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Nearly 50 ATP-binding cassette (ABC) transporters are encoded by mammalian

genomes. These transporters are characterized by conserved nucleotide-

binding and hydrolysis (i.e., ATPase) domains, and power directional transport

of diverse substrate classes – ions, small molecule metabolites, xenobiotics,

hydrophobic drugs, and even polypeptides – into or out of cells or subcellular

organelles. Although immunological functions of ABC transporters are only

beginning to be unraveled, emerging literature suggests these proteins have

under-appreciated roles in the development and function of T lymphocytes,

including many of the key effector, memory and regulatory subsets that arise

during responses to infection, inflammation or cancers. One transporter in

particular, MDR1 (Multidrug resistance-1; encoded by the ABCB1 locus in

humans), has taken center stage as a novel player in immune regulation.

Although MDR1 remains widely viewed as a simple drug efflux pump in tumor

cells, recent evidence suggests that this transporter fills key endogenous roles in

enforcing metabolic fitness of activated CD4 and CD8 T cells. Here, we

summarize current understanding of the physiological functions of ABC

transporters in immune regulation, with a focus on the anti-oxidant functions

of MDR1 that may shape both the magnitude and repertoires of antigen-specific

effector and memory T cell compartments. While much remains to be learned

about the functions of ABC transporters in immunobiology, it is already clear that

they represent fertile new ground, both for the definition of novel

immunometabolic pathways, and for the discovery of new drug targets that

could be leveraged to optimize immune responses to vaccines and

cancer immunotherapies.
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1 Introduction

The field of immunometabolism has exploded over the past two

decades. Among many notable discoveries, it is now understood

that the activation and differentiation of immune cells – including T

cells – involves rapid and profound metabolic reprogramming. On

one hand, antigen- and TCR-mediated increases in aerobic

glycolysis and mitochondrial respiration allows primed T cells to

meet the bioenergetic and biosynthetic demands of cell growth and

proliferation. On the other, differences in the magnitude and type of

metabolic activities an antigen-primed T cell undertakes can play

instructive roles in the commitment of emergent effector, memory

and/or regulatory T cell subsets (1–5). CD8 effector T cells and CD4

Th17 and Th1 cells, for example, rely mainly on glycolysis to

support rapid proliferation and potent effector functions, whereas

CD8 memory cells and CD4 T regulatory (Treg) cells utilize

mitochondrial respiration and fatty acid oxidation (FAO) to

establish long-term persistence in nutrient-sparse tissues and

execute immunosuppressive functions, respectively (3). It is thus

not surprising that genetic or environmental perturbations to

metabolic pathways have profound influence over the type and

quality of T cell responses; further elucidation of the underlying

mechanisms holds promises of revealing new preventative or

treatment strategies for human infectious or malignant diseases.

Flux through growth-supporting metabolic pathways requires

active transport of numerous organic and inorganic molecules

across biological membranes. Adenosine triphosphate (ATP)-

binding cassette (ABC) transporters constitute one of the largest

super-families of transmembrane proteins encoded by the human

genome. These transporters utilize ATP hydrolysis to power

directional translocation of diverse substrates, against chemical

gradients, and across lipid membranes, including the plasma

membrane and membranes of intracellular organelles (6). ABC

transporters are evolutionarily conserved and present throughout

all kingdoms of life, from prokaryotes to humans (7), with major

functions centering on either the direct promotion of cellular (e.g.,

lipid, heme) metabolism, or facilitating cellular detoxification via

transport of potentially toxic metabolic byproducts or xenobiotic

compounds (8–11). Indeed, loss of function polymorphisms in

human ABC transporter loci are now linked to many human

diseases, including anemia, obesity, atherosclerosis (AS),

congenital cholestasis, peroxisome disorders, cystic fibrosis (CF)

and Tangier disease (TD) (8, 9, 12).

More recent studies have begun to highlight direct, important

and endogenous functions of ABC transporters in adaptive immune

regulation generally, and development and function of T cells

specifically (13–25). Here, we discuss the current state of

understanding of the ABC transporters in regulating T cell

differentiation and function, while also providing forward-looking

perspectives as to how transport-dependent cellular metabolic

pathways may intersect with antigen receptor signaling to shape

T cell lineage commitment, and even the clonality of emergent

effector and memory T cell pools.
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2 Classification and structure
of ABC transporters

48 human genes encode ABC transport proteins, most of which

have direct orthologs in mice and lower vertebrates. In the early

2000’s, ABC transporters were renamed and reclassified into seven

sub-families (ABCA to ABCG), based on phylogenetic analysis and

sequence/structural similarity (7, 26–28). Members of the ABCE

and ABCF sub-families are notable in that they do not appear to

function as transporters per se, but rather participate in

translational regulation and mRNA surveillance (29–32).

