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T-cell specificity to differentiate between self and non-self relies on T-cell

receptor (TCR) recognit ion of pept ides presented by the Major

Histocompatibility Complex (MHC). Investigations into the three-dimensional

(3D) structures of peptide:MHC (pMHC) complexes have provided valuable

insights of MHC functions. Given the limited availability of experimental pMHC

structures and considerable diversity of peptides and MHC alleles, it calls for the

development of efficient and reliable computational approaches for modeling

pMHC structures. Here we present an update of PANDORA and the systematic

evaluation of its performance in modelling 3D structures of pMHC class II

complexes (pMHC-II), which play a key role in the cancer immune response.

PANDORA is a modelling software that can build low-energy models in a few

minutes by restraining peptide residues inside the MHC-II binding groove. We

benchmarked PANDORA on 136 experimentally determined pMHC-II structures

covering 44 unique ab chain pairs. Our pipeline achieves a median backbone

Ligand-Root Mean Squared Deviation (L-RMSD) of 0.42 Å on the binding core

and 0.88 Å on the whole peptide for the benchmark dataset. We incorporated

software improvements to make PANDORA a pan-allele framework and

improved the user interface and software quality. Its computational efficiency

allows enriching the wealth of pMHC binding affinity andmass spectrometry data

with 3D models. These models can be used as a starting point for molecular

dynamics simulations or structure-boosted deep learning algorithms to identify

MHC-binding peptides. PANDORA is available as a Python package through

Conda or as a source installation at https://github.com/X-lab-3D/PANDORA.
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1 Introduction

The ability of T-cells to recognize and eliminate infected or

transformed cells relies on their ability to distinguish between self

and non-self peptides presented by the Major Histocompatibility

Complex (MHC) on the surface of these cells. Upon recognition of a

non-self peptide by T-cell receptors (TCR), T-cells activate and

initiate an immune response. MHC class I (MHC-I) molecules

typically present intracellular antigens to cytotoxic CD8+ T-cells,

which eliminate the cell presenting the antigen. MHC-II molecules

present extracellular antigens to helper CD4+ T-cells, which assist

other immune cells by releasing cytokines and orchestrating the

immune response (1, 2). To unravel the mechanisms of peptide

presentation to T-cells and immune response, it is essential to

investigate how peptides bind to MHC molecules.

Understanding the mechanism of peptide-MHC (pMHC)

binding raises an intriguing research question regarding how

MHC molecules effectively bind to a wide range of peptides while

maintaining strong binding and specificity. Previous research

focusing on the structural aspects of pMHC complexes has

provided valuable insights into our understanding of antigen

presentation specificity (3) and peptide binding dynamics (4, 5).

Allele-specific residues at anchor positions and complementary

pockets in the MHC molecule play a significant role in

determining the promiscuity and specificity of peptide recognition

by MHC molecules (6, 7). Notably, the presence of hydrophobic

anchors and the formation of hydrogen bonds have been discovered

to stabilize the pMHC-II interaction (8, 9). Similarly, in the case of

MHC class I, peptide-dependent stability is achieved through the

establishment of conserved hydrogen bonds at the N and C termini

of peptides, along with anchor residues that fit into pockets of MHC

class I (10, 11). Furthermore, structural investigations have

provided insights into other mechanisms, such as the molecular

basis of autoimmune diseases (10) and T-cell recognition (11, 12).

The knowledge gained from structural studies has also facilitated

the design of novel therapies and can help the development of
Frontiers in Immunology 02
effective vaccine strategies (13, 14). Therefore, access to structural

information on pMHC is crucial for these advancements.

This work focuses on pMHC-II binding. MHC-II is crucial in

antigen presentation, particularly for extracellular antigens.

Additionally, MHC-II mediated CD4+ T-cell responses are

reported to account for the predominant immune responses

following cancer vaccine treatment (15–18). The MHC-II

complex consists of two membrane-anchored chains: an a- and

b-chain (Figure 1), and it can bind peptides up to 25 residues in

length (20, 21). The binding groove of MHC-II can hold a 9-mer

core (22). The residues outside the groove form the Peptide

Flanking Regions (PFR), namely the left (N-terminus) and right

(C-terminus) PFRs. A peptide is kept in place within the groove by

three or four main conserved binding pockets: Pockets 1, 4, 6, and 9

(Figure 1A, and alongside these, there are smaller auxiliary anchor

pockets (23, 24).

