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impact of 40 adenovirus types
on dendritic cell activation and
CD8+ T cell proliferation
capacity for the identification
of favorable immunization
vector candidates
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For the development of new adenovirus (AdV)-based vectors, it is important to

understand differences in immunogenicity. In a side-by-side in vitro analysis, we

evaluated the effect of 40 AdV types covering human AdV (HAdV) species A

through G on the expression of 11 activation markers and the secretion of 12

cytokines by AdV-transduced dendritic cells, and the effect on CD8+ T cell

proliferation capacity. We found that the expression of activation markers and

cytokines differed widely between the different HAdV types, and many types

were able to significantly impair the proliferation capacity of CD8+ T cells.

Univariate and multivariate regression analyses suggested an important role of

type I interferons in mediating this suppression of CD8+ T cells, which we

confirmed experimentally in a proliferation assay using a type I interferon

receptor blocking antibody. Using Bayesian statistics, we calculated a

prediction model that suggests HAdV types HAdV-C1, -D8, -B7, -F41, -D33,

-C2, -A31, -B3 and -D65 as the most favorable candidates for vaccine

vector development.
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human adenovirus (HAdV), adenoviral vector, adenovirus-based immunization, CD8
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Introduction

The virus family Adenoviridae comprises a large number of

animal and human adenoviruses (AdV), with the International

Committee on Taxonomy of Viruses listing 54 human AdV

(HAdV) types in the genus Mastadenovirus and 64 non-human

primate AdV types (1), with the non-human primate AdV types

belonging to the subgenus Simian Mastadenovirus or to the subgenus

Human Mastadenovirus due to their close phylogenetic relationship.

The Human Adenovirus Working Group, on the other hand, even

assigns more than 100 HAdV types (2). HAdV are grouped into

seven different species A through G, and can result in mainly

respiratory, gastrointestinal, ocular or genitourinary infections.

AdVs are popular vectors for exogenous gene delivery due to

their ability to infect both dividing and non-dividing cells, ease of

purification to high titers, ability to accommodate long exogenous

genes, and their episomal, non-integrating nature [reviewed in (3)].

While later generations of AdV-based vectors have been developed

that lack more or all of the AdV genes, the first-generation vectors

which are lacking E1 and often also E3 are the most commonly used

vector type in the vaccine setting. While the deletion of the E1

region results in replication deficiency and creates space for the

transgene-encoding cassette, the deletion of E3 prevents the

downregulation of the major histocompatibility complex I on

transduced cells (4), resulting in improved immunogenicity and

allowing for insertion of larger transgenes.

Originally, the species C HAdV types 2 and 5 were most often

used for vector development (5–9), but their applicability had been

questioned due to high levels of pre-existing immunity in many

populations, especially in Africa and Asia (10, 11), and after high

pre-existing immunity against HAdV-C5 was found to be linked to

higher HIV-1 infection rates of male, non-circumcised vaccinees in

the phase IIb STEP vaccine trial, the research focus shifted to so-

called “rare” HAdV types with low seroprevalence for the

development of new HAdV-based vectors. In addition to the

seroprevalence, another important factor to consider when

selecting AdV types for future vector development is their

immunogenicity, which refers to the ability to trigger an immune

response in the host, including the activation of innate immune

mechanisms and of antigen presenting immune cells and the

promotion of cellular immunity. AdV types with high

immunogenicity can effectively activate the immune system and

enhance the immune response to the antigens carried as transgenes

by the vector, thus acting as adjuvants and improving the protective

efficacy of the vaccine. HAdV types differ in their immunogenicity,

resulting in differential activation of antigen-presenting cells and,

consequently, of CD8+ T cells [reviewed in (12)]. A range of HAdV

types other than HAdV-C5 have been evaluated as vectors for

immunization, with some of them showing efficacy comparable to

that of HAdV-C5 (Table 1). While many HAdV have been shown

to be clearly inferior to HAdV-C5 with regard to their ability to

induce transgene-specific CD8+ T cell responses, a few, most

notably HAdV-D26, -D28, -C6 and -E4 showed good potential in

immunization models. Subsequently, vectors based on HAdV-C5

and -D26 and the chimpanzee adenovirus Y25 based ChAdOx-1

vector have proven highly effective in the last few years in their
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widespread use for immunization against SARS-CoV-2 (26–29) and

on a smaller scale against Ebola virus (30, 31). The very successful

deployment of these vaccines has shown the great potential of AdV-

based vectors.

The large-scale deployment also means, however, that a

considerable part of the population now has some degree of

immunity against these vector types. This vaccine-induced vector

immunity may make these vector types less effective if applied again

in a boost immunization or in the future as the vector for a different

immunization. Thus, it is highly desirable to enlarge the repertoire

of effective AdV-based vaccine vectors for future vaccine

development and epidemic preparedness. Toward this goal, we

have investigated in previous studies the seroprevalence of 39

HAdV types in a cohort of medical students (32) and in a cohort

of patients with neuromuscular disease (33) and identified rare

HAdV types with significantly lower seroprevalence compared to

HAdV-C5. In the study presented here, we aimed to characterize

the same broad range of 39 HAdV types with regard to their

immunogenicity. Although many reports have constructed AdV-

based vectors and evaluated their immunogenicity in vitro and in

vivo, most studies have only focused on a few individual AdV types

(Table 1), and there is currently a lack of such systematic studies on

a wide range of AdV types. In the present study, we screened 40

AdV types from species A through G in vitro, including 39 HAdV

types and the chimpanzee AdV Y25 derived vector ChAdOx-1, for

their impact on the proliferation capacity of CD8+ T cells, as well as

their influence on bone-marrow-derived dendritic cell (bmDC)

