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The post-transcriptional RNA modifications impact the dynamic regulation of

gene expression in diverse biological and physiological processes. Host RNA

modifications play an indispensable role in regulating innate immune responses

against virus infection in mammals. Meanwhile, the viral RNAs can be deposited

with RNA modifications to interfere with the host immune responses. The N6-

methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics,

due to its high abundance and a transcriptome-wide widespread distribution in

mammalian cells, proven to impact antiviral innate immunity. However, the other

types of RNAmodifications are also involved in regulating antiviral responses, and

the functional roles of these non-m6A RNA modifications have not been

comprehensively summarized. In this Review, we conclude the regulatory

roles of 2’-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine

editing (A-to-I editing), pseudouridine (Y), N1-methyladenosine (m1A), N7-

methylguanosine (m7G), N6,2’-O-dimethyladenosine (m6Am), and N4-

acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic

introduction to the biogenesis and functions of these non-m6A RNA

modifications in viral RNA, host RNA, and during virus-host interactions,

emphasizing the biological functions of RNA modification regulators in antiviral

responses. Furthermore, we discussed the recent research progress in the

development of antiviral drugs through non-m6A RNA modifications.

Collectively, this Review conveys knowledge and inspiration to researchers in

multiple disciplines, highlighting the challenges and future directions in RNA

epitranscriptome, immunology, and virology.

KEYWORDS

RNA modification, innate immunity, virus infection, 2’-O-methyltransferase, 5-
methylcytidine, pseudouridine, RNA editing
1 Introduction

Numerous emerging research areas, including cancer immunotherapy, gene therapy,

regenerative medicine, and the pandemic, underscore the significance of investigating the

innate immune system for advancing human healthcare and pharmaceutical innovation

(1–4). As the fields of biomedical and biotechnology forge ahead at an unprecedented pace,
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our comprehension of this intricate regulatory network continually

evolves, with established paradigms being supplemented from

different perspectives and interdisciplinary insights emerging.

As the first line of defense against invaders, the innate immune

system protects the body from the harmful effects of viral infections.

A typical antiviral response can be succinctly outlined as follows:

first and foremost, the innate immune system recognizes virus

pathogen-associated molecular patterns (PAMPs) and triggers

downstream signaling pathways. PAMPs typically include viral

single-stranded (ss) or double-stranded (ds) RNAs, dsDNAs, and

viral proteins (5, 6). The molecules in the immune system that

detect PAMPs and transmit signals are pattern recognition

receptors (PRRs). Common types of RNA-sensing PRRs include

Toll-like receptors (TLRs), Retinoic Acid Inducible Gene-I (RIG-I)-

like receptors (RLRs), NOD-like receptors (NLRs), C-type lectin

receptors (CLRs), Protein Kinase R (PKR), and 2’-5’-Oligoadenylate

Synthetases (OAS) (5, 7). These PRRs are one of the main targets for

RNA viruses to evade immune surveillance (8–11). The

characteristics and functions of the major PRRs are described in

Table 1. Upon activation of signaling pathways by PRR, a large

number of cytokines and chemokines (Activator protein-1 (AP-1),

interferon regulatory factors (IRFs), etc.) are induced through

pathways like NF-kB and MAPK, initiating the expression of

downstream immunomodulatory and antiviral genes, with

notable examples such as interferon (IFN) family and interleukin

(IL) family (15). Concurrently, macrophages, natural killer (NK)

cells, granulocytes, dendritic cells (DCs), and other immune cells

are activated, recruited, and dynamically engaged in the antiviral

immune response (5).

Due to the dynamic and rapid-response nature of the innate

immune antiviral process, there has been considerable interest in

exploring the realm of post-transcriptional regulation, a directly

functional control layer of this process (16, 17). While extensive

research has shed light on the roles of RNA splicing and non-coding

(nc) RNA modulation in innate immunity regulation, there has

been a growing focus on investigating the regulatory effects of RNA

modifications (18–20). These chemical modifications have been

demonstrated to be linked to the RNA sensing and activation of

immune cells as early as 2005 (21). In recent years, many studies

have reported diverse RNA modifications on viral and host RNAs

and a complex network of interactions between RNA modifications

and immune cells (22–25). Among these, N6-methyladenosine

(m6A) stands out as the most abundant RNA modification in

mammalian mRNA. The advancement of the base-resolution

mapping tools targeting m6A, which are continually being

refined, has facilitated the ongoing identification of its functional

and mechanistic roles in diverse regulatory networks (26–32).

Milestone studies continue to emerge, and the role of m6A in

antiviral innate immunity regulation has been delving deeply, such

as leading to immune evasion, influencing IFN production, and

facilitating macrophage activation (33–35), with several related

reviews published recently (34, 36).

Notably, in addition to m6A, many other RNA modifications

have been demonstrated to possess a wide range of regulatory

functions. Common types include 2’-O-Methylation (Nm), 5-

methylcytidine (m5C), adenosine-inosine editing (A-to-I editing),
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pseudour idine (Y ) , N 1-methy ladenos ine (m1A) , N 7-

methylguanosine (m7G), N6,2’-O-dimethyladenosine (m6Am),

and N4-acetylcytidine (ac4C). These non-m6A RNA modifications

manifest diverse and intricate regulatory roles in controlling gene

expression, modulating metabolic networks, and impacting the

development of diseases (37), concomitant with the progress

made in RNA epitranscriptome (38, 39). Intriguingly, these non-

m6A RNA modifications are intimately linked with antiviral innate

immunity, exerting biological and physicochemical regulatory

functions upon both viral and host RNAs. Especially in recent

years, the regulatory role of non-m6A RNA modifications in innate

immunity has been heavily investigated, attracting considerable

attention within translational medicine research (7, 20, 40).

Hence, in light of the present state of the cutting-edge

investigation in non-m6A epitranscriptome and the gap of a

summary related to innate immunity, here we comprehensively

reviewed the regulatory role of the non-m6A RNA modifications in

the antiviral innate immunity.
2 Non-m6A RNA modifications in
antiviral innate immunity

The role of diverse non-m6A RNA modifications in antiviral

innate immune responses can be divided into the regulation of host
TABLE 1 Brief description of PRR with RNA-sensing activity in
mammalian cells.

PRR
types

Brief description

TLR There are 10 members in the human TLR family, which have
structures consisting of leucine-rich domains for recognizing PAMPs
and cytoplasmic domains for signal transduction. The subset
involved in antiviral responses (TLR3, TLR7, TLR8, and TLR9) is
located on the endosomal membrane to sense nucleic acids. TLR3
recognizes dsRNA, while TLR7 and TLR8 recognize ssRNA. Upon
activation, TLRs utilize both MyD88-dependent and TRIF-dependent
pathways to induce the synthesis of inflammatory cytokines and IFN-
1 (12).

