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A simplified machine learning
model utilizing platelet-related
genes for predicting poor
prognosis in sepsis

Yingying Diao, Yan Zhao, Xinyao Li , Baoyue Li ,
Ran Huo and Xiaoxu Han*

National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The
First Hospital of China Medical University, Shenyang, China
Background: Thrombocytopenia is a known prognostic factor in sepsis, yet the

relationship between platelet-related genes and sepsis outcomes remains elusive.

We developed a machine learning (ML) model based on platelet-related genes to

predict poor prognosis in sepsis. The model underwent rigorous evaluation on six

diverse platforms, ensuring reliable and versatile findings.

Methods: A retrospective analysis of platelet data from 365 sepsis patients

confirmed the predictive role of platelet count in prognosis. We employed

COX analysis, Least Absolute Shrinkage and Selection Operator (LASSO) and

Support Vector Machine (SVM) techniques to identify platelet-related genes from

the GSE65682 dataset. Subsequently, these genes were trained and validated on

six distinct platforms comprising 719 patients, and compared against the Acute

Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ-

Failure Assessment (SOFA) score.

Results: A PLT count <100×109/L independently increased the risk of death in

sepsis patients (OR = 2.523; 95% CI: 1.084-5.872). The ML model, based on five

platelet-related genes, demonstrated impressive area under the curve (AUC)

values ranging from 0.5 to 0.795 across various validation platforms. On the

GPL6947 platform, our ML model outperformed the APACHE II score with an

AUC of 0.795 compared to 0.761. Additionally, by incorporating age, the model’s

performance was further improved to an AUC of 0.812. On the GPL4133

platform, the initial AUC of the machine learning model based on five platelet-

related genes was 0.5. However, after including age, the AUC increased to 0.583.

In comparison, the AUC of the APACHE II score was 0.604, and the AUC of the

SOFA score was 0.542.

Conclusion: Our findings highlight the broad applicability of this ML model,

based on platelet-related genes, in facilitating early treatment decisions for

sepsis patients with poor outcomes. Our study paves the way for

advancements in personalized medicine and improved patient care.
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Introduction

Sepsis is a serious condition that arises from a systemic

inflammatory reaction in the host, leading to immunological

dysregulation and potentially life-threatening organ failure (1). In

2017, sepsis infected 48·9 million individuals worldwide, resulting

in 11 million deaths, which accounted for 19·7% of all global deaths

(2). Severe sepsis is estimated to occur in at least 20·16 million cases,

resulting in a minimum of 190,000 deaths (3, 4). In China, sepsis

affects one in every five ICU patients, with a 30-day mortality rate of

29·5% and a 90-day mortality rate of 35·5% (5, 6). In contrast, the

average 30-day mortality rate in Europe and North America is

24·4% (7). These statistics highlight the higher sepsis mortality rates

in China compared to Europe and North America.

Early detection and treatment play a pivotal role in improving the

survival rate of patients with poor prognoses. Various scoring systems,

such as the Acute Physiology and Chronic Health Evaluation II

(APACHE II), Sequential Organ-Failure Assessment (SOFA), and

others, have been developed to aid in determining the prognosis of

sepsis patients. However, these systems are limited in their clinical

usefulness due to their complexity. Some researchers have developed

machine learning models for sepsis prognosis using genes (8, 9), but the

lack of extensive validation across different microarray platforms hinders

the assurance of their reliability and universality. Consequently, there is

an urgent and pressing need to develop a simplified and universally

applicable prognosis prediction system for clinical applications.

A low platelet count is an independent risk factor for poor

outcomes in patients with sepsis (10–12). Thrombocytopenia,

defined as a low platelet count, is prevalent in individuals with

severe sepsis, occurring in 15-50% of patients with sepsis and septic

shock (11, 13, 14). Clausius et al. divided 931 sepsis patients into

four groups based on their platelet count at admission and found

that those with a platelet count <100×109/L had a greater risk of

mortality, and a low platelet count was strongly associated with an

increase in 1-year mortality (13). Additionally, the platelet count of

non-survivors recovers at a slower rate or not at all compared to

survivors after acute sickness (15). These findings suggest a strong

association between platelets and sepsis outcomes.

Platelet-related gene loci are involved in regulating platelet

production (16), and their mRNA expression in illnesses reflects

platelet condition (17). Lydia et al. analyzed the transcriptomes of 180

patients with sepsis whose primary disease was community pneumonia

and found that platelet mRNA expression increased in patients with less

severe sepsis but decreased as the disease progressed (18). Kim et al.

investigated six GEO datasets and found that the platelet pathway was

activated in sepsis survivors but not in non-survivors (19). These

findings suggest that platelet-related gene expression is associated with

sepsis prognosis. Gene expression profiling can provide extensive

information on gene expression, and machine learning can be used to

extract hidden information from large amounts of data. However, few

studies have applied machine learning techniques to investigate whether

platelet-related genes can predict sepsis prognosis.