activation. Ultimately, we identified the most promising types of

HAdVs for future vector development.
Materials and methods

Viruses and viral vectors

In this study, a total of 39 types of HAdVs were employed,

consisting of 34 wild-type HAdVs (HAdV-A12, -A18, -A31, -B3,

-B7, -B11, -B14, -B21, -B34, -B35, -C1, -C2, -C5, -C6, -D8, -D9,

-D10, -D13, -D17, -D20, -D24, -D25, -D26, -D27, -D33, -D37,

-D70, -D73, -D74, -D75, -D80, -E4, -F41, and -G52) and five

adenoviral vectors encoding eGFP and/or firefly luciferase

(Ad16.GLN, Ad65.GLN, and Ad69.GLN (encoding eGFP and

luciferase), Ad48.GFP and Ad50.Luc). Comprehensive details

regarding the cultivation and purification of these HAdVs and

HAdV-based vectors can be found in our previous study (32). In

addition, the chimpanzee adenovirus-derived vector ChAdOx1-

eGFP [kindly provided by Sarah Gilbert, University of Oxford

(34)] was also included in this study.

For UV inactivation, AdV particles in 30 µl of PBS were

irradiated with UV light (254 nm) for 30 minutes at 4°C.
Mice

C57BL/6 background human CD46-transgenic mice (B6-

CD46tg) were obtained by backcrossing IFNAR-/-SLAM Ge
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CD46 Ge S1 mice (35) onto C57BL/6 background and selecting

single transgenic mice, and were kindly provided by Matthias

Tenbusch, University of Erlangen-Nürnberg, Gemany, with

permission from Roberto Cattaneo, Mayo Clinic, Rochester, MN.

T cell receptor-transgenic C57BL/6 mice express a CD8+ T cell
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receptor specific for the immunodominant Friend virus CD8+ T cell

epitope GagL85-93 (36).

All mice were bred and maintained in the animal facility of the

Institute for Virology at the University Hospital Essen. All

procedures were carried out in compliance with national
TABLE 1 Immunogenicity data of different HAdV type based vectors in pre-clinical models.

HAdV
type

vaccine
antigen

vector
dose [vp]

CD8+ T cell
detection

CD8+ T cell
response

fold-change compared to
HAdV-C5

Reference

Ad4,
Ad5

Zika prME 1010 Elispot Ad5: 80000 SFC/106

Ad4: 55000 SFC/106 Ad4: 0.69
(13)

Ad4,
Ad5

Zika prME 1010 Elispot Ad5: 3000 SFC/106

Ad4: 1000 SFC/106 Ad4: 0.33
(14)

Ad4,
Ad5

Influenza HA 1010 Elispot Ad4: 450 SFC/106

Ad5: 800 SFC/106 Ad4: 0.56
(14)

Ad5,
Ad6,
Ad24,
Ad26,
Ad35,
Ad34

HIV Gag 1010 Elispot Ad5: 900 SFC/106

Ad6: 650 SFC/106

Ad26: 500 SFC/106

Ad24: 150 SFC/106

Ad35: 150 SFC/106

Ad34: 100 SFC/106

Ad6: 0.72
Ad26: 0.55
Ad24: 0.17
Ad35: 0.17
Ad34: 0.11

(15)

Ad5,
Ad26,
Ad35

HIV Gag 108 TetI, day 15 Ad5: 10000 cells/106

Ad26: 3000 cells/106

Ad35: 1000 cells/106
Ad26: 0.33
Ad35: 0.1

(16)

Ad5,
Ad26,
Ad35,
Ad48

LCMV GP 1010 TetI, day 7 Ad5: 8.1%
Ad26: 2.5%
Ad35: 2.2%
Ad48: 1.8%

Ad26: 0.31
Ad35: 0.27
Ad48: 0.22

(17)

Ad5,
Ad11,
Ad35,
Ad50,
Ad26,
Ad48,
(Ad49)

SIV Gag 109 Elispot Ad5: 500 SFC/106

Ad11: 220 SFC/106

Ad35: 200 SFC/106

Ad50: 75 SFC/106

Ad26: 500 SFC/106

Ad48: 250 SFC/106

(Ad49: 125 SFC/106)

Ad11: 0.44
Ad35: 0.4
Ad50: 0.15
Ad26: 1
Ad48: 0.5
(Ad49: 0.25)

(18)

Ad5,
Ad48,
Ad50

Ovalbumin 109 Dextramer Ad5: 4%
Ad48: 0.7%
Ad50: 0.9%

Ad48: 0.18
Ad50: 0.23

(19)

Ad5,
(Ad28),
Ad35

SIV Gag 108 Tet, day 21 Ad5: 15%
(Ad28: 10%)
Ad35: 1%

(Ad28: 0.66)
Ad35: 0.07

(20)

Ad5,
Ad26

HIV Gag 1010 Tet, day 21 Ad5: 40000 cells/106

Ad26: 50000 cells/106
Ad26: 1.25 (21)

Ad5,
Ad35,
Ad11

SIV Gag 108 Tet, day 10 Ad5: 4.8%
Ad11: 1%
Ad35: 1%

Ad11: 0.21
Ad35: 0.21

(22)

Ad5,
Ad35

SIV Gag 108 Elispot, day 14 Ad5: 530 SFC/106

Ad35: 250 SFC/106 Ad35: 0.47
(23)

