung injury/

ARDS treatment, and NKA has been indicated as a possible

therapeutic target (127). Some studies had already signaled the

edema clearance improvement through stimulation of NKA activity

by aldosterone (128), growth factors (129), catecholamines (130,

131), b-adrenergic agonist (132), b-adrenergic receptor

overexpression (133), dopamine (134), vasopressin (135) and

rosuvastatin (127). This effect is expected because NKA of

alveolar epithelial cell types I and II support edema clearance (136).

On the other hand, gene therapy studies with the

overexpression of the NKA b1 subunit upregulated the expression

of tight junction proteins, leading to increased alveolar epithelial

barrier function (39). Machado-Aranda and coworkers (2005)

tested gene therapy using electroporation of the NKA b1 subunit

to increase alveolar fluid reabsorption (137). Similarly, a study with

transfection with adenoviruses carrying genes encoding the a1 and

the b1 subunit of NKA showed a decrease of ARDS in C57/BL6 mice

(138). Additionally, the gene transfer of the NKA a2 subunit by

adenovirus also increased NKA activity in rat alveolar epithelial

cells and adenocarcinoma human alveolar basal epithelial cells

(A549 cells) and improved the basal lung fluid clearance rate (139).

The importance of other ionic channels for edema clearance,

such as ENaC (140) and AQPs (141) has also been demonstrated in

ARDS. Although important, ENaC and AQPs are not essential for

the alveolar fluid removal (142, 143), conversely, the NKA which is

identified as the primary edema clearance agent (143). Therefore,

new therapeutic approaches, including gene therapy targeting NKA,

can be an effective alternative to improve edema clearance, favoring

lesion recovery in acute lung injury and ARDS
8 Concluding remarks

Acute lung injury/ARDS is a respiratory failure syndrome

marked by the disruption of alveolar endothelial and epithelial

barriers and accumulation of edema fluid within the alveolus and

interstitium (73). Edema clearance is crucial for resolving these lung

injuries and can be accomplished by NKA activity in type I and II

epithelial cells. Nevertheless, NKA may trigger lung injury through

signaling pathways independent of ion pumping inhibition.

Interestingly, the Src-EGFR-Ras-Raf-MAPK signaling cascade is

the main NKA pathway and the responsible for triggering lung
Frontiers in Immunology 06
injury, fostering neutrophil influx into the lungs (79), edema and

lipid body formation, NF-kB transactivation (63), IL-1b, IL-4, IL-6,
TNFa and ROS production (57, 144). Therefore, NKA is a

protagonist in edema clearance but may also induce lung injury

by triggering cell signaling independent of its pumping activity.

Additionally, the overexpression of the NKA b1 subunit avoids
lung injury. This occurs because of the improvement in edema

clearance by NKA pumping activity, decreasing alveolar fluid

accumulation. Besides, the integrity of the alveolar epithelial

barrier between alveolar and interstitial spaces depends on the

NKA activity. Further studies are necessary to fully elucidate the

specific pathways triggered by NKA on lung injury and develop

alternative therapeutic strategies targeting NKA for acute lung

injury/ARDS treatment.
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