To accommodate a diverse range of antigens within the MHC

groove, the MHC locus stands out as the most polymorphic region

in the human genome (2, 25). With over 10,754 alleles for MHC

class II, there is a significant variation in MHC-II alleles and the

peptides they can bind (26). Unfortunately, only a few pMHC-II

structures have been experimentally resolved [about 240 entries in

the PDB, the Protein Data Bank (27)]. This necessitates the

development of fast, structure-based computational modeling

methods to overcome the scarcity of available pMHC-II

structures. However, only a few modeling methods have been

explicitly developed for pMHC-II complexes.

Most existing pMHC-II modelling methods rely on grid-based

docking, including pDock and EpiDock (28–33). Among them,

pDock has demonstrated improved performance in generating

peptide core conformations bound to MHC-II. The pDock’s

approach involves receptor modeling followed by flexible peptide

docking into the binding groove while retaining its starting

conformation using loose restraints. Current pMHC-II modeling

approaches are often limited in terms of usability due to: 1) long

computation times; 2) the use of closed-source software; 3) limited
BA

FIGURE 1

Overview of the pMHC-II complex (A) Representation of an MHC-II molecule by its accessible surface area, visualized with Protein Imager (19).
MHC-II consists of an a-chain (light blue) and a b-chain (dark blue). Shown are the four characteristic pockets in the binding groove (P1, P4, P6, and
P9), occupied by the corresponding peptide (orange) anchor residues. As modeling restraints (yellow), PANDORA uses the atomic contacts between
the peptide anchor residues and the MHC-II pockets. (B) Cartoon representation of pMHC-II. The peptide binding groove consists of two a-helices
on a floor of b-sheets, in which the peptide resides (PDB ID: 1DLH).
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coverage of diverse MHC alleles; and 4) uncertainty regarding the

quality of PFR conformations. Additionally, structural modelling of

pMHC-II complexes is fraught with challenges. It is not always clear

which region of a peptide forms the core and is directly anchored to

the MHC-II receptors (34, 35). Existing methods, such as

NetMHCIIpan-4.0 (36), can provide reasonably accurate

predictions for the binding core. Furthermore, the flexibility of

PFRs poses additional hurdles. To address these challenges, the

development of fast and pan-allelic pMHC-II modelling software is

required to integrate prediction of the binding core and generation

of plausible conformations for the entire peptide bound to MHC-II.

We present here the utility and performance of our pMHC

modelling software, PANDORA v2.0, for pMHC-II modeling and

its new version updates. We have earlier demonstrated

PANDORA’s reliable performance for modeling pMHC-I

complexes (37, 38). PANDORA leverages two pieces of domain

knowledge: 1) the high conservation of MHC structures and 2) the

anchoring of peptides to the main pockets of MHC molecules

(Figure 2). We benchmarked PANDORA on 136 experimentally

resolved pMHC-II structures, including mouse alleles. When

compared with an existing pMHC-II modelling technique, pDock

(32), and also with AlphaFold (39), we show that PANDORA

outperforms these methods in terms of generated model quality

and computational efficiency. Additionally, we evaluate the

effectiveness of the anchor prediction tool used in our approach

(NetMHCIIpan-4.0). PANDORA’s quality and speed show the

potential for boosting structure-based Deep Learning (DL)
Frontiers in Immunology 03
algorithms, making it a valuable tool in developing effective

vaccine designs. We also discuss the existing limitations of anchor

predictions and propose the integration of a structural and physics-

based anchor predictor as a potential solution. Furthermore,

we highlight the importance of further research in the

modeling of post-translational modifications (PTMs) on peptide-

MHC interactions.
2 Materials and methods

2.1 Structural template set building

Building the template dataset is similar to our previous work

(37) and is expanded to make it suitable for pMHC-II. PANDORA

retrieved structures of pMHC-II complexes from IMGT/

3Dstructure-DB (40) and filters for those with peptides of lengths

between 7 and 25 residues. Structures including the DM chaperone

and the CLIP peptide, both known to affect the MHC-II

conformation, are discarded (21, 41). The MHC-II alpha chain is

renamed as chain “M” and the beta chain is renamed as chain “N”