RLR The RLR protein family is a cytoplasmic sensor that includes RIG-I,
MDA5, and LGP2. They all contain a DExD/H box-containing RNA
helicase domain for RNA binding and a CTD. The CTD of RIG-I is
involved in recognizing the 5’-triphosphate of short panhandle
dsRNA, while MDA5 tends to bind long dsRNA. They have also
been shown to sense ssRNA. Upon activation, RIG-I and MDA5
utilize the N-terminal CARD to interact with MAVS on the
mitochondria, which recruits TRAF family proteins or IKK to
complete signal transduction. This leads to the upregulation of
various inflammatory and transcription factors and the expression of
ISGs. LGP2 does not have a CARD structure and may be involved in
the regulation of MDA5 signaling (13).

PKR PKR is an interferon-induced serine/threonine kinase that can be
activated and autophosphorylated by cytoplasmic dsRNA or 5′-
triphosphate-containing ssRNA. Activated PKR inhibits tRNA
function by regulating eIF2a and thus affecting the expression of
specific genes (14).
TRIF: Toll/IL-1 receptor domain-containing adaptor inducing interferon-beta; RIG-I:
Retinoic acid-inducible gene I; MDA5: Melanoma differentiation-associated protein 5;
LGP2: laboratory of genetics and physiology 2; CTD: C-terminal domain; CARD: Caspase
recruitment domain; MAVS: Mitochondrial antiviral-signaling protein; TRAF: TNF receptor-
associated factor; IKK: IkB kinase.
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RNA modification and viral RNA modification, impacting immune

cell development and cytokine production, disguising endogenous

RNA, and affecting viral development (36), with their chemical

structures illustrated in Figure 1. From a dynamic perspective, the

regulatory role of RNA modifications encompasses facilitating viral

evasion from RNA sensing, infection-induced repercussions on

cytokine production and signal transduction, and altering the

epitranscriptome of immune cells to affect their function (37).
2.1 Regulatory role of 2’-O-methylation in
antiviral innate immunity

2’-O-methylation (Nm) modification is a highly conserved

modification in which the 2’-hydroxyl group of nucleotides is

methylated by 2’-O-methyltransferase (2’-O-MTase) co-

transcriptionally or post-transcriptionally. Discovered initially to

exist in ribosomal RNA (rRNA) and transfer RNA (tRNA), Nm

has since been found to exhibit varying levels of abundance in diverse

RNA species (41). Base-resolution sequencing techniques have been

developed to detect Nm modifications, bringing breakthroughs in

understanding the stoichiometric characteristics of this modification

(42, 43). In human mRNAs, Nm modification near the cap structure

is generally added by Cap methyltransferase 1 (CMTR1) or CMTR2,

while Nm within internal positions could be installed by Fibrillarin

(FBL) and FTSJ3 regulators (25, 44, 45). The involvement of a

ribonucleoprotein (snoRNP) complex containing a small nucleolar

RNA of the C/D box family (snoRNA) is essential in FBL-regulated

Nm modifications (46, 47). Besides maintaining stability and

promoting translation, the cap Nm of human mRNA commonly

serves as a molecular signature of endogenous host RNA, and the lack

of this modification may lead to autoimmune diseases (48). Internal

mRNA Nm can hinder translation elongation by disrupting the

interaction between translation components and tRNA decoding
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efficiency (49, 50); meanwhile, it is reported to stabilize mRNA and

enhance its expression capacity (47). Furthermore, Nm plays essential

roles in other types of RNA, such as rRNA Nm affecting ribosome

heterogeneity and stability, and tRNA Nm maintaining translation

accuracy and tRNA stability (48, 51). Pathologically, Nm exerts a

regulatory influence on the occurrence of diseases such as cancer,

autoimmune diseases, and epilepsy (52–55).

Apart frommaintaining the stability of viral RNA by preventing

the activity of host decapping and exoribonuclease protein, a

paramount role of Cap Nm in antiviral innate immunity lies in

facilitating viral RNA evasion from host RNA-sensing, thereby

enabling immune evasion (Figure 2) (56). Since the Nm

modification is installed at the first base (Cap 1 Nm) in

eukaryotic host mRNA, numerous viruses employ this strategy to

conceal themselves from detection by PRRs (57). By exhibiting Cap

1 Nm on their viral RNA, the viruses engage in a “subterfuge” that

effectively evades recognition by RLRs, particularly RIG-I and

MDA5 (58, 59), which disrupts signaling cascades, significantly

suppresses the production of IFN, and impacting macrophage

activation (60). In the case of RIG-I, this evasion effect can be

attributed to steric hindrance resulting from the spatial obstruction

caused by Nm when RIG-I binds to RNA, primarily facilitated by

residue H830 (59, 61). On the other hand, although structural

biology studies have inspired, the interaction mechanism between

MDA5 and Nm still remains unclear. Recent studies suggest that

Nm may reduce the catalytic activity switch of MDA5 (62).

Moreover, viral RNA Cap 1 Nm also affects RNA sensing

through TLR7 pathways, consequently impacting inflammatory

responses (56). Although the inhibitory effect of Nm in bacterial

tRNA on TLR activation has been studied to some extent, the

relevant mechanisms and degree of inhibition in viruses are yet to

be determined (63, 64).

Another escape strategy mediated by Cap Nm is to prevent the

binding of viral RNA to IFN-induced protein with tetratricopeptide
FIGURE 1

Structures of major non-m6A RNA modifications in mammals.
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repeats 1 (IFIT1), an antiviral protein (65). IFIT1 is upregulated in

response to viral infection, guided by interferon signals, and can

recognize viral RNA lacking Cap Nm. It forms a complex with

IFIT2 and IFIT3 and interacts with the eukaryotic initiation factor

eIF3, inhibiting the transcription and translation of viral RNA,

which is essential for IFN-induced antiviral response (60, 66). The

internal RNA binding tunnel of IFIT1 exhibits a preference for

RNA without Cap Nm, thus displaying a limited affinity for viral

RNA with this modification (67). IFIT1B of the same family retains

the ability to bind Cap1 Nm RNA, albeit with reduced affinity (68).

Therefore, Cap Nm helps various viruses, such as West Nile virus,

Zika virus, and human immunodeficiency virus (HIV), to escape

the antiviral effect of IFN-induced antiviral factors (45, 69, 70).

Coronaviruses lacking 2’-O-methyltransferase (2’-OMTase) exhibit

high sensitivity to IFIT1 (71). Note that Cap Nm is only one of

several strategies used by viruses to evade IFIT monitoring, while

viral RNAs with Cap 1 Nm are still affected by IFIT1 at high

concentrations; however, the viruses with only Cap 2 Nm are able to

avoid IFIT1 effects completely, but this is rare among viruses (60,

67, 72, 73). Interestingly, a recent study reported that Cap 2 Nm in

mammalian mRNAs shifts from Cap 1 Nm at a very slow

methylation rate and mainly accumulates on host mRNAs,

ensuring a low level of Cap 2 Nm in nascent viral RNAs and a

certain level of immunostimulation (74).