X-ray crystallographic studies of several ABC transporters have

provided atomic-level resolution of the canonical structure of ABC

transporters, and specifically the organization of four main

functional domains — two nucleotide binding domains (NBD1,

NBD2) and two transmembrane domains (TMD1, TMD2). Most

eukaryotic ABC transporters are expressed as either a single

polypeptide containing all four functional domains, or as half-

transporters capable of homo- or hetero-dimerization (33). The

NBD contain several conserved functional motifs, whereas the

TMDs are more variable and contain 6-11 membrane-spanning

a-helices which form the transmembrane pore and mediate

substrate binding (33). Diversity amongst TMDs allow the

various ABC transporters to bind, and subsequently transport,

diverse substrate classes (e.g., heme, lipids, xenobiotics, etc.), and

also underlies the phylogenetic relationships between sub-family

members. In all cases, ABC transport activity involves ATP-

dependent NBD dimerization, which induces conformational

changes in the TMDs that exposes the inner region of the pore to

the outside and allows for unidirectional transport against chemical

gradients (34).
3 ABC transporters in T cells

The first described and arguably most famous ABC transporters

within the immune system are the transporters associated with

antigen processing (TAP1/2), which transport cytosolic peptides

into the endoplasmic reticulum (ER) for loading onto MHC

Class I molecules (35). Another immunologically notable ABC

transporter is ABCC7 [a.k.a., cystic fibrosis transmembrane

conductance regulator (CFTR)], which functions as an apical

chloride channel on lung epithelium, and whose loss-of-function

leads to chronic bacterial infections of the lung (36). However,

numerous ABC transporters are now recognized for filling essential

functions within the adaptive immune system generally, and

immunometabolism specifically. The obligate mitochondrial

transporters ABCB7 and ABCB10, for example, are considered

heme transporters based on their roles in erythropoiesis, and are

necessary for the development of B cells and CD4 memory T cells,

respectively (23, 24). In addition, lipid and multi-drug transporters

have recently emerged as key regulators of T cell metabolism and

function (Table 1).
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3.1 Lipid transporters

As many as 20 human ABC transporters are thought to

transport discrete lipids or lipid metabolites. Among these,

ABCA1 and ABCG1 are perhaps the best characterized for the

roles they play in cholesterol transport and homeostasis, and for

regulating TCR signaling intensity (13, 17, 25, 37). These

transporters maintain structural organization and integrity of

lipid bilayers, at least in part by regulating the number and

density of cholesterol-rich lipid rafts (13, 17, 25). Given the key

and ubiquitous roles of lipid rafts in signal transduction generally,

and in immune cell signaling specifically, it is not surprising that

these cholesterol and lipid transporters exert powerful influences

over the development and function of T cells (39).

Abcg1-/- mice display larger thymuses than wild-type controls

due to thymocyte hyperproliferation and an increase in total thymic

cellularity (13). ABCG1 also affects thymic and peripheral

development of Foxp3+ Treg cells (17). An increase in thymic

(i.e., ‘natural’) Treg cells is observed when Abcg1 is conditionally

ablated in T cells using Lck-Cre (17). In the periphery, preferential

differentiation of naïve CD4 T cells into Tregs is evoked in the

absence of ABCG1 by an increase in cellular cholesterol levels,

which inhibits mammalian target of rapamycin (mTOR), triggers

the phosphorylation and activation of signal transducer and

activator of transcription (STAT)-5, and promotes the induction

and stability of Foxp3 expression (Figure 1) (17).

ABCA1 and ABCG1 are necessary for the maintenance of

peripheral T cell homeostasis (13, 17, 25, 37). Expression of Abca1

and Abcg1 decreases following naïve T cell activation, which in turn

promotes increased membrane cholesterol content to support cell

growth and proliferation (38, 40). Intriguingly, ABCA1 and ABCG1

appear to work synergistically in T cells, as ablation of both Abca1

and Abcg1 in a T-cell specific manner enhances TCR signaling in
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CD4 and CD8 T cells (25, 37). This enhancement of TCR signaling

has been attributed to an increase in lipid raft formation (13). On the

other hand, upregulation of Abcg1 expression in T cells by the nuclear

receptor, liver X receptor (LXR), reduces T cell proliferation (38). The

need for tightly regulated lipid transport to support TCR signaling is

not limited to conventional T cells; ABCG1, as well as another lipid

transporter, ABCA7, are both essential for thymic maturation of

invariant natural killer T (iNKT) cells (14, 20). Hence, regulation of

cholesterol efflux by ABCA1, ABCG1 and ABCA7 each appear to

participate in the regulation of signal transduction, and in

establishing a full complement of peripheral lymphocytes.
3.2 Multi-drug transporters