This study aimed to develop a simplified machine learning

model based on platelet-related genes to predict sepsis prognosis.
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For the first time, data from six different microarray platforms were

used to validate the model, demonstrating its universality and

robustness. Moreover, by comparing the model to the APACHE

II and SOFA scores, it was shown to have strong prognostic efficacy

in sepsis prognosis. Finally, predicting the molecular interactions

between platelet-related genes and antiplatelet drug (aspirin,

clopidogrel and indobufen) provided a foundation for future

treatment strategies.
Methods

Clinical data collection

We conducted a retrospective cohort study and collected

clinical information on 365 patients with positive blood cultures

from the microbiological database of the First Affiliated Hospital of

China Medical University between January 2017 and June 2019.

The inclusion criteria were based on documented or suspected

infection, the presence of systemic signs and symptoms of

inflammation, and positive blood culture results (20). Exclusion

criteria were patients under the age of 18 and those with complex

bacterial infections. The study was approved by the Ethics

Committee of the First Affiliated Hospital of China Medical

University. The 365 patients were divided into two groups based

on different laboratory data: white blood cell (WBC) count >

9·5×109/L, hemoglobin <100 g/L, platelet count < 100×109/L, C-

reactive protein (CRP) > 8 mg/L, and procalcitonin > 0·5mg/L. The
elderly group was divided based on age, with those aged ≥60 years

considered as elderly.
Ethics

A retrospective analysis was conducted on data from the First

Affiliated Hospital of China Medical University. The Institutional

Review Board of the hospital granted an exemption for this study.
Platelet genetic data collection

The mRNA expression data and associated clinical data for

platelet genetics were collected from the GEO and ArrayExpress

databases using the search term “sepsis”. The datasets were selected

based on the following criteria: (1) research conducted on “Homo

sapiens” using array expression profiling, (2) whole blood or white

blood cells used as tissue sources, (3) clinical data on death and

survival, and (4) at least ten samples included in each dataset. We

selected 11 datasets (Table 1), with the GSE65682 dataset serving as

the training set and the remaining datasets serving as the testing set.

The annotation file provided by the microarray manufacturer was

used to match each probe to a gene symbol. The Robust Multiple

Array (RMA) algorithm was used to background-correct and

standardize the microarray raw data (21).
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Platelet signature gene selection

We conducted a stepwise regression analysis on platelet-related

genes, using a significance threshold of a=0·05 and discarding non-

significant genes at each step (18), to identify genes associated with

sepsis-related mortality. The selected genes were further screened

using two machine learning techniques, Least Absolute Shrinkage

and Selection Operator (LASSO) and Support Vector Machine

(SVM), to reduce the dimensionality of the dataset. LASSO uses a

parameter reduction method to select features, and we used the

glmnet program with 10-fold cross-validation to identify the most

relevant genes (22). The random forest algorithm’s recursive feature

elimination (RFE) is a supervised machine learning method that

iteratively removes the least important features based on model

performance until the required features are selected (23).
Analysis of gene set enrichment

Gene Set Enrichment Analysis (GSEA) is a powerful tool that

can rank all genes to predict changes in gene expression between

two groups (24). We retrieved canonical pathways containing 3090

gene sets from the MSigDB website at https://www.gsea-

msigdb.org/gsea/msigdb/. We used the “limma” package in R to

identify differentially expressed genes between the survivor and

non-survivor groups, or between high and low expression groups,

and then used GSEA to compare the differences in canonical

pathways. A significance threshold of P<0·05 and a false discovery

rate (FDR) of 25% were used to identify significantly

enriched pathways.
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Construction of a model of
prognosis for individuals with
sepsis based on platelet genes

We used the mlr3 package to evaluate three machine learning

models: logistic regression (LR), decision tree (DT), and random

forest (RF). LR is a well-established linear prediction technique that

has been widely used in recent years for classification problems in

medicine (25). DT is a supervised learning algorithm that can

effectively handle large amounts of medical data by selecting the

most informative attributes to make predictions (26). RF is a

popular machine learning method that generates multiple

decision trees by randomly selecting features and training

samples, and then combines the results of these trees to make

final predictions. It is often used for building classification models

(27). In this study, we used sepsis-related mortality as the response

variable and platelet-related signature genes as the explanatory

variables. We randomly divided all samples with clinical

outcomes from the GSE65682 dataset into training (70%) and

validation (30%) sets for 5-fold cross-validation. We measured

the predictive performance of the machine learning models using

the area under the receiver operating characteristic (ROC) curve.
Validated on a wide range of
microarray platforms

We obtained external datasets from the GEO (https://

www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://www.ebi.ac.uk/

arrayexpress/) databases. The GEO dataset consisted of platforms
TABLE 1 Filtered public datasets.