Despite the incomplete comprehension of internal Nm

modifications in viral RNA, recent studies have partially

illuminated their regulatory role in innate immunity. Like internal
Frontiers in Immunology 04
Nm modifications in host mRNA, internal Nm modifications in

viral RNA of various viruses can impair replication by affecting the

elongation of the RNA polymerase (75). Interestingly, HIV is an

exception to this. A recent report proved that internal Nm

modifications induced by host 2’-O MTase promote HIV viral

RNA replication (45). Furthermore, these modifications are

implicated in immune evasion strategies employed by HIV,

manifesting through their impact on MDA5 sensing and the

antiviral activity of ISG20 (45, 76). While some investigations

have shown that integrating Nm-modified adenosine into short

RNAs can inhibit TLR7 activation, further exploration is warranted

to determine if analogous mechanisms exist for other viral types

(60, 77). Internal Nm modifications have been discovered in viral

RNAs of many viruses, such as SARS-CoV-2, Ebola virus, and

Dengue virus, but their functions remain unclear (75, 78, 79),

awaiting more in-depth functional investigation.

In addition to the essential role in the development of immune

cells such as macrophages and the expression of immune-related

genes, host RNA Nm modification can also dynamically regulate

the immune response through changes in Nm stoichiometry (80).

The human Cap 1 2’-O MTase, CMTR1, exhibits an upregulated

expression in response to interferon, thereby modifying the Nm

status of specific antiviral ISG genes to enhance their expression and

facilitate IFN-mediated antiviral response (25, 81). Some studies

indicated the protective role of Nmmodification on host RNA, such

as increased vulnerability to viral infection in hosts lacking Nm-

modified tRNA and resistance of Nm-modified host siRNA to
FIGURE 2

Functional roles of Nm in the regulation of antiviral innate immunity.
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targeting by poxviruses (82, 83). A recent study has also found that

the introduction of Nm modifications on the RNA template

significantly inhibits the synthesis of viral RNA (84). Moreover,

viruses can manipulate the landscape of host RNA Nm

modification. A typical example is that viruses can exploit FBL to

modify host pre-rRNA’s Nm status, thereby attenuating protein

synthesis. For instance, HIV infection disrupts FBL’s binding to

nascent pre-rRNA, impairing ribosome biogenesis and function

(85). Similarly, the Hendra virus orchestrates FBL methylation to

influence proviral host genes and viral protein synthesis (44).

Additionally, the disturbance of FBL has the potential to

influence Nm modification level, consequently impeding the Type

I IFN response and thereby facilitating viral infiltration into

macrophages (86). Intriguingly, recent investigations have

unveiled a decline in Nm sites within host mRNA upon SARS-

CoV-2 infection, albeit the implications of this phenomenon on the

host necessitate further study (78).

Comprehending how viruses synthesize Nm to circumvent

immune responses is paramount in designing specialized antiviral

medications. Three conventional ways for viral RNA to acquire Cap

Nm have been identified, including utilizing host ‘writer’ enzymes

(e.g., HIV), “cap snatching” from host mRNA (e.g., influenza virus),

and encoding specialized enzymes and active sites for capping (e.g.,

SARS-COV-2) (25, 45, 87). The elucidation of these mechanisms

propels advancements in translational medical research. Taking

SARS-COV-2 as an example, several non-structural proteins (Nsps)

are involved in viral RNA Nm modification, with pivotal

participants including Nsp13, Nsp10, Nsp16, etc (88). Structural

biology and biochemical studies of these 2’-O-MTases inspire drug

development (89). Numerous drugs targeting these Nsp proteins

have been conceptualized and developed (90–92). Similarly, drugs

targeting the Nm synthesis mechanisms of viruses such as dengue,

influenza, and Japanese encephalitis have also been reported (93–

95). In addition, since viruses lacking the Cap Nm-deficient

phenotype significantly attenuated virulence, these defective

viruses demonstrate feasibility as a vaccine approach (96).
2.2 Regulatory role of m5C in antiviral
innate immunity

RNA m5C is a modification that occurs at the 5th position of

cytosine residues and is widely distributed in eukaryotes RNA, with

high enrichment in tRNA and other non-coding RNAs (37). With

the advancement of related high-throughput sequencing

technologies, the regulatory mechanisms of m5C and the

corresponding writer, eraser, and reader regulatory proteins have

been continually explored (97–99). Although much remains

unknown, m5C writers have been relatively more well-studied.

Two classes of writers have been identified: the DNA

methyltransferase 2 (DNMT2) and the NOL1/NOP2/SUN

domain (NSUN) family (100). Notably, these eukaryotic m5C

writers deposit this modification selectively based on RNA types.

For instance, NSUN2 and NSUN6 are responsible for m5C

deposition on mRNA, NSUN1 and NSUN5 modify cytoplasmic

ribosomal RNA, and mitochondrial RNA m5C is installed by
Frontiers in Immunology 05
NSUN3 and NSUN4 (100). This complexity directly leads to the

diverse regulatory functions of m5C in innate immunity. In host

RNA, the typical role of m5C is to maintain RNA stability.

Furthermore, m5C impacts mRNA export through the ‘reader’

protein ALYREF, safeguards tRNA against stress-induced

damage, influences protein synthesis rates, and actively partakes

in ribosome biogenesis (20, 37, 101). Besides its involvement in

embryonic development processes, m5C is intimately linked to

various diseases, such as cancer and neurological disorders

(20, 101).

Currently, there are no reports of viruses encoding their own

m5C writer. However, they can utilize host writers to aid in their

invasion (Figure 3). The most common case is the methylation of

CpG islands on viral RNA mediated by DNMT2 and NSUN5 (102).

Although the specific function is unclear, this may mediate viral

heterogeneity (102). HIV has demonstrated its active recruitment of

NSUN2 and DNMT for installing m5C on its viral RNA, thereby

enhancing genome stability and facilitating replication, translation,

and virus assembly efficiency (103, 104). Similar mechanisms have

been observed in Mouse Leukemia Virus (MLV) and Alphaviruses,

where a diminished NSUN2 level can reduce viral infection through

downregulating m5C modifications (105, 106). Interestingly, the

downregulation of NSUN2 in the Epstein-Barr (EB) virus increases

viral RNA in vivo, as EB viral RNA degradation is m5C-dependent

by RNase Angiogenin (107). In addition, viruses can employ m5C

modifications on viral RNA to influence nuclear export and

infectivity via interaction with host m5C readers like ALYREF

(108, 109). Some studies have also reported the enrichment of

m5C in the viral genome following infection; however, the specific

function awaits further exploration (110).

In host cells, m5C is essential for maintaining immune

homeostasis and immune cells like CD4 T Cells development (111,

112). In the innate antiviral response, m5C and its regulator have a

sophisticated role. NSUN5 can bind to viral RNA and enhance the

RNA-sensing function of RIG-I, functioning as a cardinal receptor

(113). NSUN6 is involved in plasma cell formation (114). Meanwhile,

DNMT2 responds to infection and relies on the dynamic installation

of m5C to regulate the expression of antiviral genes, facilitating an

efficient response (115, 116). NSUN1 inhibits HIV-1 replication and

prolongs its latency by installing m5C on its transactivation response

element RNA (117). It is worth mentioning that NSUN2, the most

reported m5C writer associated with antiviral activity, exhibits

functionally diverse regulatory roles. In response to viral infection,

NSUN2 downregulates the levels of specific ncRNAs and alters their

m5C levels, which directly and indirectly modulates the type I

interferon response mediated by the RIG-I signaling pathway and

enhances the antiviral response (118). In addition, NSUN2 can

convert vault RNA (vtRNA) into smaller fragments through m5C

installation (119, 120). Some viruses can induce high vtRNA

expression, inhibiting the activation of PKR and subsequent IFN

response, silencing the host antiviral immune response (121).