Another class of ABC transporters recently implicated in

immune regulation are the so-called multi-drug transporters. This

historical classification derives from a combination of functional

studies in eukaryotic cells and examination of homologs in bacterial

model systems, which together show that multi-drug transporters

are capable of effluxing a variety of structurally-unrelated cytostatic

drugs from tumor cells (18). However, considering the repeated and

high-profile failures of drugs designed to block multi-drug

transporters in clinical cancer studies (41), and the emerging

endogenous functions of at least some of these transporters, this

semantic classification may require updating. Indeed, ‘multi-drug’

transporters – including multidrug resistance protein 1 (MDR1/

ABCB1), multidrug resistance protein 4 (MRP4/ABCC4) and breast

cancer resistance protein (BCRP1/ABCG2) – each display

considerable evolutionary conservation and thus may also be

considered ‘orphan’ transporters, as endogenous transport

substrates have not yet been described. An important and

common theme among these multi-drug transporters is their
TABLE 1 ABC transporters and their associated function in T cells.

ABC
Transporter
(in humans)

Mouse
ortholog

Transport
Substrate

Function in T cells References

ABCA1 Abca1 Phospholipid and
cholesterol

Regulates TCR signaling by maintaining lipid raft composition
in peripheral lymphocytes.

Armstrong et al., (13); Zhao et al., (25);
Bazioti et al., (37)

ABCA7 Abca7 Phospholipid Disrupts lipid rafts and CD1d expression in iNKT cells. Nowyhed et al., (20)

ABCB1 Abcb1a Broad-spectrum
drug efflux pump

Suppresses oxidative stress and promotes survival of T cells
found in mucosal sites and CD8 T cells responding to infection.

Boddupalli et al., (16); Cao et al., (18); Xie
et al., (21); Chen et al., (22)

Abcb1b

ABCB10 Abcb10 Possible heme
transporter

Necessary to maintain stable CD4 memory pool and aid in
switching metabolic states during activation.

Sun et al., (24)

ABCC4 Abcc4 Endogenous
metabolites
and xenobiotics

Induced in response to hypoxic conditions in Th17 cells. Xie et al., (21)

ABCG1 Abcg1 Phospholipid and
cholesterol

Regulates TCR signaling by maintaining lipid raft composition
in thymic and peripheral lymphocytes.

Bensinger et al., (38); Armstrong et al.,
(13); Cheng et al., (17); Bazioti et al., (37)

ABCG2 Abcg2 Broad-spectrum
drug efflux pump

Characteristic features of Trm cells and is necessary for
maintenance of Trm niche in the gut.

Boddupalli et al., (16)

Abcg3
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incredibly broad substrate specificity; MDR1, for example, has been

proposed to efflux a variety of synthetic drugs, antiretroviral drugs,

glucocorticoids, lipids, fluorescent dyes and even peptide hormones

(in yeast) (42–45). Yet many of these same transporters display

endogenous antioxidant functions in several cell types and tissues

during normal physiology, including in T cells. Thus, it is worth

considering that the core evolutionary function of ‘multi-drug’

transporters centers on the regulation of oxidation-reduction

(redox) metabolism, which have become masked in recent

decades by their proclivity to efflux 20th century medicines.

MDR1 is the most extensively characterized multi-drug

transporter within the ABC family for its role as a regulator of

oxidative stress. MDR1 is endogenously expressed in a variety of

normal cell types and tissues, with highest levels seen in the liver,

intestines, brain, kidney and adrenal glands (46–48). In the

hematopoietic system, comprehensive profiling of a fluorescent

Abcb1a-ametrine reporter allele in mice showed that MDR1 is

expressed in a number of mature innate and adaptive

lymphocytes, but is notably absent in most hematopoietic stem

and progenitor cells, early thymocytes, and also mature granulocyte

and B lymphocyte lineages (22). In CD4 T cells, MDR1 expression is

absent in naïve cells, low in Foxp3+ Treg cells, but increased

markedly in pro-inflammatory effector subsets, namely IFNg-
secreting Th1 and IL-17-producing Th17 cells, in particular

following infiltration of small intestine lamina propria (15). In

contrast to this conditional expression in CD4 T cells, MDR1

expression is both constitutive and developmentally regulated in

cytotoxic lymphocyte lineages (e.g., NK cells, iNKT cells, CD8 T

cells) where the expression of MDR1 is at least partly controlled by

Runx family transcription factors (22). Expression of MDR1 (and

ABCG2) are also characteristic of tissue-resident memory (Trm)