Accession Patients Country Timing of
mortality

Mortality Platform

GSE65682 ICU patients with suspected CAP, HAP. Netherlands 28-day 114/479 GPL13667

GSE48080 Male ICU patient suffering from CAP. Brazil NA 5/10 GPL4133

GSE134347 ICU patients Netherlands 28-day 77/156 GPL17586

GSE95233 ICU patients with septic shock identified according to the diagnostic criteria of the
American College of Chest Physicians/Society of Intensive Care Medicine

France 28-day 17/51 GPL570

GSE33118 Septic shock France NA 10/20 GPL570

GSE33119 Septic shock due to pneumonia France NA 10/20 GPL570

GSE106878 Septic shock Israel NA 13/47 GPL10295

GSE54514 ICU patients with sepsis Australia NA 9/35 GPL6947

E-MTAB-
4451

ICU patients with sepsis caused by CAP UK 28-day 52/106 GPL10558

E-MTAB-
5273

Patients with sepsis caused by CAP and FP UK 28-day 15/72 GPL10558

E-MTAB-
5274

Patients with sepsis caused by CAP and FP UK 28-day 14/106 GPL10558
f

CAP, community acquired pneumonia; HAP, hospital acquired pneumonia; FP, fecal peritonitis.
rontiersin.org

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.3389/fimmu.2023.1286203
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Diao et al. 10.3389/fimmu.2023.1286203
GPL4133 (GSE48080), GPL17586 (GSE134347), GPL570 (GSE95233/

GSE33118/GSE33119), GPL10295 (GSE106878), and GPL6947

(GSE54514). The ArrayExpress dataset was based on platform

GPL10558 (E-MTAB-4451/E-MTAB-5273/E-MTAB-5274). Prior to

model verification, datasets from the same platform were normalized

using the “sva” R package.
Molecular docking

To evaluate the binding capacity of antiplatelet drug (aspirin,

clopidogrel and indobufen) and associated proteins, molecular

docking was performed using AutoDock4 (v 4·2·6). Molecular

dynamics simulation was not included in this study, which focused

solely on molecular docking. The reliability of docking and accuracy

of ligand placement were assessed using the binding energy (BE). The

3D docking visualization was done using PyMOL (v 2·2·0).
Other statistical analysis

All statistical analyses were performed using R software (version

4·2·3). The Chi-square test, t-test, or Mann-Whitney test were used

to examine statistical demographic characteristics and laboratory

test results. Univariate and multivariate Cox regression analyses

were used to identify independent risk factors that influence the
Frontiers in Immunology 04
prognosis of sepsis patients. A p-value of less than 0·05 was

considered statistically significant.
Results

Thrombocytopenia as a risk
factor for mortality

Out of the 365 patients with sepsis, 58 (15·9%) died during

hospitalization, while 307 were discharged. Of the total patients,

248 were men and 117 were women. Table 2 shows that among

the patients, 2·7% had malignant tumors (excluding blood

tumors), 9% had blood diseases (including blood tumors), and

35·3% were surgical patients with sepsis. While it is established

that individuals with diabetes face an increased risk of infection,

the impact of diabetes on sepsis outcomes and the underlying

mechanisms involved remain subjects of ongoing debate (28).

This study, however, did not find any evidence of a detrimental

effect of diabetes on sepsis outcomes. Nonetheless, our analysis

did reveal that hypertension was associated with a higher

proportion of non-surviving patients compared to the

surviving group.

Univariate logistic analysis was performed to examine the

demographic factors and laboratory test results, as presented in

Table 3. Male sex (OR = 2·568), lower hemoglobin (OR = 2·577),
TABLE 2 365 patients’ clinical characteristics and laboratory findings.

Variable All Group P value

Dead Discharged

Clinical characteristics

Age, yrs 61·0 (50·0-69·5) 59·5 (52·5-72·5) 61·0 (50·0-69·0) 0·767

Male 248/365 (67·9) 48/58 (82·8) 200/307 (65·1) 0·008

Prior medical history

Diabetes 70/365 (19·2) 12/58 (20·7) 58/307 (18·9) 0.436

Hypertension 82/365 (22·5) 19/58 (32·8) 63/307 (20·5) 0.033

Malignancy 15/365 (2·7) 1/58 (1·7) 14/307 (4·6) 0·318

Hematological disease 33/365 (9·0) 10/58 (17·2) 23/307 (7·5) 0·018

Surgical complications 129/365 (35·3) 14/58(24·1) 115/307 (37·5) 0·052

Others 188/365 (51·5) 33/58 (56·9) 155/307 (50·5) 0·371

Laboratory findings

WBC count, ×109/L 9·6 (5·6-13·9) 8·5 (3·2-14·0) 9·7 (5·9-13·9) 0·285

Hemoglobin, g/L 106 (86-125) 93 (67-115) 108 (89-127) <0·0001

Platelet count, ×109/L 166·0 (102·0-260·0) 106·0 (34·8-189·3) 176·0 (114·0-270·0) <0·0001

