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Crosstalk: keratinocytes and
immune cells in psoriasis

Masahiro Kamata and Yayoi Tada*

Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
In the past, psoriasis was considered a skin disease caused only by keratinocyte

disorders. However, the efficacy of immunosuppressive drugs and biologics used to

treat psoriasis proves that psoriasis is an immune-mediated disease. Indeed, a

variety of immune cells are involved in the pathogenesis of psoriasis, including

dendritic cells, Th17 cells, and resident memory T cells. Furthermore, keratinocytes

play a role in the development of psoriasis as immune cells by secreting

antibacterial peptides, chemokines, tumor necrosis factor-a, interleukin (IL)-36,

and IL-23. These immune cells and skin cells interact and drive the aberrant

differentiation and proliferation of keratinocytes. This crosstalk between

keratinocytes and immune cells critical in the pathogenesis of psoriasis forms an

inflammatory loop, resulting in the persistence or exacerbation of psoriasis plaques.
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1 Introduction

Psoriasis is a chronic inflammatory skin disease clinically characterized by indurated

scaly erythema and pathologically by abnormal differentiation and proliferation of

keratinocytes. Therefore, in the past, psoriasis was considered a skin disease caused only

by keratinocyte disorders. However, reports of psoriasis successfully treated with

cyclosporine have altered our understanding of the pathogenesis of psoriasis. In

addition, the efficacy of immunosuppressive drugs and biologics used to treat psoriasis

proves that psoriasis is an immune-mediated disease (1, 2).

To date, many studies have revealed how a variety of immune cells are involved in the

pathogenesis of psoriasis. Furthermore, keratinocytes are not only the consequences of

immune reactions (namely, phenotype), but also themselves play a role in the development

of psoriasis as immune cells. These immune cells and keratinocytes interact, consequently

driving the aberrant differentiation and proliferation of keratinocytes.

In this review article, we focus on this crosstalk mechanism and discuss its importance

in the pathogenesis of psoriasis.
2 Crosstalk: immune cells
to keratinocytes

In the pathogenesis of psoriasis, interleukin (IL)-17 plays a key role.Moreover, IL-17 induces

the proliferation and abnormal differentiation of keratinocytes (3). Keratinocytes simulated with
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IL-17 and tumor necrosis factor (TNF)-a produce various

inflammatory cytokines, chemokines, and antibacterial peptides

(AMPs) (4–6), as discussed later. IL-22 also activates keratinocytes,

resulting in the proliferation and production of these inflammatory

substances (7–10). In this section, we focus on immune cells that affect

keratinocytes in psoriasis (Figure 1).
2.1 Pathogenic Th17 cells induced by
dendritic cells

Th17 cells play a pivotal role in the pathogenesis of psoriasis.

Murine studies have revealed that transforming growth

factor (TFG)-b and IL-6 are required to activate a unique
Frontiers in Immunology 02
transcription factor known as retinoid-related orphan receptor-gt
(RORgt). RORgt in association with other transcription factors,

increases both IL-23R and IL-17A in Th17 cells. Subsequent

exposure of IL-23 to developing Th17 cells enhances Th17

cytokines, including IL-17 (11). Human Th17 cells produce

mainly IL-17A, IL-17F, and IL-22 in addition to TNF-a (12, 13).

Their cytokines drive keratinocytes to their aberrant differentiation

and proliferation, as well as producing pro-inflammatory

substances. IL-23 promotes Th17 cells to become highly

pathogenic. It also regulates the development and maintenance of

the Th17 population (14–16). The main source of IL-23 is thought

to be inflammatory dendritic cells (DC), as described in our

previous review article (16), including TNF-a and inducible nitric

oxide synthase (iNOS)-producing DC (Tip-DC) and slanDC.
FIGURE 1

Crosstalk from immune cells to keratinocytes in psoriasis. A variety of immune cells affect keratinocytes in psoriasis. IL, interleukin; TNF, tumor
necrosis factor; NKT, natural killer T; MAIT, mucosal-associated invariant T.
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2.2 Resident memory T cells

Recently, skin resident memory T (Trm) cells have recieved

attention, especially as the cells contributing to relapse or Köbner

phenomenon (3, 17–20). In resolved psoriatic skin lesions, a

population of Trm cells are observed, which are responsible for

local relapse of psoriasis (17–19, 21–23). Epidermal CD8+CD103+

Trm cells are considered to be one of the major immune cells

in resolved skin and are capable of IL-17A (22, 24–26). Gallais

Sérézal et al. confirmed through NanoString analysis that

CD49a−CD103+CD8+ Trm cells were capable of triggering

psoriasiform tissue response (27). These results suggest that IL-17

−producing CD49a−CD103+CD8+ Trm cells are responsible for

psoriasis relapse (20, 28, 29).