CD8 T cells, as well as of human mucosal associated invariant T

(MAIT) cells (16, 19, 49). In line with constitutively high MDR1

expression, mouse CD8 T cells null for MDR1 transport activity

(Abcb1a/b-/-) are incapable of becoming productively activated, of

accumulating efficiently in response to acute viral or bacterial

infections, and of forming functional memory cells (22). By

contrast, naïve CD8 T cells do not require MDR1 function for

steady-state persistence (22), which suggests that MDR1 transport

activity in CD8 T cells is primarily called upon after TCR-

stimulation. Indeed, the inability of Abcb1a/b-/- CD8 T cells to

accumulate following TCR-stimulation is due to increased cell

death, not reduced proliferation, and coincides with a failure of

these cells to suppress oxidative stress and maintain functional

mitochondria (Figure 1) (22). Others have shown that Th17 cells

require both MDR1 and ABCC4 to suppress oxidative stress during

states of hypoxia (21). Further, high MDR1 expression in Th1 and

Th17 cells in the distal small intestine (i.e., ileum) counters

oxidative stress induced by naturally circulating bile acids, an

abundant class of liver-derived lipid-emulsifying metabolites that

are also potent oxidizing agents (18, 50). Even outside of the

immune system, MDR1 has been shown to suppress oxidative

stress and safeguard mitochondrial integrity in colonic epithelial

cells (51). Collectively, these findings support a broader and more

fundamental role for the MDR1 transporter in suppressing
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oxidative stress upon T cell exposure to intra- or extra-cellular

oxidizing agents (e.g., toxic metabolic byproducts, bile acids, etc.).

Such transport-dependent antioxidant functions of MDR1 raise

intriguing new concepts in the convergence of TCR signaling,

metabolic reprogramming, oxidative stress, and even clonal

selection in T cells.
4 Determinants of peripheral T cell
responses: TCR signaling and ROS

T cell proliferation, lineage commitment, and the execution of

effector or regulatory functions are all markedly influenced by the

strength and duration of TCR/peptide-MHC engagement (52–54).

Upon infection, the size of the antigen-specific CD8 T cell

compartment correlates directly with the duration of antigen

exposure (55). Strength and duration of TCR signaling also shapes

both CD4 and CD8 memory T cell compartments, as highlighted by

the preferential skewing of the memory pool towards clones with

higher-affinity TCRs (55–57). It is increasingly clear that TCR

signaling thresholds also regulate functional outcomes of individual

T cell clones (e.g., proliferative capacity, differentiation, etc.);

pathways that regulate successful integration of TCR, co-

stimulatory and cytokine signaling pathways thus determine the

magnitude, type and antigen-specificities of T cell responses.

Proximal TCR signaling induces rapid Ca2+ release into the

cytosol from reserves in the endoplasmic reticulum (ER), which

upon being emptied, activate extracellular Ca2+ influx across the

plasma membrane (58, 59). Besides serving as a potent signal to

activate early transcription factors, such as the NFATs, cytosolic Ca2

+ is also taken up in mass by mitochondria, which facilitates ATP

synthesis and promotes corresponding increases in levels of reactive

oxygen species (ROS) (60). This increase in intracellular ROS

occurs within minutes of TCR activation, with the majority of

ROS production in activated T cells owing to mitochondrial

superoxide (O2
•−) that “leak” from complexes I and III of the

mitochondrial electron transport chain (ETC) (61).

ROS function as key secondary messengers in T cells and are

required, at moderate levels, to promote proliferation,

differentiation and survival. The activation of extracellular signal-

regulated kinase (ERK) 1/2, for example, is highly ROS-dependent,

and promotes activation and translocation of several transcription

factors, including AP-1 family members, that are necessary for T

cell growth and proliferation (62, 63). ROS production has also been

implicated in promoting IL-2 production in activated T cells

through NF-kB activation (64). At the same time, inappropriately

elevated ROS levels are highly cytotoxic, and can stimulate

apoptosis by covalently modifying and damaging proteins, nucleic

acids, and lipids (65). Oxidative stress also promotes increased

expression of Fas ligand (FasL), which on binding to Fas initiates

the recruitment and activation of caspases causing activation

induced cell death (AICD) (Figure 1) (62, 66, 67).