CRP, mg/L 99·7 (50·9-166·1) 99·7 (58·3-210·6) 97·9 (49·4-162·3) 0·226

PCT,mg/L 1·22 (0·3-14·4) 3·4 (0·8-16·4) 0·9 (0·3-12·4) 0·156
Data are presented as median (IOR) or n/total(%). P value means the comparison between dead group and discharged group of sepsis; WBC, white blood cell; CRP, C-reactive protein; PCT
procalcitonin.
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lower platelets (OR = 3·147), and higher procalcitonin (OR = 2·507)

were all found to increase the likelihood of mortality. Further, when

these four significant predictors of mortality were included in the

multivariate logistic regression model, it was revealed that sepsis

patients with PLT<100x109/L had a higher risk of death (OR =

2·523; 95% CI: 1·084-5·872), which is an independent risk factor for

death in sepsis patients.
Identification of five platelet-related genes
as potential prognostic indicators for sepsis

To develop a machine model that is compatible with multiple

microarray platforms, we initially merged data from seven

microarray platforms, comprising a total of eleven datasets. This

consolidation allowed us to acquire 5767 gene expression values

that were collectively expressed across seven microarray platforms.

480 platelet-related genes were collected from the GSEA (29).

Through Venn analysis of the 5767 co-expressed genes and the

480 platelet-related genes, we identified a total of 207 genes that

were both platelet-related and co-expressed (Figure 1A).
Frontiers in Immunology 05
In the training set GSE65682, a Cox model was fitted to the

initial set of 207 genes, gradually eliminating less significant genes.

Eventually, 91 genes were strongly correlated with mortality, as

depicted in Figure 1B. To further reduce the dimensionality of the

data, LASSO and SVM-RFE algorithms were employed to identify

additional crucial genes associated with mortality. LASSO employed

10-fold cross-validation to adjust penalized parameters and selected

38 distinct genes from the pool of 91 genes (Figures 1C, D).

Meanwhile, SVM-RF identified eight genes. By performing a

Venn analysis on the co-expressed genes identified by both

approaches (Figure 1E), a total of five important genes were

identified: GTPBP2, ALDOA, PRKAR2A, KIF2C, and NHLRC2.
Implication of five genes in platelet
signaling pathway regulation

By conducting GSEA on samples with clinical outcomes from

the GSE65682 dataset, we identified a total of six platelet signal

pathways that were enriched in the survival group. These pathways

encompassed various aspects of platelet biology, including platelet
TABLE 3 Analysis of sepsis prognostic factors.

Number of
patients

Proportion (%) Univariate Cox analysis Multivariate Cox analysis

HR (95% CI for HR) P value HR (95% CI for HR) P value

Sex 0·010 0·104

Female 117 32·1 1·00 1·00

Male 248 67·9 2·57 (1·25-5·28) 2·26 (0·85-6·01)

Age 0·178

≥60 202 55·3 1·00

<60 163 44·7 0·68 (0·39-1·19)

WBC 0·817

>9·5 183 50·1 1·00

≤9·5 182 49·9 0·94 (0·53-1·64)

Hemoglobin 0·001 0·366

>90 255 69·9 1·00 1·00

≤90 110 30·1 2·56 (1·44-4·55) 1·47 (0·64-3·36)

Platelet <0·0001 0·032

>100 276 75·6 1·00 1·00

≤100 89 24·4 3·15 (1·75-5·66) 2·52 (1·08-5·87)

CRP 0·812

>8 184 95·3 1·00

≤8 9 4·7 0·82 (0·16-4·13)

PCT 0·042 0·147

>0·5 127 63·8 2·51 (1·03-6·09) 1·99 (0·79-5·05)

≤0·5 72 36·2 1·00 1·00
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activation, signal transduction, and aggregation pathways, as well as

platelet-mediated interactions with blood vessels and circulating

cells. Additionally, we found that the platelet aggregation

(thrombosis) pathway, RUNX1-regulating genes involved in

megakaryocyte differentiation, platelet function pathway, platelet
Frontiers in Immunology 06
calcium homeostasis pathway, and platelet homeostasis pathway

were also enriched (Figure 2A).