Ad5,
Ad14,
(Ad28),
Ad35

Influenza NP 108 ICS, day 14 Ad5: 1.1%
Ad14: 0.5%
(Ad28: 0.6%)
Ad35: 0.1%

Ad14: 0.45
(Ad28: 0.55)
Ad35: 0.09

(24)

Ad5,
Ad24,
Ad34,
Ad35

HIV Gag 1010 Elispot Ad5: 800 SFC/106

Ad24: 325 SFC/106

Ad34: 105 SFC/106

Ad35: 153 SFC/106

Ad24: 0.41
Ad34: 0.13
Ad35: 0.19

(25)
The literature was searched for side-by-side comparisons of HAdV-C5-based vectors with vectors based on other HAdV types. The mean levels of CD8+ T cell responses to the vaccine antigens
were extracted and fold-change for the rare HAdV type based vectors compared to HAdV-C5 based vectors was calculated. HAdV types resulting in more than 50% of the CD8+ T cell response
induced by HAdV-C5 are written in bold type. HAdV types shown in brackets were not part of this study.
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regulations and followed the institutional guidelines of the

University Hospital Essen, Essen, Germany.
Isolation and culture of bmDCs

Bone marrow-derived dendritic cells (bmDCs) were cultured

from the bone marrow of B6-CD46tg mice. The femurs of the mice

were flushed to obtain the bone marrow, which was subsequently

cultured in R10 medium (RPMI-1640 medium supplemented with

10% heat-inactivated FCS, 50 mg/ml gentamicin, 20 mg/ml

ciprofloxacin, 2 mM L-glutamine, 50 mM b-mercaptoethanol, 10

mM HEPES and 1 mM sodium pyruvate) plus 20 ng/ml GM-CSF

and 1.25 ng/ml IL-4, with an addition of an equal volume of fresh

medium on day 4. The bone marrow cells were maintained at 37°C,

5% CO2 and 95% humidity, and loosely adherent cells were

harvested on the seventh day as bmDCs for further

experiments (37).
In vitro bmDC stimulation assay

The bmDC stimulation assay was performed in 96-well plates,

wherein the bmDCs were transduced with various types of HAdV at

a multiplicity of infection (MOI) of 1000. In addition, a negative

control devoid of any stimulant and a positive control stimulated

with 10 or 100 mg/ml LPS, were included. bmDCs were fixed with

2% PFA at 24 h post-transduction, and the cells were stained with

anti-CD11c-BUV496 (clone HL3, BD Biosciences, Heidelberg,

Germany), anti-MHC-I-AF647 (clone KH95, BioLegend, Fell,

Germany), anti-MHC-II-PE/Dazzle594 (clone M5/115.14.2,

BioLegend), anti-CD40-AF488 (clone HM40-3, BioLegend), anti-

CD80-PE-Cy5 (clone 16-10A1, BioLegend), anti-CD86-BV510

(clone GL-1, BioLegend), anti-4-1BBL-PE (clone TKS-1,

BioLegend), anti-CD252-PE-Cy7 (clone RM134L, BioLegend),

anti-CD54-BUV737 (clone 3E2, BD Biosciences), anti-CD83-

BV650 (clone Michel-19, BioLegend), anti-PD-L1-PerCP (clone

MIH5, BD Biosciences), anti-PD-L2-BV421 (clone TY25,

BioLegend) and Fixable Viability Dye eFluor 780 (eBioscience,

Frankfur t , Germany) . Data were acquired on a BD

FACSymphony A5 flow cytometer (BD Biosciences) and analyzed

using FlowJo software (TreeStar, Ashland, OR).
In vitro proliferation assay

Friend virus GagL85-93-specific CD8
+ T cells were isolated from

spleen cells of the T cell receptor transgenic mice by magnetic cell

sorting using CD8 microbeads (Miltenyi, Bergisch-Gladbach,

Germany). Subsequently, the isolated T cells were labeled with 1.5

mM carboxyfluorescein succinimidyl ester (CFSE) to facilitate

tracking of their proliferation. The bmDCs were loaded with the

peptide GagL85-93 and simultaneously transduced with HAdVs at a

multiplicity of infection (MOI) of 1000 and then co-cultured with

CFSE-labelled CD8+ T cells at an initial ratio of 1:2.5 for 3 days.

CFSE intensity was analysed using flow cytometry after staining
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CD8+ T cells with BV421-anti-CD8 antibody (clone 53-6.7,

BioLegend). Untreated bmDCs were used in the negative control

coculture, while bmDCs loaded exclusively with the peptide without

undergoing transduction by HAdVs were employed in the positive

control stimulation to provide a baseline for comparison.

Additional proliferation assays were conducted in a transwell

system, where HAdV-transduced bmDCs were placed in the upper

transwell chamber, while GagL85-93-loaded bmDCs, as well as CD8+

T cells, were placed in the lower chamber. Following a three-day co-

incubation period, the CD8+ T cells were subjected to staining and

analysis, as described above.

Data were acquired on a BD FACSymphony A5 flow

cytometer (BD Biosciences) and analyzed using FlowJo software

(TreeStar, Ashland, OR). The division index of individual samples

was calculated in FlowJo software as the total number of cell

divisions divided by the total number of cells at the start of the

culture of that individual sample as calculated from the

division peaks.
Bead-based multiplex cytokine assay

For cytokine analysis, bmDCs were transduced with different

HAdVs or left unstimulated (negative control) or stimulated with

10 or 100 mg/ml LPS (positive controls). The culture supernatants

were harvested and subjected to analysis of mouse cytokines using

the bead-based LEGENDplex multi-analyte flow assay kit

(BioLegend), which encompassed a range of cytokines including

interferons (IFN-a, -b, -g), interleukins (IL-1b, -6, -10, -12),
chemokines (CCL2, CCL5, CXCL1), TNF-a, and GM-CSF.