Considering the dual nature of intracellular ROS – where ROS

is both required for T cell activation, but also toxic at increased

levels – activated T cells upregulate a host of anti-oxidant enzymes
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(superoxide dismutases (SODs), catalases, glutathione peroxidases

(GPXs), glutathione reductases, etc.) to convert ROS into less

reactive products, or to increase production of ROS scavenging

molecules, such as glutathione, ascorbate, pyruvate, a-
ketoglutarate, and oxaloacetate (65). Disruptions in these anti-

oxidant systems result in elevated ROS production and affect

metabolic reprogramming in developing T cells. Inhibition of

glutathione production, which is important for ROS buffering,

negatively affects TCR-induced Myc expression and NFAT

activation, which are essential for activated CD8 T cells to switch

to glycolytic metabolism (68). Similarly, loss of Gpx4 impairs CD8 T

cell responses to viral infections due to accumulation of lipid

peroxides, leading to death by ferroptosis (69). Thus, productive
Frontiers in Immunology 05
immune responses demand that T cells tightly regulate both the

production and scavenging of intracellular ROS. Discrete roles for

ABC transporters in T cell redox regulation and metabolism remain

unclear, but stand to provide exciting new molecular insights into

the formation and regulation of effector and memory T cells.
5 Conclusions and future perspectives

Considering that both the developmental trajectories and

functions of individual T cell clones involve unique TCR signaling

dynamics, and thus discrete redox demands, it becomes increasingly

important to decipher whether and how ABC transporters not only
FIGURE 1

ABC transporters in regulation of T cell development, TCR intensity and oxidative stress. Loss of ABCG1 transport activity results in increased thymic
cellularity and frequency of double negative (DN), double positive (DP) and CD4 single positive (SP) cells. Intensity of TCR signaling is modulated by
ABCA1- and ABCG1-mediated phospholipid transport; loss of these transporters is associated with increased numbers and densities of cholesterol-rich
lipid rafts. Parallel accumulation of intracellular cholesterol also promotes peripheral development of CD4+Foxp3+ induced (i)Treg cells. TCR signaling
strength and duration is proportional to the amount of intracellular ROS produced. Moderate ROS levels (i.e., during T cell responses to low- or
intermediate-affinity antigens) facilitate T cell proliferation, differentiation and survival through MEK-ERK1/2 and NF-kB activation. Conversely, elevated
ROS levels (i.e., produced during T cell responses to high-affinity ligands) impair NFAT and Myc expression and promote activation-induced cell death
(AICD) via Fas-Fas ligand (FasL). To maintain functional, but not toxic, ROS levels, activated T cells leverage endogenous anti-oxidant systems (e.g.,
glutathione peroxidase, GPX4) to reduce oxidized phospholipids (oxPL) within mitochondrial membranes using reduced glutathione (GSH) as a
cofactor. MDR1 also suppresses oxidative stress in activated T cells, though underlying mechanisms remain ill-defined.
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regulate the magnitude of monoclonal (i.e., TCR transgenic) T cell

responses, but also the selection of T cell clones specific for high- vs.

low-affinity antigens. Given the preponderance of available evidence,

it is reasonable to expect that MDR1, and perhaps other lipid and

multidrug transporters, preferentially regulate T cell responses to

abundant and high-affinity (i.e., immunodominant) antigens, in

which the highest levels of intracellular ROS are generated. If true,

these pathways (and ABC transporters) may prove vital for

advancing the next generation of medicines that can improve T

cell-mediated immunity to infectious diseases and cancers, where the

survival of T cells specific for immunodominant antigens are

paramount for efficacy.

Despite being one of the largest families of human

transmembrane proteins, a comprehensive understanding of

endogenous ABC transporter functions remains lacking.

Historically, this has been due to the inherent difficulty of

working with membrane proteins and transporters, as well as a

dearth of contemporary research reagents (e.g., engineered mouse

alleles, antibodies, etc.). While significant strides have been made in

recent decades with regard to the structural organization of these

transporters, meaningful insights into the physiological and

immunological functions of these transporters have lagged.

Mechanistic understanding of these transporters remains largely

based on data from pharmacological and in vitro studies, but it is

becoming increasingly apparent that these transporters have

important and context-dependent functions that need to be

evaluated in vivo, during both normal- and patho-physiology.

This is especially true for transporters, like MDR1, which remain

classified as ‘multi-drug’ efflux pumps, despite continued

elaboration of new and potent endogenous functions in in vivo

mouse and ex vivo human systems. For these, the key unanswered

question is why would an ABC transporter be conserved

throughout evolution unless it serves a core endogenous function?

The continued pursuit of basic science, and the advancement of

next-generation medicines, await answers.
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