To investigate whether the five identified genes are involved in

the regulation of aforementioned pathways, we divided all sepsis

samples with clinical outcomes into high and low expression groups
B C

DE

A

FIGURE 1

Screening for platelet-related genes linked to sepsis prognosis. (A) Platelet-related genes expressed in the training set GSE65682. (B) In the training
set, a forest plot of platelet-related genes correlated with prognosis. (C, D) LASSO-screened feature genes. (E) LASSO and SVM-RFE search for
platelet-related genes that are shared.
B C

D E F

A

FIGURE 2

The connection between 5 genes and the platelet classical pathway. (A) Platelet pathways differ between non-survivors and survivors. (B) Platelet
pathway differences between GTPBP2 high and low expression groups. (C) Platelet pathway differences between the ALDOA high expression and
low expression groups. (D) Differences in platelet pathways between the PRKAR2A high and low expression groups. (E) Platelet pathway differences
between KIF2C high and low expression groups. (F) Platelet pathway differences between NHLRC2 high and low expression groups.
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based on the median expression levels of the five genes: GTPBP2,

ALDOA, PRKAR2A, KIF2C, and NHLRC2. The GTPBP2

overexpression group exhibited enrichment in the platelet

activation, signal transduction, and aggregation pathways

(Figure 2B). In the ALDOA high expression group, we found

enrichment in four pathways: platelet activation, signal

transduction, and aggregation pathways, platelet aggregation

(thrombosis) pathway, platelet calcium homeostasis pathway, and

platelet homeostasis pathway (Figure 2C). Similarly, the PRKAR2A

high expression group showed enrichment in three pathways:

platelet activation, signal transduction, and aggregation pathways,

platelet calcium homeostasis pathway, and platelet homeostasis

pathway (Figure 2D). On the other hand, the KIF2C low

expression group exhibited enrichment specifically in the platelet-

mediated interactions with blood vessels and circulating cells

pathway (Figure 2E). And the NHLRC2 low expression group

displayed enrichment in the platelet calcium homeostasis pathway

and platelet homeostasis pathway (Figure 2F).

In addition to the pathways mentioned above for the survivor

and non-survivor groups, the GTPBP2 high expression group

showed enrichment in the response to elevated platelet cytosolic
Frontiers in Immunology 07
Ca2+ pathway. The ALDOA high expression group exhibited

enrichment in the response to elevated platelet cytosolic Ca2+

and platelet sensitization by low-density lipoprotein (LDL)

pathways. Similarly, the PRKAR2A high expression group showed

enrichment in the response to elevated platelet cytosolic Ca2+ and

platelet sensitization by LDL pathways (Figure S1).

Development and cross-platform
validation of machine learning models for
five platelet-related genes

We utilized GSE65682 as the training set and used the

normalized mRNA expression of the five genes as the input

variable and the death of sepsis patients as the outcome event to

build a prognosis model. Figure 3 shows the area under the curve

(AUC) obtained when using 5-fold cross-validation to compare the

training effects of LR (AUC=0·600), DT (AUC=0·664), and RF

(AUC=0·858) models in the training set. Finally, RF was chosen to

perform prognostic classification on the data.

We examined the predicted effect of the machine learning model

across platforms by using prognostic classification on data from the
B C D

E F G

A

FIGURE 3

Machine learning model selection and verification. (A) LR, DT, and RF models’ training effects in the training set. (B) GPL4133 platform’s AUC. (C)
GPL10558 platform’s AUC. (D) GPL17586 platform’s AUC. (E) GPL570 platform’s AUC. (F) GPL10295 platform’s AUC. (G) GPL6947 platform’s AUC.
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corresponding platforms. To minimize analytical errors, datasets

from the same platform were first removed from batch effects. The

datasets from six platforms were then standardized and processed for

validation using Z-Score. The AUCs of GPL4133 (GSE48080),

GPL10558 (E-MTAB-4451/E-MTAB-5273/E-MTAB-5274),

GPL17586 (GSE134347), GPL570 (GSE95233/GSE33118/

GSE33119), GPL10295 (GSE106878), and GPL6947 (GSE54514)

were 0·5, 0·557, 0·620, 0·672, 0·752, and 0·795, respectively (Figure 3).

A study has provided evidence that randomly selected genes from

the human genome occasionally demonstrate superior prognosis

prediction abilities compared to selected gene features (30). To

evaluate the performance of the model we constructed, a validation

process was conducted. We randomly selected 500 genes and

organized them into 100 genomes, with each genome comprising 5

genes. These randomly generated genomes were then employed to

develop 100 new machine models, utilizing GSE65682 as the training

set. Subsequently, these models were validated on six distinct

platforms, allowing us to assess their effectiveness and robustness.

By comparing the area under the curve (AUC) between the

model constructed with non-random platelet-related genes and the

model constructed with random genes, we observed that, on the

majority of platforms, the non-random platelet-related gene model

exhibited superior performance compared to 95% of the random

gene model, as indicated by a higher area under the curve (AUC).