Experiments were performed following the manufacturer’s

instructions. Data were acquired by flow cytometry on a BD

FACSymphony A5 flow cytometer (BD Biosciences) and analyzed

by Legendplex V8.0 software (BioLegend).
Statistical analysis

Data were analyzed for statistically significant differences using

GraphPad Prism software version 8, applying a one-way analysis of

variance (ANOVA) for the comparison among multiple groups or

an unpaired t test for pairwise comparisons. Univariate regression

analysis was performed by Pearson correlation analysis in

GraphPad Prism software. Multivariate regression analysis was

performed by random forest analysis in R software using the

packages randomForest and randomForestExplainer. Bayesian

regression analysis was performed in R software using the

package rstanarm using the mean fold-change of the division

index of CD8+ T cells in the in vitro proliferation assay, the mean

fold-change of bmDC surface marker and the mean fold-change of

cytokine secretion levels, and the classification of HAdV-C5, -C6,

-D26, -E4 and ChAdOx as “favorable vectors” and HAdV-B11,

-B14, -B34, -B35, -B50, -D24 and -D48 as “unfavorable vectors”

according to previously published data (Table 1). The results of the

Bayesian regression analysis were visualized using the packages

bayesplot, ggplot and ggforce.
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Results

Reduction in CD8+ T cell proliferation after
stimulation with AdV-transduced bmDCs

We observed in the past that vectors based on different HAdV

types encoding the same transgene had strikingly different potential

to induce transgene-specific CD8+ T cells in vivo and to stimulate

the proliferation of transgene-specific CD8+ T cells in an in vitro

proliferation assay (19). To inform future selection of HAdV types

for the development of new HAdV-based vectors, we decided to

screen a wide range of HAdV types in an in vitro proliferation assay

and to characterize their influence on antigen-presenting cells.

To analyze the impact of different HAdV types on the proliferation

capacity of transgene-specific CD8+ T cells, we used murine TCR

transgenic CD8+ T cells that are specific for the Leader-Gag-derived

epitope GagL85-93 of the Friend retrovirus, which is a model retrovirus

infection that has been used by us and others in the past to study

immune mechanisms and vaccine approaches targeting retrovirus

infections [reviewed in (38)]. While the CD8+ T cells proliferated

strongly in the in vitro proliferation assay when they were coincubated

with bmDCs loaded with the GagL85-93 peptide alone, their

proliferation activity varied greatly when the peptide-loaded bmDCs

were transduced with different HAdV types (Figure 1A–C). While

someHAdV types, such as HAdV-A31, -B50, -C2, -C5, -C6, -D37, -E4,

-F41 and ‐G52, did not affect CD8+ T cell proliferation, many other

HAdV types, notably almost all tested species D types but also HAdV-

A18, some species B types and, to a moderate extent, HAdV-C1, led to

significantly reduced CD8+ T cell proliferation. When we performed a

complementary experiment with the most strongly inhibitory HAdV

types, HAdV-D10, -D24 and -D80, we found that the inhibitory effect

was abolished when the viruses were UV-inactivated (Figure 1D).
Influence of AdV transduction on bmDC
surface marker expression

To gain mechanistic insight into the differential effect of HAdV

types on CD8+ T cell proliferation, we characterized the impact of

HAdV transduction of bmDCs on the expression of stimulatory and

inhibitory DC surface markers (Figure 2; Supplementary Figure S1) and

on the secretion of cytokines by the bmDCs (Figure 3; Supplementary

Figure S2). The bmDC surface molecules showed different patterns in

response to transduction by different HAdV types. The surface

expression of the co-stimulatory molecules 4‐1BBL, CD83 and CD86

was only slightly affected by most of the tested HAdV types and only

significantly reduced by a few species B and D HAdV types (4-1BBL:

HAdV-B34, ‐D33, ‐D37, -D48; CD86: HAdV-A18, -D17, -D20, -D69,

-D74, -D75; Figure 2A). The expression of the co-stimulatory molecule

CD40 was increased by a majority of the tested HAdV types, whereas

the expression of CD54 and CD80 was increased to a lesser extent by

some HAdV types and decreased by others, and the expression of

CD252, on the other hand, was decreased by all tested HAdV types. The

expression of the peptide-presenting molecules MHC-I (Figures 2A, B)

andMHC-II was differentially and inmany cases opposingly influenced

by the different HAdV types, with a significant upregulation of MHC-I
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observed only for HAdV-B16, -B34, -B35, -D20, -D26, -D33, -D37 and

-D65. The expression of the inhibitory molecule PD-L1 (Figure 2C) was

significantly upregulated by most of the tested HAdV types, with the

strongest induction (> 2.5-fold) observed for HAdV-B16, -B21, -B35,

-D17, -D25, -D27, -D65, -D69 and -D74. Expression of the inhibitory

molecule PD-L2, on the other hand, was not as strongly affected and

was significantly upregulated only by HAdV-B7, -B34, -C1, and -D26,

whereas the expression showed a strong trend toward a decrease after

transduction with other HAdV types such as HAdV-A18, -B21, -B50,

-D17 and -D74. Notably, the single animal-derived AdV type, ChAdOx,

had limited impact on any of the markers, similar to HAdV types A31,

C6, F41, and G52. In addition, comparisons at the species level showed

that HAdVs of species B and D had a greater impact on the expression

of bmDC surface molecules, while species F and G HAdVs exerted a

relatively mediocre effect.
Influence of AdV transduction on bmDC
cytokine secretion