In addition to skin Trm cells, memory-like gdT cells (30), and

skin structural cells with inflammatory memory (31, 32) could be

involved in psoriasis relapse (20).
2.3 Other immune cells producing IL-17A

In addition to Th17 cells, IL-17A is produced by various cells of

the innate and adaptive immune systems (11). CD8+ IL-17-

producing T cells are observed in psoriatic lesions, and they

produce both Th1- and Th17-related cytokines, including

interferon (IFN)-g, TNF-a, IL-17A, IL-21, and IL-22 (33–35).

Since neutrophils and mast cells staining positive for IL-17 were

identified at higher densities than IL-17+ T cells in psoriatic lesions,

neutrophils and mast cells are considered other significant potential

sources of IL-17A in psoriasis (36–38). However, whether these cells

synthesize and secrete IL-17A or whether positive staining

represents cytokine uptake has yet to be determined (11).

Mashiko et al. reported that human mast cells are major IL-22

producers in patients with psoriasis (39). Further investigation is

needed to elucidate the role of mast cells and neutrophils in the

pathogenesis of psoriasis.

IL-17A and IL-17F are also secreted by innate immune cells,

such as group 3 innate lymphoid cells (ILC3s), and innate-like

lymphocytes (ILLs), such as gdT cells, mucosal-associated invariant

T (MAIT) cells, and natural killer T (NKT) cells (40–45).

Under the condition of abundant IL-23 in psoriasis lesional

skin, some macrophages may produce IL-17A, IL-22 and IFN-g in
addition to TNF-a as described in our previous review article (16).
2.4 Keratinocytes

Keratinocytes also act as immune cells. Some cytokines secreted

by keratinocytes, including IL-17C and IL-36, act on keratinocytes

in an autocrine way (46). IL-36 cytokines, such as IL-36a/b/g, are
produced by keratinocytes following stimulation by TNF-a, IL-
17A, IL-22, and IL-1b. IL-36 stimulates keratinocytes to produce

TNF-a and IL-17C (47, 48). IL-17C is expressed by (and acts on)
Frontiers in Immunology 03
epithelial cells (49). Keratinocytes, the main producers of (and

responders to) IL-17C in the skin, contribute to psoriatic

inflammation (50–52). IL-17C has been identified as a functional

regulator of the initial psoriatic cytokine network, suggesting its role

during the early stages of psoriatic inflammation, or the “priming”

for plaque formation (53).

Cathelicidins are a class of AMPs. LL-37, one of cathelicidins,

produced by skin injury and bacterial infection, activates toll-like

receptor (TLR)8 in keratinocytes and induces IL-17C through the

induction of IL-36g (47). Inhibition of IL-17 results in

normalization of IL-36g and IL-17C to levels associated with non-

lesional skin (54).
3 Crosstalk: keratinocytes
to immune cells

Reciprocally, keratinocytes also produce various substances that

affect immune cells. In this section, we focus on these substances

and their effects on immune cells (Figure 2).
3.1 Antibacterial peptides, including b-
defensins, S100 proteins and cathelicidin

In non-lesional skin in psoriasis patients, trauma, injury,

infection, or medication causes the production of various

autoantigens from stressed or damaged keratinocytes (20, 55, 56).

Among them, cationic AMPs [including LL-37, human beta-

defensin (hBD)-2, and hBD-3], develop with DNA or RNA to

form multimeric AMP−nucleic acid complexes, which induce the

production of interferon (IFN)-a and IFN-b through TLR7 or 8 in

plasmacytoid dendritic cells (pDCs) or increase the amounts of IL-6

and TNF-a by myeloid dendritic cells (mDCs) (20, 57, 58). IL-6,

together with TGF-b, drives naïve T cell differentiation into Th17

cells, as described above. IFN-a and TNF-a further activate mDCs

to produce IL-12 and IL-23 (16, 20, 59, 60). This process could be

involved in the mechanism underlying Köbner phenomenon in

psoriasis (3, 61).

In psoriatic lesions, various AMPs such as hBD-2, hBD-3, S100

proteins, and cathelicidin, are also highly expressed (15, 62, 63).

hBD-2 and hBD-3 are induced by TNF-a and IFN-g in

keratinocytes (64, 65). hBD-2 is also induced by IL-17A and IL-

22 (66). S100 proteins, such as S100A7 (psoriasin), S100A8

(calgranulin A), S100A9 (calgranulin B), S100A12 (calgranulin

C), and S100A15, are abundantly expressed in psoriatic lesions,

and some are elevated in the serum of psoriatic patients (67).