However, it is worth noting that the GPL4133 platform showed

different results, as illustrated in Figure S2.
Comparison of sepsis prognosis accuracy
between the machine learning model and
the APACHE II or SOFA score

To assess the predictive efficacy of the five platelet-related gene

models in sepsis patient prognosis, we conducted a comparative
Frontiers in Immunology 08
analysis with the APACHE II score on the GSE54514 dataset

(GPL6947), the APACHE II and the SOFA scores on the

GSE48080 dataset (GPL4133). This evaluation aimed to

determine the relative performance and effectiveness of the model

in predicting outcomes in sepsis patients.

On the GPL6947 platform, the machine learning model based

on five platelet-related genes achieved an AUC of 0.795 (Figure 3G).

By incorporating age into the model, further training resulted in an

improved AUC of 0.812 (Figure 4A). In comparison, the AUC of

the APACHE II score was 0.761 (Figure 4B). Notably, on this

platform, the machine learning models demonstrated significantly

superior performance in predicting the prognosis of sepsis

compared to the APACHE II score.

On the GPL4133 platform, the machine learning model based

on five platelet-related genes achieved an AUC of 0.5 (Figure 3B).

However, by incorporating age into the model, the AUC improved

to 0.583 (Figure 4C). In comparison, the AUC of the APACHE II

score was 0.604 (Figure 4D), and the AUC of the SOFA score was

0.542 (Figure 4E). Remarkably, on the GPL4133 platform, the

predictive performance of the machine learning model developed

for five platelet-related genes and age aligns closely with the

performance of the APACHE II score and SOFA score.
Platelet related protein and antiplatelet
drug interaction

According to the findings, the major genes influencing sepsis

prognosis were GTPBP2, ALDOA, PRKAR2A, KIF2C, and NHLRC2.

Since antiplatelet drug (aspirin, clopidogrel and indobufen) possesses

antiplatelet and antiaggregation properties, we performed molecular

docking of these genes with aspirin using Autodock to confirm their

interaction. The 2D structures of antiplatelet drug (aspirin, clopidogrel

and indobufen) were available for download on PubChem, while the
B

C D E
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FIGURE 4

The AUC of the machine learning model and the APACHE II score. (A) GPL6947 Age+5-Gene AUC. (B) GPL6947 APACHE II AUC. (C) GPL4133 Age
+5-Gene AUC. (D) GPL4133 APACHE II AUC. (E) GPL4133 SOFA AUC.
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3D structures of ALDOA (PDB: 6XML), PRKAR2A (PDB: 5H78),

NHLRC2 (PDB: 6GC1), and KIF2C (PDB: 2HEH) were downloaded

from the PDB website. As PDB does not provide a 3D structure for

GTPBP2, we downloaded the confirmed alpha-fold structure

(UNIprotKB identifier: AF-Q9BX10-F1).

Aspirin had binding energies of -3·91, -4·13, -4·32, -3·1, and -3·92

kcal/mol to GTPBP2, ALDOA, PRKAR2A, KIF2C, and NHLRC2,

respectively. Clopidogrel (plavix) had binding energies of -3·78, -1·75,

-5·43, -0·74, and -4·12 kcal/mol to GTPBP2, ALDOA, PRKAR2A,

KIF2C, and NHLRC2, respectively. Indobufen had binding energies of

-3·29 -5·47, -4·41, -4·56, and -4·15 kcal/mol to GTPBP2, ALDOA,

PRKAR2A, KIF2C, and NHLRC2, respectively. Figure 5 depicts

additional information, such as atomic distances and binding site data.

From the above results, Apart from ALDOA and KIF2C, which exhibit

slightly weaker binding ability to Clopidogrel, the remaining antiplatelet

drugs demonstrate stable binding to these proteins.
Discussion

The timely diagnosis of sepsis patients with poor prognosis is

critical to improve clinical outcomes. In our study, we constructed a

machine learning model using five genes, including GTPBP2,

ALDOA, PRKAR2A, KIF2C, and NHLRC2, to identify sepsis

patients with a poor prognosis. To the best of our knowledge, this

is the first machine learning model to demonstrate its applicability

in predicting sepsis prognosis across various microarray platforms,

thereby filling a critical research gap. And, the results showed that

this model performed more reliably in predicting prognosis

compared to the APACHE II or SOFA score. Additionally,

molecular docking confirmed that aspirin can stably bind to the

proteins associated with these genes, providing a foundation for

future treatment.