The effect of bmDC HAdV transduction on cytokine production

revealed a more homogenous picture for most of the analytes

(Figure 3A). Compared to the unstimulated control, HAdV

transduction resulted in a substantial increase in the concentrations

ofmost cytokines, with themost pronounced effects observed for IFN-a
(Figures 3A, B) and IFN-b (Figure 3A), which showed a clear trend

toward strong induction by all HAdV types and statistically significant

increases bymost species DHAdV types. Concentrations of IL-6, IL-12,

and CCL2 were also significantly upregulated, but to a lesser extent than

IFN-a and IFN-b, and did not differ distinctly acrossHAdV species. On

the other hand, the secretion of IL-1b (Figures 3A, C), CXCL-1, and

TNF-a (Figure 3A) was not strongly affected bymost HAdVs, and only

a few specific HAdV types induced significant increases in their

secretion (IL-1b: HAdV-C1, -C5, -D24 and -D25; CXCL1: HAdV-C5

and ChAdOx; TNF-a: HAdV-D25 and -D80), whereas there was a

trend toward reduced secretion after transduction with other HAdV

types. It is worth noting that the secretion of several cytokines by

bmDCs, including IFN-g, IL-10, and CCL5, was not significantly altered
upon transduction with any type of HAdV tested in this study.

Interestingly, the secretion of GM-CSF tended to be reduced under

the influence of all tested AdV types except for HAdV-C5 and ‐D24.
Correlation of CD8+ T cell proliferation
with bmDC surface marker expression and
cytokine secretion

In a regression analysis, we analyzed the correlation of the

impact of the different HAdV types on bmDC surface marker

expression and cytokine secretion levels with the impact on CD8+ T

cell proliferation capacity. In the analysis of the bmDC surface

markers (Figure 4), we found a significant and strong positive

correlation of CD8+ T cell proliferation with the expression levels of

the co-stimulatory molecules CD86 (Figure 4F) and CD252

(Figure 4J) and a negative correlation with the expression level of

the inhibitory molecule PD-L1 (Figure 4C). We also found
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significant negative correlations of CD8+ T cell proliferation with

the secretion of INF-b, IFN-a, IL-12, CCL2, IFN-g, GM-CSF, TNF-

a and IL-6 (in descending order, Figure 5). To further investigate

the contribution of the individual parameters, we performed a

multivariate regression analysis by performing a random forest

analysis. This analysis confirmed the results of the univariate

analyses and predicted the level of IFN-b as the most important

variable for the outcome of the CD8+ T cell proliferation rate,

followed by IFN-a, CD86 and TNF-a (Figure 6).
Inhibition of CD8+ T cell proliferation
is mediated by high levels of
type I interferons

To address these findings experimentally, we performed a CD8+

T cell proliferation assay in a transwell system, where the HAdV-
Frontiers in Immunology 06
transduced bmDCs were spatially separated from the peptide-loaded

bmDCs and the CD8+ T cells. Here, we found that the inhibition of

CD8+ T cell proliferation that we observed before when bmDCs were

transduced with HAdV-D10 was not changed in the transwell system

(Figure 7A), confirming that soluble factors mediated the suppressive

effect. As the regression analyses ranked IFN-b and IFN-a most

highly, we next performed a CD8+ T cell proliferation assay in the

presence of an interferon a/b receptor (IFNAR) blocking antibody

(Figure 7B). We selected six HAdV types for which we had observed

strong induction of type I interferons (Figure 3), four of which had

shown the strongest suppression of CD8+ T cell proliferation

(Figure 1). In the control cultures without the addition of IFNAR-

blocking antibody, we observed robust suppression of CD8+ T cell

proliferation as before, which was completely abrogated in the

presence of the IFNAR-blocking antibody, confirming the

mechanistic role of the induction of type I interferon signaling in

the suppression of CD8+ T cell proliferation by HAdV in this setting.
B

C D

A

FIGURE 1

Reduction in CD8+ T cell proliferation after transduction of bmDCs with AdV. A CD8+ T cell proliferation assay was performed using FV GagL85-93
specific CD8+ T cells and bmDCs loaded with the GagL85-93 peptide with and without additional transduction with the indicated HAdV types or
ChAdOx. (A) Proliferation of the CD8+ T cells was analyzed by dilution of CFSE staining intensity after 3 days of coculture, and the division index of
the CD8+ T cells was calculated and normalized to the division index of the peptide-only stimulation. (B) A heatmap representation of the mean
normalized division indices of CD8+ T cells stimulated with peptide and the indicated AdV types. (C) An overlay of representative histograms of
different CD8+ T cell stimulations. (D) The influence on CD8+ T cell proliferation of bmDCs transduced with different untreated and UV-inactivated
HAdV; the graph shows the division index normalized to the peptide-only control. Each dot indicates an individual sample, bars indicate mean
values, and whiskers indicate the standard deviation. Data were acquired in at least two independent experiments (A, B, D). The dashed line indicates
the normalized value of 1 (A, D), * indicates a statistically significant difference compared to the peptide-only control (A; P < 0.05, one-way ANOVA)
or between the indicated groups (D; P < 0.05, unpaired t test).
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Prediction of favorable HAdV types for
vector development