Similarly, tRNA-derived non-coding fragments (tRFs) generated

with the involvement of NSUN2 can be utilized by viruses for their

immune escape with viral RNA replication (122–124). In addition,

NSUN2 may interact with uridylated deaminase, which inhibits viral

activity (102).
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Although there are currently rare antiviral drugs targeting RNA

m5C, due to substantial overlap with regulators of DNA 5-

methylcytosine, a large number of antiviral drugs (e.g.,

azacytidine and decitabine) that target DNA methylation also

exhibit effects on RNA m5C (125). Nonetheless, given that the

dearth of regulatory mechanisms has only been filled in the last few

years, the controversial distribution on the viral genome, and the

bidirectional regulatory properties of the regulator in innate

immunity, present a formidable challenge to the advancement of

drugs targeting m5C (126).
2.3 Regulatory role of A-to-I editing in
antiviral innate immunity

A-to-I editing is an irreversible modification that widely exists

in pre-mRNA, mRNA, and ncRNA, converting the amino group at

position C6 of adenosine to a carbonyl group, resulting in inosine

(37). In mammals, this modification is mediated by adenosine

deaminases acting on RNA (ADARs) and adenosine deaminase

acting on tRNA (ADAT), and these proteins have multiple dsRNA

binding domains and a catalytic center (127). There are three types

of ADARs in humans: ADAR1, ADAR2, and ADAR3 (which lacks

catalytic activity in vitro and is considered a negative regulator of

editing) (128). Among them, ADAR1 is responsible for the vast

majority of modifications. Most ADAR’s actions occur within

double-stranded RNAs formed by inverted Alu repeat elements

scattered throughout the genome (128). This modification can

disrupt RNA secondary structure and destabilize dsRNA. In the

bioprocess, ADARs are involved in pre-mRNA processing (129). In

host mRNA, inosine in non-coding regions can regulate specific

gene expressions by adding or subtracting splicing donor or
Frontiers in Immunology 06
acceptor sites thus affecting alternative splicing, creating or

destroying miRNA binding sites, and affecting mRNA stability

(129–131). Within coding regions, A-to-I editing can regulate

translation efficiency and generate new protein products (132). In

ncRNA, ADARs play a role in the biogenesis of miRNA and circular

RNA, and they can also adjust the miRNA targets (133). In

addition, ADAR can change the secondary structure of lncRNA,

thereby affecting its interaction with miRNA (20). Pathologically,

A-to-I editing has been found to be associated with cancer,

neurodegenerative diseases, and autoimmune diseases (127,

134, 135).

In host cells, ADAR1, especially its IFN-responsive isoform

ADAR1 p150, is a critical IFN inhibitory factor in antiviral innate

immunity, and its negative regulation is essential for suppressing

abnormal antiviral responses and maintaining immune homeostasis

(Figure 4) (136). Endogenous dsRNA may induce innate immune

activation and cause autoimmune inflammatory diseases. ADAR1

possesses the ability to modify these immunogenic molecules

through A-to-I editing, thereby influencing their interaction with

dsRNA PRRs and effectively thwarting downstream sensor (e.g.,

MAVS) activation as well as ISG-IFN and pathways and

inflammation (128). IFN signaling requires down-regulation of

ADAR1-p110 during viral infection to execute effective antiviral

activity (137). These mechanisms are also essential to prevent

excessive immune responses to the viral RNA (138). Mutations in

ADAR can be observed in many autoimmune diseases, such as

Aicardi-Goutières syndrome (AGS) (139). In the RLR pathway,

ADAR1 probably influences MDA5’s binding affinity to dsRNA by

inducing structural alterations through installed inosine residues

and imposing limitations on RIG-I RNA-sensing capacity via

protein-protein interaction since this inhibition is not dependent

on catalytic activity but rather RNA binding activity (140, 141). In
FIGURE 3

Functional roles of RNA m5C in the regulation of antiviral innate immunity.
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the PKR pathway, ADAR1 inhibits the autophosphorylation

activation of this dsRNA PRR, thereby preventing subsequent

eIF2a-induced translation arrest (142). Some studies have also

shown that ADAR affects the activation of the OAS-RNase L

pathway and its induced RNA degradation, autophagy, and cell

apoptosis (143). Moreover, ADAR1 has been found to interact with

Z-DNA binding protein 1, limiting self-Z-RNA sensing and

avoiding the type I IFN pathway (144, 145). Other studies

demonstrated that ADAR1 can modulate immunity by directly

editing IFN pathway components (128, 146, 147). Note that the

details of how these editings affect PRRs and sensors need to be

further investigated. In addition, host A-to-I editing regulates the

development and activation of immune cells. A-to-I editing is

essential for maintaining intracellular homeostasis in DCs and

macrophages, and the loss of ADAR1 leads to cellular metabolic

disorders (148). Furthermore, ADAR can affect macrophage

polarization by inhibiting the biogenesis of miR-21 (147).

Through editing the viral RNA, transcripts, template strands,

and immune-responsive RNA, ADAR’s impact on viruses can be

either proviral, antiviral, or even have no effect. This complexity

primarily depends on the combination of the virus and host and the

specificity of the editing sites. Like Nm, viruses can utilize/recruit

host ADAR to edit viral RNA, effectively disguising it as “self” to

evade detection by RNA-sensing (149). Notable examples include

HIV, hepatitis C virus (HCV), Ebola virus, and measles virus
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(MeV), which util ize ADAR1 to edit their genomes/

transcriptomes, thereby evading detection by RLR and other

PRRs, and inhibiting IFN induction by suppressing IRF3

activation, thus blocking the immune response (150–154).

Furthermore, some viruses have shown the ability to induce high

expression of ADAR1 to raise the threshold for immune response

(155). In addition, Dengue viruses were shown to modulate ADAR

abundance by regulating the expression of microRNAs targeting

ADAR1 (156). Different subtypes of ADAR1 (p150 and p110) may

possess distinct modification sites and functions within the same

virus. For instance, during influenza A virus infection, p150 hinders

RLR signaling and assumes a pro-viral role; conversely, p110

appears to exert an antiviral effect by editing viral RNA to impact

replication efficiency (157–160). On the other hand, ADAR2 has

also been shown to promote the immune escape of the Borna

disease virus by editing its genome (161). Interestingly, the linear

correlation between PKR and IFN-b protein levels, as well as the

antagonistic effect of PKR on ADAR’s immune inhibitory function

in various viruses, suggests a balanced interaction between PKR and

ADAR1 in antiviral immunity (154, 162). Escape mechanisms

utilizing non-structural proteins and the transactivation response

element were identified in viral infections by regulating PKR,

interacting with the PKR activating compound of translation, and

manipulating ADAR1 to inactivate PKR, which inhibited the

suppression of viral replication and the subsequent formation of
FIGURE 4

Functional roles of ADAR and A-to-I editing in the regulation of antiviral innate immunity.
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antiviral stress granules (163–167). Intriguingly, this “ loophole “ in

ADAR that viruses can exploit appears to be an evolutionary

invention for preventing aberrant antiviral responses (160, 168,

169). This is also evidenced by its complex regulatory network and

low concentration level in the cytoplasm (170).