In a study by Liang et al., IL-22 in conjunction with IL-17A or

IL-17F synergistically induced the expression of hBD-2 and S100A9

and additively enhanced the expression of S100A7 and S100A8 in

keratinocytes (68). S100A7 may also havechemotactic potential in

psoriasis (15, 69). The LL-37 high expression in the psoriatic

epidermis may also accelerate inflammation through its capacity
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to enable pDC to recognize self-DNA via TLR9 (58). These AMPs

affect various immune cells resulting in triggering, sustaining, and/

or exacerbating psoriatic inflammation.
3.2 Chemokines, including CXCL1, CXCL2,
CXCL8 (IL-8), and CCL20

Keratinocytes stimulated with IL-17 showed increased

expression of multiple chemokines, including C-X-C motif

chemokine ligand (CXCL)1, CXCL2, CXCL3, CXCL5, CXCL8

(IL-8), and C-C motif chemokine ligand (CCL)20 (4, 70–72). The

CXCL chemokines likely attract neutrophils to the psoriatic

epidermis (3, 11). CCL20 may recruit CCR6+ cells, including
Frontiers in Immunology 04
Th17 and dendritic cells, to the skin (70). Inhibition of IL-17

normalizes expression of CXCL1, CXCL8 (IL-8), and CCL20 to

the levels associated with non-lesional skin (54).
3.3 TNF-a, and IL-36

Keratinocytes stimulated with TNF-a, IL-17A, IL-22, and IL-1b
produce IL-36 (46). IL-36 stimulates keratinocytes themselves to

produce TNF-a and IL-17C (47, 48). TNF-a activates mDCs,

leading to production of IL-23. IL-36 drives IFN-a production in

pDCs, as well as IL-1b, IL-6, and IL-23 production in mDCs (46).

These cytokines secreted by keratinocytes form an aggravating

inflammatory loop in the pathogenesis of psoriasis.
FIGURE 2

Crosstalk from keratinocytes to immune cells in psoriasis. Activated keratinocytes produce antibacterial peptides, chemokines, and inflammatory
cytokines, and affect immune cells in psoriasis. pDC, plasmacytoid dendritic cell; mDC, myeloid DC; CXCL, C-X-C motif chemokine ligand;
CCL, C-C motif chemokine ligand; IL, interleukin; TNF, tumor necrosis factor.
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3.4 IL-23

Several reports indicate that keratinocytes produce IL-23.

Moreover, immunostaining of psoriatic lesions revealed enhanced

expression of IL-23 in keratinocytes (73, 74). Park et al., using

publicly available single-cell RNA sequencing data from human

samples, revealed that IL-23 expression was detectable in psoriatic

keratinocytes as well as DCs (75). Kelemen et al. reported that

psoriasis-associated inflammatory conditions induced IL-23 mRNA

expression in normal huma epidermal keratinocytes (76). Li et al.,

using a genetic mouse model, showed that keratinocyte-produced

IL-23 was sufficient to cause chronic skin inflammation with an IL-

17 profile and that epigenetic control of IL-23 expression in

keratinocytes was important for chronic skin inflammation (77).

However, whether the expression of IL-23 in keratinocytes in

psoriasis contributes to the development of psoriasis remains to

be elucidated.
4 Effect of IL-17 or IL-23 inhibition
on immune cells and keratinocytes
in psoriasis

As mentioned above, IL-23 and IL-17 play important roles in

the pathogenesis of psoriasis. Indeed, biologics, including IL-23

inhibitors and IL-17 inhibitors, greatly impact keratinocytes and

immune cells in psoriasis.

Secukinumab (an anti-IL-17 antibody) and guselkumab (an

anti-IL-23 antibody) decrease the frequencies of inflammatory

monocyte-l ike cel ls , inflammatory DC-like cel ls , and

CD4+CD49a-CD103- T cells (78). Furthermore, bimekizumab (an

anti-IL17A/F antibody) induces normalization of keratinocyte-

related gene products, including CXCL1, CXCL8, CCL20, IL-36g,
and IL-17C, to levels associated with non-lesional skin (54).

Krueger et al. reported that secukinumab caused reductions in

critical downstream targets of IL-17A in the skin, including the

AMPs (DEFB4A/b-defensin 2 and the S100 family) in addition to

reductions in IL-23 and IL-17 in transcriptomic analyses (79).

Inhibition of IL-23 or TNF-a also caused reductions in the gene

expression of Th17-induced mediators by keratinocytes, including

antimicrobial peptides (80, 81). Mehta et al. reported that inhibition

of IL-23 reduced memory T cells while maintaining regulatory T

cells, and vice versa for secukinumab (78). Furthermore, Whiley
Frontiers in Immunology 05
also revealed that clinical anti-IL-23 therapy depleted IL-17-

producing Trm cells from the skin of patients with psoriasis (82).
5 Conclusion

In psoriasis, a variety of immune cells activate keratinocytes

(mainly through Th17 cytokines), resulting in their abnormal

differentiation and proliferation. Activated keratinocytes produce

AMPs, chemokines, and various cytokines, which cause further

inflammation and the recruitment of inflammatory cells. In

addition, keratinocytes activate themselves by producing IL-36,

IL-17C, and TNF-a. The crosstalk between immune cells and

keratinocytes contributes to the development and maintenance

of psoriasis.
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