For the selection of strong candidates for future HAdV-based

vector development, it was of great interest to combine all observations

into a statistical model to estimate the potential of the tested HAdV

types. We therefore performed a Bayes regression analysis using the

data of HAdV-B11, -B14, -B34, -B35, -B50, -C5, -C6, -D24, -D26, -D48

and-E4, which have already been evaluated side-by-side with HAdV-

C5 for in vivo vaccination efficacy, and of ChAdOx, which has shown

its high efficacy as a SARS-CoV-2 vaccine vector, for the calculation of

the posteriors. We classified HAdV-C5, -C6, -D26, -E4 and ChAdOx

as “favorable vectors” and HAdV-B11, -B14, -B34, -B35, -B50, -D24

and -D48 as “unfavorable vectors” based on the previously published

efficacy data, as summarized in Table 1. It is noteworthy that in this

prediction of good vector candidates, the individual factors are
Frontiers in Immunology 07
weighted quite differently than in the random forest analysis of the

contribution to the repression of CD8+ T cell proliferation, and the

highest posterior estimates were obtained for the division index of

CD8+ T cells in the in vitro proliferation assay and the expression levels

of the DC surface markers MHC-II, CD83, CD86 and CD252, but the

secretion levels of some cytokines also tended to have positive posterior

estimates (Figure 8A). Applying the obtained model to predict

promising vector candidates, the HAdV types HAdV-C1, -D8, -B7,

-F41, -D33, -C2, -A31, -B3 and -D65 were assigned prediction values

higher than 0.5 (in descending order; Figure 8B).
Discussion

AdV-based vectors have been explored during the last decades

as gene delivery vectors for gene therapy, oncolytic therapy and
B

C

A

FIGURE 2

Differential expression of bmDC surface markers after transduction with AdV. bmDCs were transduced with the indicated AdV types or stimulated
with 10 µg/ml or 100 µg/ml LPS. After 24 hours, the expression of surface molecules was analyzed by flow cytometry. The median fluorescence
intensity (MFI) of the surface markers was determined, and fold-changes compared to the unstimulated bmDCs were calculated. (A) A heatmap
representation of the mean fold-change of the MFI of the indicated surface markers after stimulation with the indicated AdV types. (B, C) Dot plot
representations of the MFI fold-change for MHC-I (B) and PD-L1 (C). Each dot indicates an individual sample (B, C), bars indicate mean values, and
whiskers indicate the standard deviation. Data were acquired in at least two independent experiments (A–C). The dashed line indicates the
normalized value of 1 (B, C), * indicates a statistically significant difference compared to the unstimulated control (P < 0.05, one-way ANOVA).
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immunization, and the last few years have shown the great potential

of AdV-based immunization, since AdV-based vaccines were

important assets in the effort to control the SARS-CoV-2

pandemic and to curb Ebola virus outbreaks in recent years (39).

However, the vast diversity of different HAdV types has not yet

been explored for vector development, and systematic comparisons

of the immunogenicity of a large number of viruses are currently

lacking. In this detailed in vitro analysis, we analyzed the effect of 40

AdV types on DC activation and cytokine secretion and on CD8+ T

cell proliferation capacity and identified HAdV-C1, -D8, -B7, -F41,

-D33, -C2, -A31, -B3 and -D65 as having the most favorable

immunogenicity profile for vaccine vector development.

In our in vitro analysis, we found that the capacity to induce

type I interferons correlated with the potential to suppress the

proliferative capacity of CD8+ T cells. It is recognized that AdV-

based vectors are able to stimulate multiple innate immune
Frontiers in Immunology 08
pathways, whereby they can have an adjuvant effect on the

immune response towards the transgene. Multiple innate immune

factors influencing the immunogenicity of HAdV types have been

described including Toll-like receptors and cGAS/STING [for

comprehensive reviews, see (40) and (41)]. Differences in the

activation of innate immune mechanisms have been attributed to

several factors: in a first step, receptor and integrin binding result in

activation of proteins involved in intracellular signaling pathways

such as mitogen activated protein kinase by binding to CAR and

phosphoinositide 3-kinase by integrin binding, leading to

production of pro-inflammatory cytokines such as IL-1a, IL-6,
IL-8 and TNF-a (42–45). Differences in receptor usage will result

in differential activation of intracellular signaling [reviewed in (46)].

After cell entry, AdV particles have to escape the endosome, which

the different AdV types do at different stages along the endosomal-

lysosomal axis, resulting in membrane damage and differential
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FIGURE 3

Differential secretion of cytokines by bmDCs after transduction with AdV. bmDCs were transduced with the indicated AdV types or stimulated with
10 µg/ml or 100 µg/ml LPS. After 24 hours, the supernatants were collected and analyzed for the presence of the indicated cytokines. The cytokine
concentrations were determined and fold-changes compared to the unstimulated bmDCs were calculated. (A) A heatmap representation of the
mean fold-change of the concentrations of the indicated cytokines after stimulation with the indicated AdV types. (B, C) Dot plot representations of
the concentrations of IFN-a (B) and IL-1b (C) in the supernatant of bmDCs after the indicated stimulations. Each dot indicates an individual sample
(B, C), bars indicate mean values, and whiskers indicate the standard deviation. Data were acquired in at least two independent experiments
(A–C). The dashed line indicates the mean concentration of the indicated cytokine in the supernatant of unstimulated bmDCs (B, C), * indicates
a statistically significant difference compared to the unstimulated control (P < 0.05, one-way ANOVA).
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release or exposure of endosomal components that induce

activation of the NLRP3 inflammasome and of authophagy (47,

48). Finally, differences in the DNA sequence will influence the

detection of viral DNA by TLR9 and cGAS/STING and the

activation of the subsequent signaling, which results in activation

of type I interferon expression (49–51).