ADAR can achieve its proviral effects through other

mechanisms as well. Viruses can exploit ADAR and influence

viral RNA’s replication, transcription, and protein production

efficiency through editing (171). A typical example is HIV, which

hijacks ADAR1 and ADAR2 to achieve A-to-I editing, resulting in

faster translation efficiency and significantly enhanced release of

progeny viruses (152, 172). A study has demonstrated that ADAR1

is essential for efficiently replicating HIV-1 in T cells (173). It is

worth noting that the stimulatory effect of ADAR1 on HIV-1 is

achieved through both editing-dependent and editing-independent

mechanisms (153). Moreover, ADAR1 can modify viral protein

products, thereby impacting viral proliferation and infectivity. For

instance, by modifying the RNA template of the hepatitis delta

virus, it can induce the production of proteins that foster viral

particle packaging (174, 175). ADAR can also provide a replication

environment for viruses by disrupting endogenous RNA

interference (176). In addition, ADAR1 has been shown to

interact with the DICER protein and inhibit its cleavage of edited

dsRNA (177). Viruses may recruit ADAR to suppress DICER,

thereby escaping viral gene silencing (128). Recent studies have

also found that ADAR editing accelerates the evolution of SARS-

CoV-2 in humans and may be related to the infectivity of its spike

protein (175, 178).

As an immune regulator, ADAR has been shown to have antiviral

activity. Cells lacking ADAR exhibit increased susceptibility to

various viruses, while overexpression of ADAR1 can inhibit viral

replication (179). During different stages of viral infection, ADAR

exhibits different proviral and antiviral effects that depend on the

inflammatory response (180). Similar to its proviral regulatory,

ADAR can also exert antiviral effects through site-specific editing.

For instance, by editing HCV’s replicon, ADAR significantly curtails

its replication; by editing MeV’s non-encapsidated defective

interfering RNA, it diminishes infectivity; by editing long terminal

repeat retrotransposons, it restricts their activity (181–183). ADAR

can also reduce the expression of the encephalomyocarditis virus-

encoded circRNA for antagonizing PKR activation by editing it to

promote immune activation (184, 185). Additionally, ADAR1 can

upregulate antiviral microRNA expression in response to infection

(141). An interesting case is that since PKR activity favors HCV

replication, the inhibitory effect of ADAR on PKR indirectly

suppresses HCV (186). Furthermore, many studies have shown

that, in the long run, the evolutionary effects of ADAR-induced

editing pressure on viral genomes are likely detrimental (168, 187,

188). ADAR editing of the SARS-CoV-2 genome may reduce

transmissibility (189). Thus, ADAR may be an “evolutionary

weapon”. ADAR has also demonstrated an association with

antiviral immune responses in many other cases, but whether

ADAR directly involves these modulations remains unclear (186).

ADAR has been widely used in RNA editing therapy for diseases

like cancer and metabolic disorders, as it exerts regulatory influence

devoid of genome disruption (190). However, within the domain of
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investigating ADAR’s editing of viral genomes to inspire the

development of potent vaccines, studies of related drugs are still

sparse (191, 192). Numerous enigmas remain shrouded in ambiguity.

Firstly, the mechanisms and biological effects of ADAR’s editing of

viral genomes in the immune response are still inconclusive, and

these effects may vary among different viruses. Viruses can also

induce editing of host RNA during infection, such as the reduction of

A-to-I editing of endogenous Alu RNA caused by SARS-CoV-2

(193). Further research is needed on the role of ADAR in virus-

host interactions. Secondly, understanding how ADAR rapidly

responds to viral infections, how host cells dynamically regulate the

concentration of ADAR, and how this “double-edged sword” affects

the diverse impact on dsRNAs are crucial for drug design. Research

from a molecular evolution perspective may inspire. Molecular

evolution studies may furnish valuable insights in this regard.

Finally, ADAR has been shown to interact with other RNA

modification regulators such as m6A readers and affect non-viral

responsive RNAs like long interspersed element 1 (194, 195). Thus,

more research perspectives with ADAR at the center of the immune

regulatory network are essential for comprehending its

antiviral prowess.
2.4 Regulatory role of Y in antiviral
innate immunity

In addition to the earlier mentioned A-to-I editing, some other

RNA editing modifications also contribute to the innate immune

response. Y is the most abundant and widely distributed cellular

RNA modification known as the “fifth nucleotide” (196). Y is the

C5-glycoside isomer of uridine, and this conserved modification

appears irreversible. The most notable function ofY is maintaining

various RNAs’ structure and stability (197). This gives an

understanding of the responsiveness of Y to stress (198). tRNA

exhibits the most abundant Y sites, and these modifications are

crucial for translation (198). In mRNA, Y affects pre-mRNA

splicing and impact mRNA stability. One representative function

is that when Y modification occurs at the stop codon, it inhibits

translation termination of the mRNA (37). In addition, Y plays a

role in small nuclear RNAs (snRNAs), in maintaining their

structures and regulating RNA-protein interactions (199, 200).

Research on the regulators of Y modification is still ongoing, and

various writers (members in pseudouridine synthase) have been

identified, but there have been no reports of erasers and readers.

Recently, the quantitative sequencing technologies have been

developed for mapping Y transcriptome-wide, which have

advanced the study of this abundant modification’s role in

biological processes and diseases context (201, 202).

Y has been detected in the genomes of many viruses, such as

SARS-CoV-2 and influenza viruses (203, 204). Dated back to 2010,

it was reported that Y on RNA can inhibit the activation of PKR

and avoid degradation (Figure 5) (205). In viruses, Y modifications

can help viral RNA escape detection by host PRRs. Studies have

revealed that although RIG-I can discern RNA with Y, it cannot

induce conformational changes that initiate downstream signaling
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(206). Moreover, Y has been demonstrated to obstruct the

activation of TLRs, particularly TLR7 and TLR8 (21).

Additionally, Y has also been reported to diminish the activity of

OAS, thereby enabling modified RNA to be translated for an

extended duration (207). Although many cases suggest the

regulatory role of Y in antiviral RNA sensing, the specific

mechanisms of immune evasion are still unclear. Considering the

enhancing effect of Y on mRNA translation efficiency, Y on viral

RNA also seems to promote viral gene expression; however,

validation in vivo is lacking. Besides maintaining immune

homeostasis, host RNA Y modification also plays a responsive

role in antiviral immunity. A typical example is HIV-1 infection.