to make a distinction from MHC-I b2-microglobulin which is

renamed as chain “B”. The peptide chain is renamed as chain

“P”. For the benchmark experiment presented in this work, the

parsing resulted in a total of 136 pMHC-II templates, spanning over

32 a chain alleles, 81 b chain alleles, and a total of 44 unique MHC-

II ab pairs (see details in Supplementary Table S1).
FIGURE 2

Overview of the PANDORA pMHC modelling framework. PANDORA as an integrative modelling protocol, leverages two domain knowledge aspects:
the highly conserved nature of MHC structures and the binding of peptides to MHC pockets with anchor residues. PANDORA takes the sequence
information of a target peptide and MHC as input and selects a template pMHC structure from a template set based on sequence similarity. The
target peptide core is superposed onto the template peptide core. In flexible mode, it applies distance restraints for anchor residues. The framework
performs loop modeling of flexible regions and energy minimization of pMHC-II conformations. Conformations are ranked to select those
resembling the near-native conformation.
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2.2 BLAST databases generation

BLAST (v2.10) is used to assign allele names (needed by

NetMHCIIpan-4.0 for predicting binding cores) to the MHC

sequences provided by the user and, independently, for the

template selection step. The current version of PANDORA uses

two BLAST databases. The first one (BLAST-DB1) is generated

from the manually curated MHC sequences taken from https://

www.ebi.ac.uk/ipd/, and it is used to assign the allele name to any

MHC sequence provided by the user. This allele name will later be

used as input for NetMHCIIpan4.0 to predict the binding core (see

Template selection). The second one (BLAST-DB2) is generated

from the template set sequences extracted by the PDB files retrieved

as described above, and it is used for the template selection step.
2.3 Template selection

The template selection step has been updated from the first

version of PANDORA (which used allele type names to identify

templates) to a BLAST-based template selection. First, the target

MHC sequences are queried against the BLAST-DB2 database with

default parameters, and the results are ranked by percentage

sequence identities. Templates sharing the highest sequence

identity with the target sequences are selected and further ranked

by peptide alignment score. Our peptide alignment method

includes alignment of the binding core of the peptides followed

by the addition of gaps at both their termini to account for different

peptide lengths. The binding cores of the templates are derived from

their corresponding structures. The binding core for the query

peptide is predicted by NetMHCIIpan4.0. The peptides’ alignments

are then scored using a PAM30 substitution matrix. The highest-

ranking template is then selected for modeling.
2.4 Modeling

We perform 3D modeling as described previously. For MHC-II,

we restrain four anchor positions (P1, 4, 6, and 9) while keeping the

peptide flanking regions flexible during the modeling step. In the

default mode for pMHC-II cases, the whole peptide core is kept

fixed as the template conformation. PANDORA v2.0 also supports

restraints-flexible modelling mode for the peptide core, where users

can provide anchors’ restraints standard deviation, thereby

specifying the extent of deviation of restraints from those in the

templates in Angstroms. By default, 20 (adjustable) 3D models are

produced, which are ranked by MODELLER’s (42) internal

molpdf score.
2.5 L-RMSD calculation

The L-RMSD is calculated as described in (43) as the backbone

L-RMSD (including only the backbone atoms N, Ca, C, and O). We

calculate “Core L-RMSD” for the binding core residues of the
Frontiers in Immunology 04
peptide, “Flanking L-RMSD” for the flanking regions of the

peptide (i.e., the residues at the N-terminal of the first anchor and

at the C-terminal of the fourth anchor), and “Whole L-RMSD” for

all the residues of the peptide. The lower the L-RMSD, the better a

model is.
3 Results

3.1 Modeling performance on the
benchmark set

We benchmarked PANDORA’s performance in reproducing X-

ray crystal structures of pMHC-II complexes from the template set

(n = 136). We carried out a leave-one-out validation approach

where we iteratively removed a structure from the template

database and allowed PANDORA to predict the pMHC-II

complex using sequence and anchor information. To rule out the

impact of anchor predictions, the anchor positions provided to

PANDORA in this experiment were obtained from the target

experimental structure to assess the modelling quality (see

discussion on anchor prediction effects in the “NetMHCIIpan’s

anchor prediction” section).