Interestingly, it has been shown before that while a moderate

ability to stimulate the innate immune system is advantageous for

vector potency, excessive stimulation of type I interferons by

chimpanzee AdV-based vectors in comparison to HAdV-C5-

based vectors resulted in reduced transgene-specific antibody

responses (52) and CD8+ T cell responses (53), which seemed to

correlate with reduced transgene expression in the presence of type

I interferons. Furthermore, it was shown that vectors based on

HAdV-D28 and HAdV-B35 induced stronger IFN-a in vitro and in

vivo, which resulted in a reduction in transgene expression, a

reduced induction of transgene-specific CD8+ T cells but also a

qualitatively changed CD8+ T cell response, with a more

pronounced polyfunctional and memory phenotype (54), which
Frontiers in Immunology 09
the authors attributed to both autocrine and paracrine effects of the

elevated IFN-a levels. Taken together, these findings support our in

vitro data and suggest that the levels of type I interferons play an

equally important role in the in vivo setting.

Perreau et al. suggested that the number of TLR9 agonist motifs in

the HAdV genome correlates with immunogenicity, as they observed a

positive correlation between TLR9 agonist motif genome content and

the induction of CD86 expression and TNF-a secretion by DCs

transduced with HAdV immune complexes (55). Our data also show

a positive correlation of the ratio of stimulatory and inhibitory TLR9

motif genome content and the expression level of the DC surfacemarker

CD86 and a negative correlation of the TLR9 motif ratio with the

expression level of PD-L1 and the secretion of cytokines, which was

most pronounced for type I interferons, CCL2, GM-CSF and IL-12

(Supplementary Figure 3). It can still be observed that HAdV types with

very similar, low ratios of stimulatory and inhibitory TLR9motifs induce

quite different levels of cytokines, which is in agreement with the finding

that multiple innate sensing pathways are involved in HAdV sensing

and the induced innate immune response (40), as discussed above.
B C

D E F

G H I

J K

A

FIGURE 4

Correlation analysis of bmDC surface markers and CD8+ T cell proliferation. (A–K) Pairwise Pearson correlation analyses were performed using the
mean CD8+ T cell division indices as shown in Figure 1 and the mean fold-change of MFI values for the indicated bmDC surface molecules as
shown in Figure 2. r, Pearson correlation coefficient; statistically significant correlations are indicated by bold type (P < 0.05).
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The model that we developed for the prediction of favorable

vector candidates attributes the highest importance to the division

index of CD8+ T cells in the in vitro proliferation assay and the

expression levels of the DC surface markers MHC-II, CD83, CD86

and CD252, as well as the secretion levels of some cytokines. Data

from in vivo studies where different HAdV-based vectors were

compared side-by-side demonstrated widely varying potency, and

limited induction of cellular immunity was observed for the HAdV

types HAdV-B11, -B14, -B34, -B35, -B50, -D24 and -D48 [(15–20,

22–25); Table 1]. Interestingly, not all of them showed a strong

impact on the CD8+ T cell proliferation capacity in our in vitro

assay, highlighting the complex immune mechanisms underlying

the induction of effective immune responses and the value of

analyzing a wide range of immune parameters for the prediction

of favorable HAdV types for vector development.

According to our Bayes statistic model, the HAdV types HAdV-

C1, -D8, -B7, -F41, -D33, -C2, -A31, -B3 and -D65 are the most

promising vector candidates. It has to be taken into account, however,

that some of these HAdV types showed rather high seroprevalence in

our previous studies: neutralizing antibody levels against HAdV-B3,
Frontiers in Immunology 10
-C1, -C2, and -F41 were similar to those against HAdV-C5, or even

higher, in both cohorts (32, 33), precluding their widespread use.

Because of the widespread application of AdV-based vectors for

SARS-CoV-2 immunization, it has been noted that in very rare cases,

immunization would result in the severe adverse event of vaccine-

induced thrombosis with thrombocytopenia syndrome (56, 57), which

has been attributed to the induction of autoimmune antibodies directed

against platelet factor 4 (PF4), leading to the activation of platelets and

granulocytes (58–60). Complex formation of ChAdOx, HAdV-C5 and

HAdV-D26 particles with PF4 could be demonstrated experimentally

and was found to be in the nanomolar affinity range (61). Importantly,

it was recently shown that different HAdV types have distinct affinities

for PF4 binding, and HAdV-B11, -B34, -D13 and -D25 exhibited no or

very low detectable PF4 binding (62). While the prediction based on

our Bayesian statistic modelling is slightly below 0.5 for HAdV-D13, its

favorable PF4-non-binding profile may make this an HAdV vector

candidate not to be discarded quite yet.

One limitation of our study is that all experiments were performed

using murine cells, but there are studies in which murine and human

DCs were used side-by-side for AdV infection experiments that support
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FIGURE 5

Correlation analysis of bmDC cytokine secretion and CD8+ T cell proliferation. (A–L) Pairwise Pearson correlation analyses were performed using
the mean CD8+ T cell division indices as shown in Figure 1 and the mean concentrations of cytokines secreted by bmDCs as shown in Figure 3.
r, Pearson correlation coefficient; statistically significant correlations are indicated by bold type (P < 0.05).
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the conclusion that similar results would be obtained using human cells:

Johnson et al. performed infection experiments withmurine bmDCs and

human plasmacytoid DCs and observed the same differences in IFN-a
induction byHAdV-C5, -D28 and -B35 in both cell types (54). In a study

using onlyHAdV-C5 based vectors, Strack et al. also showed comparable

effects of HAdV-C5 on murine bmDCs and human peripheral blood

derived DCs (63). Quinn et al. have performed extensive analyses of

innate immune responses using both human peripheral blood

mononuclear cells (PBMCs) infected in vitro as well as mouse cells

from in vivo vaccination, and compared the immune response against

HAdV-C5 to that against, among others, HAdV-B35, and -D28 (53).
Frontiers in Immunology 11
They showed that while there was some discordance in up- and down-

regulated genes in murine lymph nodes and human PBMCs, expression

patterns in murine and human PBMCs were highly comparable.