Since the introduction of the Sepsis-3 standard (1), the

predictive importance of platelet count in the prognosis of sepsis

patients has been increasingly recognized. Jiang et al. investigated

the survival of 120 sepsis patients with urinary tract infections and

found that a continuous decrease in platelet count was associated
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with a poor prognosis in urosepsis patients (31). Similarly, Sinha

et al. discovered that platelet count on the first day of admission

could predict 28-day mortality in sepsis patients (32). However,

these studies were limited to specific sepsis infections or excluded

conditions such as hematological disorders and cancer, which are

common complications of cancer treatment (33). Excluding cancer

patients may introduce bias in the research. To address this issue,

Schupp et al. investigated the relationship between platelet count

and prognosis in 358 sepsis patients, including those with cancer,

and found that a continuous decrease in platelet count was

associated with increased 30-day mortality in sepsis and septic

shock patients (34). However, this study excluded patients who

acquired sepsis following surgery, which accounts for around 30%

of sepsis cases (35). Our study focused on a cohort of sepsis patients

hospitalized with hematological diseases, cancers other than

hematological cancers, postoperative complications, and other

diseases. We found that a platelet count <100 x 109/L was an

independent risk factor for death in sepsis patients, which is

consistent with previous studies.

Although recent studies have highlighted the crucial role of

platelet count in determining sepsis prognosis, there is a scarcity of

research on the relationship between platelet-related genes and

mortality. In our investigation, we identified GTPBP2, ALDOA,

PRKAR2A, NHLRC2, and KIF2C as genes related to sepsis death

using three distinct techniques. GTPBP2 is involved in signal

transduction via small GTPases and influences platelet activation

(36). Our study revealed that sepsis patients with high GTPBP2

expression had increased platelet activation, aggregation, and

thrombosis, as well as higher levels of intracytoplasmic calcium

ions in platelets. ALDOA is a platelet activation and degranulation

aldolase isoenzyme (37). In our study, ALDOA was implicated in

platelet activation, aggregation, and thrombus formation, as well as

other platelet activation activities. PRKAR2A encodes protein kinase

A (PKA), and PKA inhibition can cause platelet death and acute

platelet depletion, whereas PKA activation can protect platelets

from apoptosis and allow them to be removed (38). Our study

showed that the PRKAR2A high expression group was enriched in

platelet activation, aggregation, and thrombus formation, as well as
B C D E
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FIGURE 5

Simulations of protein-ligand interactions for molecular docking. (A) Aspirin - GTPBP2. (B) Aspirin - ALDOA. (C) Aspirin - PRKAR2A. (D) Aspirin -
KIF2C. (E) Aspirin - NHLRC2. (F) Clopidogrel -GTPBP2. (G) Clopidogrel - ALDOA. (H) Clopidogrel - PRKAR2A. (I) Clopidogrel - KIF2C. (J) Clopidogrel
- NHLRC2. (K) Indobufen-GTPBP2. (L) Indobufen- ALDOA. (M) Indobufen - PRKAR2A. (N) Indobufen - KIF2C. (O) Indobufen - NHLRC2.
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platelet and calcium ion expression in platelets, indicating that

PRKAR2A is involved in the platelet activation process. KIF2C is

involved in the development of megakaryocytes and the generation

of platelets (39), while the connection between NHLRC2 and

platelets is unknown. Our study revealed that KIF2C is also

involved in platelet-mediated interactions with blood vessels or

circulating cells in sepsis patients, and NHLRC2 is involved in

platelet homeostasis and calcium homeostasis in platelet cytoplasm,

although the specific mechanism of these two genes

remains unknown.

These five genes are involved in platelet activation, thrombus

formation, and platelet interaction with endothelial cells and

immune cells. Platelet activation reduces platelet survival, which

contributes to the decline in platelet count (40). Therefore, we

hypothesize that these five genes influence platelet number by

modulating platelet activation and other processes. It has been

shown that nonsurvivors of sepsis have various immunosuppressive

innate and adaptive immune systems (41). Our study showed that

platelet activation, aggregation, and thrombus formation in non-

survivors, as well as platelet interaction with circulating endothelial

and immune cells, regulation of megakaryocytes by RUNX1 and its

partner CBFB, platelet homeostasis, and cytoplasmic calcium

homeostasis were all inhibited, consistent with previous research.

These findings suggest that these five genes may influence the

immunological state and prognosis of sepsis patients by

regulating platelet-related pathways. However, further research is

necessary to fully understand the mechanisms involved.

Several studies have utilized genomic expression profiles to

develop diagnostic and prognostic models for sepsis (42–45).

However, as these investigations involve tens or hundreds of

genes, they are challenging to apply in clinical practice. Some

researchers have developed sepsis prognostic models

incorporating only a few genes (8, 9), but the application of

various microarray technologies has not been established.

Different microarray platforms utilize different materials and

methodologies, which may lead to contradictory results and

reduce the generalizability of machine learning models.