We analyzed the distribution of the best model (i.e, the model

with the lowest L-RMSD) conformations obtained for the whole

and core peptide regions (Figures 3A, C, E; detailed information on

different RMSD values is reported in Supplementary Table S2). The

results demonstrate that for 91.1% (125 out of 136) cases,

PANDORA was able to sample at least one high-quality model

(whole peptide L-RMSD < 2 Å) with an overall mean L-RMSD of

1.11 ± 0.86 Å (i.e, Figure 3B). A small number of cases (11 out of

136) showed a relatively higher whole peptide L-RMSD of > 2 Å (see

Figures 3E, F, and “The PFR Conformation Evaluation” section).

We investigated the distribution of whole and core L-RMSDs over

various peptide lengths, as illustrated in Figure 3A. Our analysis

reveals a correlation between peptide lengths and the L-RMSD

values, with longer peptides exhibiting higher L-RMSD values

(Supplementary Figures S1A, B).

Furthermore, in terms of model ranking, we examined the

performance of PANDORA by reporting L-RMSD for the top-

ranked model (i.e., the conformation ranked as the top model using

molpdf scoring function) (Figures 3D, F; for details, see

Supplementary Figure S2). Our results show that PANDORA

achieved an 85% success rate (L-RMSD < 2 Å) for the top 5

ranked models in the entire template set.
3.2 PANDORA generates low-energy
conformations for the binding core

With four anchor positions in the binding groove, the structure

of pMHC-II is well-suited for a restraint-based modelling approach.

With the default mode (see Modelings in Methods), PANDORA

demonstrates high accuracy in reproducing high-quality core

conformations, with an average core L-RMSD of 0.49 ± 0.27 Å
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(93.38% of the cases having an L-RMSD < 1 Å) (Figures 3C, E). The

fully-flexible mode, which allows for flexibility in the peptides’

binding core, yielded an average core L-RMSD of 0.47 ± 0.2 Å

(Supplementary Figure S3). However, the restraints-flexible mode

increases the computational time by 90%, while marginally

enhancing the overall quality (~ 6.46 min/case in the fully flexible

mode vs. 3.75 min/case in the default mode).
3.3 Comparisons with AlphaFold
and pDock

We compared PANDORA’s performance against existing

approaches, such as pDOCK (32) and AlphaFold (39). To assess

the general performance of the pipeline, we used NetMHCIIpan’s

predicted anchor positions for this comparison.

pDock uses the ICM (Internal Coordinate Mechanics)

algorithm to perform a flexible peptide docking into the MHC

binding groove. During docking, the position of the peptide is only

loosely constrained so that it retains a conformation close to its

initial structure. For comparisons against pDock, we modeled

pMHC-II complexes using PANDORA for the cases reported by
Frontiers in Immunology 05
Khan and Ranganathan (32). We obtained a mean L-RMSD of 0.27

± 0.07 Å for Ca core while pDock achieved 0.59 ± 0.24 Å (Table 1).

pDock retained RMSD estimates by redocking experimental pMHC

X-ray structures; thus, the core residues are referred to as a priori.

PANDORA automatically predicts anchor residues (using

NetMHCIIpan-4.0 (36)) and a suitable template, generating

higher-quality peptide core conformations. We did not use pDock

to perform cross-docking on our template set since pDock is not

publicly available for download and usage.

We also compared PANDORA with one of the best AI methods

available for protein structure predictions, i.e., AlphaFold. AlphaFold

is an advanced deep neural network approach that achieves

unprecedented accuracy in protein folding predictions (44).