The initiation of HIV reverse transcription is highly dependent on

Ymodifications on host tRNA, which stabilize the complex formed

between tRNA and viral RNA (208). Furthermore, Y on 7SK

snRNA regulates its stability and structure, influencing the

formation of super elongation complexes during infection and

indirectly inhibiting HIV-1 transcription. The loss of this

modification promotes HIV-1 escape from latency and facilitates

reverse transcription (209). In addition to affecting the development

of immune cells, host Y has been shown to influence the activation

of DCs and CD8+ T cells (21). Interestingly, many studies have

observed an elevation in the abundance of host Y following viral

infection, suggesting a combination of effects of host antiviral

response and viral actions (204, 210). This may regulate antiviral

gene expression by regulating RNA splicing and mRNA stability
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(204). A recent study also found that this stoichiometric regulation

of Y was induced by the IFN pathway (211). Regardless, Y plays a

role in host-virus interactions in the antiviral response, and the

mechanisms need further investigation. In antiviral therapy, the

most representative application of Y is to reduce immune response

and improve translation efficiency in mRNA vaccine (7). This

technology has been applied to commercialized vaccines (e.g.

SARS-COV-2 vaccine) (212, 213).
2.5 Regulatory role of m7G, m1A, and
m6Am in antiviral innate immunity

Other forms of non-m6A RNA methylation also exert influence

on the innate immune response. m7G, prevalent N7-methylated

guanosine found in eukaryotic RNA, holds significant importance.

Analogous to Nm, m7G serves as an integral component of the cap

structure within eukaryotic RNA polymerase II (pol II) transcripts

and is distributed internally across mRNA, tRNA, and rRNA (214).

Cap m7C is a classic eukaryotic RNA structure that stabilizes

transcripts and prevents degradation. Additionally, this structure

regulates bioprocesses such as mRNA splicing, nuclear export,

transcription elongation, and translation (215–218). Despite its

late recognition as a crucial modification, numerous studies have

demonstrated its regulatory role in mRNA translation efficiency,

and related regulators have been continuously discovered, with
FIGURE 5

Functional roles of pseudouridine (Y) in the regulation of antiviral innate immunity.
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quantitative sequencing techniques being developed (219–221).

Similar to cap Nm, viruses can acquire cap m7G through various

mechanisms. Common mechanisms include utilizing host Pol II to

synthesize RNA with cap m7G, stealing cap from short host mRNA,

and encoding their own capping methyltransferase (87). Cap m7G

plays a crucial role in maintaining the stability of viral RNA, and

notably, it helps viral RNA escape the action of 5’exonucleases and

avoid degradation (215). In addition, cap m7G also promotes the

translation and expression of viral RNA (222). These regulatory

mechanisms for viral RNA cap m7G are highly analogous to those

in the host mRNAs. Interestingly, the previously mentioned cap-

snatching mechanism not only prevents the expression of host RNA

but can also lead to gene fusion with the host, resulting in the

production of immunomodulatory chimeric proteins after viral

infection (223). Furthermore, a study reported hypermethylation

of HIV-1’s Cap m7G directly affects infectivity (224). Compared to

Cap Nm, the virus’s Cap m7G does not seem to promote its escape

from RNA sensing recognition by RLR and other PRRs (61). As for

internal m7G, it has not been reported to be found in viral RNA, and

it is still unclear whether the landscape of the host internal m7G is

responsive to viral infection. Antiviral drugs that interfere with viral

RNA capping have been extensively developed based on the capping

mechanisms of different viruses (225).

m1A, methylation of the N1 position of adenosine, is an abundant

and conserved modification in eukaryotic non-coding RNAs. In recent

years, we have witnessed the development of multiple single-base

resolution sequencing technologies, which have sought to address the

challenge of mapping m1A modifications transcriptome-wide (226–

228). The m1A modification introduces steric hindrance, which affects

base pairing and the spatial conformation of RNA. It also influences the

interactions between RNA and proteins, other RNAs, or small

molecules (37). These diverse functions are closely related to the

location of m1A. In addition to being highly abundant in tRNA

(affecting stability, translation efficiency, and accuracy) and rRNA

(maintaining ribosome function), m1A has also been found to be

distributed in mRNA (229). The functions of m1A on host mRNA are

still poorly understood, although its site-specific involvement in

translation regulation has been identified (228, 230). Interestingly,

m1A is closely related to m6A. In addition to their convertibility to

m6A, they share a variety of regulators like fat mass and obesity-

associated (FTO) protein as an eraser (231, 232). In viral RNA, m1A

has been identified and enriched in specific regions (203). However, its

involvement in innate immunity is not yet clear. Viral infection has

been shown to impact the expression levels of m1A writers and erasers

on host mRNA, and some of them may have proviral effects (203).

Intriguingly, upregulated m1A on host RNA inhibits the activity of the

replication complex of SARS-COV-2 and thus achieves an antiviral

effect, an effect that does not appear to be related to the steric hindrance

caused by m1A (233). As for the impact on immune cells, research on

m1A has mainly focused on cancer, such as its influence on immune

cell infiltration (111). Nevertheless, this modification demonstrates

research value in antiviral innate immunity. Further studies need to

be conducted, especially on the mechanisms of regulators, the

responsiveness of these modifications to viral infection, and the

interactions with m6A during the antiviral response.
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m6Am is another well-known mRNA modification, typically

occurring at the first nucleotide after the cap structure in the 5’ UTR

of eukaryotic mRNA, known as the Cap Nm position. When this

nucleotide is adenosine, the phosphorylated CTD-interacting factor 1

(PCIF1) converts Am to m6Am (37). Similar to m6A and m1A, FTO

mediates the demethylation of m6Am (234). The detailed role ofm6Am

in regulating mRNA metabolism is still under investigation. Existing

studies have demonstrated its impact on mRNA stability and

translation, but the conclusions from these studies are contradictory

(235–237). m6Am plays a regulatory role in antiviral immune

processes. Like Nm, m6Am installed by host PCIF1 on viral RNA

can mediate immune evasion. The presence of m6Am on viral RNA

prevents its detection by ISGs and weakens the antiviral effects of the

IFN-b pathway (238). Unlike RIG-I or IFIT1 sensing, this effect does

not depend on RIG-I or IFIT1 sensing. Additionally, viral m6Am can

prevent viral RNA degradation by nucleases (234). Host m6Am also

undergoes dynamic changes in antiviral responses, exhibiting both

antiviral and proviral effects. HIV infection induces ubiquitination and

degradation of host PCIF1, leading to a decrease in m6Am on cellular

mRNA and regulating the host transcription factor ETS proto-

oncogene 1 (ETS1) to promote viral replication (239). In this

process, PCIF1 exerts its antiviral function by affecting ETS1 stability

by installing m6Am. On the other hand, in SARS-CoV-2 infection,

PCIF1 maintains the stability of angiotensin-converting enzyme 2

(ACE2) and transmembrane serine protease 2 (TMPRSS2) mRNA

by installing m6Am, promoting their expression and facilitating viral

infection (240). In summary, m6Am, as a typical cap modification, has

gained attention since the development of single-base resolution

sequencing techniques (241). However, further research is needed to

explore its functional connections and differences with Nm, as well as

the role of PCIF1 in viral infection.
2.6 Regulatory role of ac4C and other RNA
modifications in antiviral innate immunity