In this study, we developed a machine learning model based on

platelet-related genes and validated it using data from six different

platforms. To our knowledge, this is the first time that a machine

learning model has been constructed and validated using platelet-

related genes across multiple microarray platforms. To further

validate the prognostic predictive capability of our model

constructed using screened genes, we established a machine

model based on random genes. Across all validation platforms,

the AUC of most machine models utilizing random genes remained

below 0.6. However, machine models based on platelet-related

genes, with the exception of the GPL4133 and GPL10558

platforms, achieved an AUC above 0.6 for all validation

platforms. Notably, a recent study revealed that even widely used

and authoritative critical illness evaluation systems such as

APACHE II and SOFA in clinical practice failed to attain an

AUC of 0.7 for predicting mortality rates at various time points

in sepsis (46). Consequently, the machine model established in this

study demonstrates commendable prognostic prediction

performance. The low verification effect observed in the GPL4133
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platform may be attributed to the small sample size, consisting of

only 5 survivors and 5 non-survivors. GPL10558 platform combines

multiple standardized datasets. Although these datasets are tested

on the same platform, batch effects can still occur, which may

introduce bias in the merged data (47). Additionally, the use of

different experimental instruments and reagents based on physical

and chemical principles, due to different platforms in the training

set, can result in poor compatibility of the obtained expression

spectra (48). Consequently, the data testing on this platform may

yield lower AUC. To address these challenges, recent studies have

proposed methods such as quantile normalization and cross

platform normalization to mitigate cross-platform bias and batch

effects (49) Future studies can employ these methods to further

validate the conclusions of this study. Furthermore, we compared

AUC of this model with the APACHE II and SOFA scores to

evaluate its prognostic predictive effect. A high APACHE II or

SOFA score indicates a worsening illness, a poor prognosis, and an

increased risk of death (50, 51). In this study, we made an intriguing

discovery regarding the prognostic performance of the machine

learning model based on five platelet-related genes. Whether on the

GPL6947 platform with the highest prediction effectiveness or the

GPL4133 platform with the lowest prediction effectiveness, our

model consistently demonstrated robust prognostic performance

when age was incorporated. Remarkably, the model’s performance

was not only comparable to the conventional APACHE II score or

SOFA score but even surpassed them in certain cases. Moreover,

our model offers the distinct advantage of being more efficient and

convenient for implementation in clinical practice.

Lastly, we used molecular docking to assess the interaction

capabilities of five major target proteins (GTPBP2, ALDOA,

PRKAR2A, NHLRC2, KIF2C) and antiplatelet drug (aspirin,

clopidogrel and indobufen). The binding energy range for these

five proteins with aspirin, clopidogrel, and indobufen are as follows:

-4.32 to -3.1 kcal/mol, -5.43 to -0.74 kcal/mol, and -5.47 to -3.29

kcal/mol, respectively. With the exception of ALDOA and KIF2C,

which exhibit slightly weaker binding to Clopidogrel, all other

platelet-related target proteins demonstrate stable docking ability

with antiplatelet drugs.

Our study has several limitations that must be acknowledged.

Firstly, merging the datasets resulted in the exclusion of many

genes, potentially resulting in the loss of some significant genes.

Further research is required to confirm these findings across

multiple microarray platforms. Secondly, to address the low

validation effects observed on certain platforms, it is necessary to

expand the sample size or validate the machine models using the

same batch of results. This will help ensure the reliability and

accuracy of the findings. Finally, while data mining tools were

utilized to confirm our findings, they must be validated through

clinical studies or animal tests.

In conclusion, this study is the first to investigate the prognostic

effect of platelet-related genes on sepsis prognosis and validate it

across six microarray platforms, comprising a total of 10 datasets.

Our research findings demonstrate that our model exhibits

prognostic performance that is at least comparable to the classic

APACHE II or SOFA scores. However, our model offers the

advantage of being more efficient and convenient for application
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in clinical practice. Additionally, molecular docking studies

confirmed that antiplatelet drug can effectively bind to the

proteins associated with these genes, providing a promising

foundation for future treatment strategies.
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SUPPLEMENTARY FIGURE 1

The connection between 3 genes and the platelet classical pathway. (A)
Platelet pathway differences between GTPBP2 high and low expression

groups. (B) Platelet pathway differences between the ALDOA high
expression and low expression groups. (C) Differences in platelet pathways

between the PRKAR2A high and low expression groups.

SUPPLEMENTARY FIGURE 2

The distribution of AUC values for both the non-random genemodels and the

random gene models across six validation platforms. (A) GPL4133 platform.

(B) GPL10558 platform. (C) GPL17586 platform. (D) GPL570 platform. (E)
GPL10295 platform. (F) GPL6947 platform.
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