Importantly, they also showed in the in vivo model that immunization

with HAdV-B35 and -D28 based vectors led to a significantly stronger

expression of IFN-a in draining lymph nodes and higher IFN-a levels in

the serum compared toHAdV-C5, which also confirms our in vitro data.

Teigler et al. evaluated the innate immune responses against HAdV-C5,

-B35, -D26 and -D48 in rhesus monkeys and in human PBMCs, and

reported a strong induction of IFN-a2 in human PBMCs for HAdV‐

B35, ‐D26 and -D48 and much less for HAdV-C5 (64), which is in
B

C

A

FIGURE 6

Random forest regression analysis of bmDC cytokine secretion and surface marker expression and CD8+ T cell proliferation. A random forest
analysis was performed using the mean values for the CD8+ T cell division index as shown in Figure 1, and the bmDC surface marker expression
measured by their MFI as shown in Figure 2 and the bmDC cytokine secretion as shown in Figure 3 as explanatory factors. Percent increase in mean
square error (A) and increase in node purity (B) for the 23 tested explanatory factors are shown. The importance plot in (C) highlights the variables
with the highest importance scores.
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accordance with our findings in murine DCs. Interestingly, Tran et al.

have shown in in vitro experiments that HAdV-C5 infected human DCs

and bystander DCs produced significantly higher levels of a range of

cytokines if the HAdV-C5 was complexed with IgG (65), suggesting that

cytokine responses in vivomay be higher in the presence of pre-existing

immunity. Chen et al. analyzed cytokine levels in sera of HAdV-B3 and

-B7 infected hospitalized children, and made similar observations of

increased levels of CCL-2, IL-6, IL-10, IFN-a and -g and TNF- a in the

infected children in comparison to healthy controls (66). While the
Frontiers in Immunology 12
authors observed less pronounced IFN-a levels than could be expected

from the in vitro studies, this may be due to the time point of serum

collection. In accordance with the above-mentioned similarities, it has

been noted in various reviews (67, 68) that human andmouse DCs share

many similarities and that they behave very similarly if they have been

prepared, cultured and activated in the same way. Finally, it should be

noted that those AdV types that had been most effective in various

mouse models have proven their high efficacy in recent years when they

were applied as SARS-CoV-2 vaccines, lending validity to results
BA

FIGURE 7

CD8+ T cell proliferation in transwell plates and in the presence of type I IFN receptor blocking antibodies. (A) A CD8+ T cell proliferation assay was
performed using FV GagL85-93 specific CD8+ T cells and bmDCs loaded with GagL85-93 peptide, with HAdV-transduced bmDCs either in the same well
(mix) or separated from the CD8+ T cells and peptide-loaded bmDCs in a transwell chamber (transwell). Proliferation of the CD8+ T cells was analyzed
by dilution of CFSE staining intensity after 3 days of coculture, and the division index of the CD8+ T cells was calculated and normalized to the division
index of the peptide-only stimulation. (B) A CD8+ T cell proliferation assay was performed using FV GagL85-93 specific CD8+ T cells and bmDCs loaded
with GagL85-93 peptide and transduced with the indicated HAdV in the absence (control) or presence of an a-IFNAR antibody (a-IFNAR). Proliferation of
the CD8+ T cells was analyzed by dilution of CFSE staining intensity after 3 days of coculture, and the division index of the CD8+ T cells was calculated
and normalized to the division index of the peptide-only stimulation. Each dot indicates an individual sample, bars indicate mean values, and whiskers
indicate the standard deviation. Data were acquired in at least two independent experiments. The dashed line indicates the normalized value of 1,
* indicates a statistically significant difference between the indicated groups (P < 0.05, unpaired t test), ns, not significant.
BA

FIGURE 8

Bayesian regression analysis-based prediction model for the selection of HAdV types for vector development. A Bayesian regression analysis was
performed using the mean fold-change of the division index of CD8+ T cells in the in vitro proliferation assay, the mean fold-change of all tested
bmDC surface markers and the mean fold-change of the cytokine secretion levels as factors, and the classification of HAdV-C5, -C6, -D26, -E4 and
ChAdOx as “favorable vectors” and HAdV-B11, -B14, -B34, -B35, -B50, -D24 and -D48 as “unfavorable vectors” according to previously published
data (Table 1) to train the model. Posterior interval estimates are shown in (A), and the right-hand figure shows a zoomed-in graph for improved
readability. (B) Prediction values for the individual AdV types were plotted against the fold-change division index, and the color of the dots indicates
the factor of the Bayes prediction value (PB) and the fold-change division index (DI). AdV types that were used to train the model are labelled in grey
italics. preim: high pre-existing immunity has been shown previously (32, 33).
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obtained in mouse experiments. Overall, we conclude that the results

obtained in our in vitro assays withmurine cells aremeaningful and valid

also for possible translation into human use in the future, and that

vectors derived from the identified favorable HAdV types can be

expected to also have favorable in vivo immunogenicity.

Our data provide important insight into the different

immunogenicity profiles of 40 AdV types. Taken together with

our previously reported data on seroprevalence, we suggest that

HAdV-D8, -B7, -D33, -A31 and -D65 are the most favorable HAdV

types to be explored as vaccine vectors and evaluated in vivo in

animal models in the future.
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