In addition to the regulatory modifications described above, some

less-studied RNA modifications also function in antivirals. Although

there is limited research on ac4C, this newly discovered, unique

acetylation modification in eukaryotes has a vital role in bioprocesses

and immune response. Initially discovered and demonstrated to

regulate ribosome maturation and protein translation ability in

tRNA and rRNA, ac4C was later found to be distributed in mRNA

and enriched in the coding sequence (CDS) region using antibody-

based sequencing methods (242). On mRNA, ac4C in the CDS region

can maintain stability and promote translation, while the 5’ UTR has

been found to potentially inhibit translation initiation by affecting the

interaction between mRNA and tRNA/ribosomes (243, 244). ac4C

has been found to be associated with diseases such as cancer,

neurodegenerative disorders, and inflammation (242). In viral

infections, the presence of ac4C on various viral RNAs plays a

regulatory role. HIV-1 can utilize the host ac4C writer N-

acetyltransferase 10 (NAT10) to add ac4C to viral RNA, increasing

its stability and promoting replication (245). Inhibiting NAT10 can

suppress the spread of HIV-1 without affecting cell viability.
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Interestingly, another investigation reported that NAT10 actually

fosters HIV-1 latency while impeding Tat-mediated transcriptional

processes (246). Further research is needed. NAT10 has also been

found to recruit and add ac4C on viral RNA in Enterovirus,

specifically recruiting host proteins to enhance viral RNA stability

and translation (247). Additionally, changes in the abundance of ac4C

in the 5’ UTR region of specific genes in the host have been observed

after infection with the influenza A virus, which may be related to the

virus-induced expression of NAT10 and its pro-viral effects (203,

248). Nevertheless, the specific functions of this modification

distributed in the genomes of diverse viruses and the role of

NAT10 in antiviral innate immunity await further investigation.

There are also several other low-abundance modifications

detected on viral RNA, such as 5,2’-O-dimethylcytosine (m5Cm)

(60). However, the functions of these modifications are still

unknown. In addition, a number of other types of RNA editing

also play a role in the regulation of antiviral innate immunity,

although it is inconclusive whether these edits are categorized as

RNA modifications. An example is the addition of uridine to the 3’

RNA terminus catalyzed by terminal uridyltransferases (TUTases),

also known as uridylation and poly(U) tails. This editing occurs on

almost all classes of RNAs and regulates processes such as mRNA

decay, histone expression, and miRNA metabolism and targeting

(249). Uridylation has been shown to have regulatory functions in

innate immunity. TUTases can directly edit the genomes of various

viruses, forming a “poly(U) tag” effect to promote immune response

by mediating RNA exosome degradation, facilitating viral RNA

decay, and targeting viral proteins for antiviral purposes (250, 251).

Loss of TUTases leads to an increase in viral mRNA and protein

levels. Furthermore, TUTases can be activated by TLR and regulate

mRNA stability to promote the production of various cytokines,

participating in immune responses (252). Another type of RNA

editing involved in antiviral innate immunity is C-to-U

deamidation editing mediated by the apolipoprotein B mRNA

editing catalytic polypeptide-like (APOBEC) protein family.

APOBEC proteins can significantly inhibit the replication of

various retroviruses, endogenous viruses, and DNA viruses,

including HIV-1, human T-cell leukemia virus type 1, hepatitis B

virus, etc. (253). This viral restriction effect is mediated by multiple

mechanisms, including inhibition of viral infection factor

expression, disruption of viral particle assembly, excision of viral

RNA bases, and direct editing of the genome of DNA viruses (253,

254). Moreover, APOBEC-mediated editing is essential for immune

cell differentiation, development, and function (255–257). Many

reviews have summarized the regulatory effects of APOBEC-

mediated editing, so we will not review them in this work.
3 Conclusion and perspective

In this Review, we summarized the regulatory roles of eight

typical non-m6A RNA modifications in antiviral innate immunity

within the current scope of knowledge, including 2’-O-methylation

(Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I

editing), pseudouridine (Y), N1-methyladenosine (m1A), N7-

methylguanosine (m7G), N6,2’-O-dimethyladenosine (m6Am), and
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N4-acetylcytidine (ac4C). It is evident that compared to the

extensively studied m6A modification, there is still a significant gap

regarding the immune regulatory functions of non-m6A RNA

modifications. The lack of clarity regarding the regulators of non-

m6A RNA modifications has caused gaps in understanding the

mechanisms underlying innate immune responses, particularly the

utilization and induction patterns of viruses. In addition, low

abundance, complexity of distribution, and diversity of responsive

effects are all challenges for the study of non-m6A RNAmodifications

in antiviral immunity.

Considering the recently emerging base-resolution sequencing

methods, the quantitative analysis of non-m6A RNA modifications,

such as Y, Nm, m7G, m5C, m1A, and ac4C, has been enabled to

resolve the challenges in studying the location and stoichiometry of

these modifications on viral and host RNA, as well as the regulatory

modes of RNA modification landscapes during host-virus

interactions. These recent advances in base-resolution sequencing

technology offer the super-resolution profiles of non-m6A RNA

modifications transcriptome-wide; meanwhile, the breakthroughs in

quantitative mapping tools could aid the comprehensive investigation

of non-m6A RNA modifications in antiviral innate immunity

through monitoring the dynamics of these RNA modifications.

Besides, some non-m6A RNA modifications have been

demonstrated to facilitate the immune escape and replication of

certain viruses; however, these non-m6A RNA modifications are

also essential for the host to enhance the antiviral immune response.

Thus, the manipulation of RNA modifications at specific sites

within host RNA or viral RNA may have an impact on the

development of antiviral drugs with therapeutic potential. Overall,

the functional and mechanistic study of RNA modifications in

antiviral innate immunity has led to entirely new perspectives,

yielding in-depth insights into translational medicine and

potentially benefiting related research in biological sciences,

biomedical engineering, clinics, and the pharmaceutical industry.
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21. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by
toll-like receptors: the impact of nucleoside modification and the evolutionary origin of
RNA. Immunity (2005) 23:165–75. doi: 10.1016/j.immuni.2005.06.008

22. Yu P-L, Cao S-J, Wu R, Zhao Q, Yan Q-G. Regulatory effect of m(6)A
modification on different viruses. J Med Virol (2021) 93:6100–15. doi: 10.1002/
jmv.27246

23. Rajendren S, Karijolich J. The impact of RNA modifications on the biology of
DNA virus infection. Eur J Cell Biol (2022) 101:151239. doi: 10.1016/j.ejcb.2022.151239

24. Li N, Rana TM. Regulation of antiviral innate immunity by chemical
modification of viral RNA. Wiley Interdiscip Rev RNA (2022) 13:e1720. doi: 10.1002/
wrna.1720
25. Sacco MT, Horner SM. Flipping the script: viral capitalization of RNA
modifications. Brief Funct Genomics (2021) 20:86–93. doi: 10.1093/bfgp/elaa025

26. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C-M, Li CJ, et al. ALKBH5 is a
mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol
Cell (2013) 49:18–29. doi: 10.1016/j.molcel.2012.10.015

27. Hu L, Liu S, Peng Y, Ge R, Su R, Senevirathne C, et al. m6A RNA modifications
are measured at single-base resolution across the mammalian transcriptome. Nat
Biotechnol (2022) 40:1210–9. doi: 10.1038/s41587-022-01243-z

28. Liu C, Sun H, Yi Y, Shen W, Li K, Xiao Y, et al. Absolute quantification of single-
base m6A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol
(2023) 41:355–66. doi: 10.1038/s41587-022-01487-9

29. Xiao Y-L, Liu S, Ge R, Wu Y, He C, Chen M, et al. Transcriptome-wide profiling
and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination.
Nat Biotechnol (2023) 41:993–1003. doi: 10.1038/s41587-022-01587-6

30. Wei J, Yu X, Yang L, Liu X, Gao B, Huang B, et al. FTO mediates LINE1 m6A
demethylation and chromatin regulation in mESCs and mouse development. Science
(2022) 376:968–73. doi: 10.1126/science.abe9582

31. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-Methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol (2011)
7:885–7. doi: 10.1038/nchembio.687

32. He PC, Wei J, Dou X, Harada BT, Zhang Z, Ge R, et al. Exon architecture
controls mRNA m6A suppression and gene expression. Science (2023) 379(6633):677–
82. doi: 10.1126/science.abj9090

33. Tong J, Wang X, Liu Y, Ren X, Wang A, Chen Z, et al. Pooled CRISPR screening
identifies m6A as a positive regulator of macrophage activation. Sci Adv (2021) 7:
eabd4742. doi: 10.1126/sciadv.abd4742

34. Lou X, Wang J-J, Wei Y-Q, Sun J-J. Emerging role of RNA modification N6-
methyladenosine in immune evasion. Cell Death Dis (2021) 12:1–10. doi: 10.1038/
s41419-021-03585-z

35. Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, et al. m6A
modification controls the innate immune response to infection by targeting type I
interferons. Nat Immunol (2019) 20:173–82. doi: 10.1038/s41590-018-0275-z

36. McFadden MJ, Horner SM. N6-methyladenosine regulates host responses to
viral infection. Trends Biochem Sci (2021) 46:366–77. doi: 10.1016/j.tibs.2020.11.008

37. Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m6A mRNA
modifications. Nat Rev Mol Cell Biol (2023) 24:714–31. doi: 10.1038/s41580-023-
00622-x

38. Zhang Y, Lu L, Li X. Detection technologies for RNA modifications. Exp Mol
Med (2022) 54:1601–16. doi: 10.1038/s12276-022-00821-0

39. Xu L, Seki M. Recent advances in the detection of base modifications using
the Nanopore sequencer. J Hum Genet (2020) 65:25–33. doi: 10.1038/s10038-019-
0679-0

40. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer
(2020) 20:303–22. doi: 10.1038/s41568-020-0253-2

41. Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose
methylation (2′-O-methylation): Occurrence, biosynthesis and biological functions.
Biochim Biophys Acta (BBA) - Gene Regul Mech (2019) 1862:253–69. doi: 10.1016/
j.bbagrm.2018.11.009

42. Chen L, Zhang L-S, Ye C, Zhou H, Liu B, Gao B, et al. Nm-Mut-seq: a base-
resolution quantitative method for mapping transcriptome-wide 2′-O-methylation.
Cell Res (2023) 33:727–30. doi: 10.1038/s41422-023-00836-w

43. Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al.
Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat
Methods (2017) 14:695–8. doi: 10.1038/nmeth.4294

44. Decle-Carrasco S, Rodriguez-Pina A, Rodriguez-Zapata L, Castano E. Current
research on viral proteins that interact with fibrillarin.Mol Biol Rep (2023) 50:4631–43.
doi: 10.1007/s11033-023-08343-2

45. Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. FTSJ3 is an RNA
2 ’-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature
(2019) 565:500–+. doi: 10.1038/s41586-018-0841-4

46. Monaco PL, Marcel V, Diaz J-J, Catez F. 2′-O-methylation of ribosomal RNA:
towards an epitranscriptomic control of translation? Biomolecules (2018) 8:106.
doi: 10.3390/biom8040106
frontiersin.org

https://doi.org/10.1016/j.actbio.2021.02.023
https://doi.org/10.1186/s41232-023-00259-5
https://doi.org/10.1002/1878-0261.12774
https://doi.org/10.3390/biomedicines9111631
https://doi.org/10.3390/biomedicines9111631
https://doi.org/10.1007/s11684-020-0776-7
https://doi.org/10.1038/s41559-022-01951-4
https://doi.org/10.1038/s41559-022-01951-4
https://doi.org/10.3389/fcell.2022.901510
https://doi.org/10.1038/s41577-019-0151-6
https://doi.org/10.3748/wjg.v28.i9.881
https://doi.org/10.3748/wjg.v28.i9.881
https://doi.org/10.3390/pathogens9090729
https://doi.org/10.3390/v12070755
https://doi.org/10.1007/s00430-014-0370-1
https://doi.org/10.1038/s41577-020-0288-3
https://doi.org/10.4161/viru.23134
https://doi.org/10.1038/s41590-022-01410-z
https://doi.org/10.3389/fimmu.2021.796012
https://doi.org/10.1101/gad.349276.121
https://doi.org/10.1111/imr.13019
https://doi.org/10.1111/imr.13019
https://doi.org/10.1016/j.semcdb.2020.06.015
https://doi.org/10.1038/s41392-022-01175-9
https://doi.org/10.1016/j.immuni.2005.06.008
https://doi.org/10.1002/jmv.27246
https://doi.org/10.1002/jmv.27246
https://doi.org/10.1016/j.ejcb.2022.151239
https://doi.org/10.1002/wrna.1720
https://doi.org/10.1002/wrna.1720
https://doi.org/10.1093/bfgp/elaa025
https://doi.org/10.1016/j.molcel.2012.10.015
https://doi.org/10.1038/s41587-022-01243-z
https://doi.org/10.1038/s41587-022-01487-9
https://doi.org/10.1038/s41587-022-01587-6
https://doi.org/10.1126/science.abe9582
https://doi.org/10.1038/nchembio.687
https://doi.org/10.1126/science.abj9090
https://doi.org/10.1126/sciadv.abd4742
https://doi.org/10.1038/s41419-021-03585-z
https://doi.org/10.1038/s41419-021-03585-z
https://doi.org/10.1038/s41590-018-0275-z
https://doi.org/10.1016/j.tibs.2020.11.008
https://doi.org/10.1038/s41580-023-00622-x
https://doi.org/10.1038/s41580-023-00622-x
https://doi.org/10.1038/s12276-022-00821-0
https://doi.org/10.1038/s10038-019-0679-0
https://doi.org/10.1038/s10038-019-0679-0
https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.1016/j.bbagrm.2018.11.009
https://doi.org/10.1016/j.bbagrm.2018.11.009
https://doi.org/10.1038/s41422-023-00836-w
https://doi.org/10.1038/nmeth.4294
https://doi.org/10.1007/s11033-023-08343-2
https://doi.org/10.1038/s41586-018-0841-4
https://doi.org/10.3390/biom8040106
https://doi.org/10.3389/fimmu.2023.1286820
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen and Zhang 10.3389/fimmu.2023.1286820
47. Elliott BA, Ho H-T, Ranganathan SV, Vangaveti S, Ilkayeva O, Abou Assi H,
et al. Modification of messenger RNA by 2′-O-methylation regulates gene expression in
vivo. Nat Commun (2019) 10:3401. doi: 10.1038/s41467-019-11375-7
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