However, since AlphaFold relies on sequence conservation

information, it performs poorly on proteins where such

information is absent, such as antibody-antigens and peptides (e.g.,

synthetic peptides or frame-shift mutated peptides) (45). For an

objective comparison, we chose to use a version of AlphaFold that

also uses templates to predict MHC structures (colabfold (44)). Our

comparison shows that not all Alphafold-generated pMHC-II

conformations have the correct anchor positions. Out of four

randomly selected cases (Figures 4A–D), in two cases (PDB ID:
B

C D E F

A

FIGURE 3

Benchmark results on reproducing 136 pMHC-II complexes with X-ray structures. (A) Sampling performance of the PANDORA benchmark
experiment. The conformation with the lowest RMSD was chosen as the best RMSD model. A circular bar plot grouped based on peptide length
(represented by the numbers in the inner circle) reports the lowest backbone L-RMSD (Y-axis) for the whole peptide (navy) and binding core
(yellow). (B) An example of an average-quality 3D model generated by PANDORA. The target peptide (PDB ID: 4I5B) is marked in green; the template
structure (PDB ID: 2OJE) is marked in magenta; and the PANDORA model structure (best conformation among the top 5 ranked) is marked in
darkblue. (C, D) Histogram of the lowest backbone L-RMSD models in the peptide binding core vs. the whole peptide. (E, F) Complete performance
of PANDORA (modeling + scoring). Histogram for the top-ranked models by PANDORA in terms of backbone L-RMSD on the peptide binding core
vs. the whole peptide.
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3C5Z and 6PX6), AlphaFold was unsuccessful in predicting the

peptide’s conformation with the correct anchor residues

(Figures 4A, C). Notably, they were both part of AlphaFold’s

training set. This is mainly because PANDORA correctly identified
Frontiers in Immunology 06
the binding core for the four cases using NetMHCIIpan binding

core predictions (see “NetMHCIIpan4.0 performance” in the

next section).

Additionally, considering computational cost, PANDORA

outperforms AlphaFold (regarding resources) and pDock.

PANDORA is much more efficient considering template selection,

anchor prediction, and modeling require ~3-4 minutes (from 3.75 to

6.46 minutes per case, depending on the mode, with shorter times for

pMHC-I) on one core from an Intel(R) Xeon(R) Gold 6142 CPU @

2.60 GHz. While pDock reported requiring 10 minutes for modeling

on 2 CPUs 3.20 GHz (without homology modelling). Also, AlphaFold

requires a significant amount of computation power-up to 18 GB of

GPU power and 20 minutes to model a single pMHC case.
3.4 The impacts of binding core prediction
on PANDORA model quality

The interaction between the peptide binding core and the MHC

binding groove directly impacts the quality of a model; therefore,

choosing the correct binding core is critical. In the absence of user-
TABLE 1 Comparison of PANDORA and pDock in pMHC-II modelling.

PDB PANDORA’s best core Ca
L-RMSD (Å)

pDOCK Ca core L-
RMSD(Å)*

1FYT 0.38 0.35

1KLU 0.30 0.59

1T5W 0.24 0.65

1PYW NA 0.32

1SJE 0.21 0.37

1AQD 0.24 1.01
NA, not available. At this stage, PANDORA could not model one case as the peptide sequence
includes two non-canonical residues not handled by MODELLER.
The calculated core Ca L-RMSD (Å) on modeling 5 pMHC-II complexes using integrative
homology modeling and a grid-based docking method. PANDORA’s best model quality is
compared to pDock as no pDock scoring function was disclosed in pDock so it seems that
pDock reported the best RMSDs in their paper. *Data extracted from Khan &
Ranganathan (32).
B

C
D

A

FIGURE 4

Comparison of PANDORA and AlphaFold in reproducing pMHC-II complexes. The peptide conformations are colored as follows: reference PDB in
green, AlphaFold model in magenta, and PANDORA model in blue. The AlphaFold models were generated by Colab-fold using template-based
modelling (default 5 top models generated). The presented model for AlphaFold and PANDORA is the best model (lowest L-RMSD model) among
the top-5 ranked models. Two overviews of the peptide backbone conformation from two different angles are shown for each case (anchor residues
are shown with side-chains). Overall, AlphaFold models have quite good backbone predictions (probably due to the usage of templates), but in 2 out
of 4 cases, the peptide core conformations are shifted. (A) 24-mer peptide binding to H2-AB1*01 (PDB ID: 3C5Z); however, the predicted core
conformation generated by AlphaFold is shifted by 3 residues; (B) 13-mer peptide binding to HLA-DRA*0101, HLA-DRB1*0401 (PDB ID: 1J8H) the
binding core is accurately identified by AlphaFold (C) 12-mer peptide binding to HLA-DQA1*0201, HLA-DQB1*0201 (PDB ID: 6PX6); however, the
predicted AlphaFold binding core conformation is shifted by 4 residues; (D) 13-mer peptide binding to H2-AB1*01 (PDB ID: 4P23) and the binding
core is accurately identified by AlphaFold. Considering that (A, B, D) were already in AlphaFold training, it is noteworthy that A is predicted with an
incorrect binding core.
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defined anchor residues, PANDORA uses NetMHCIIpan to predict

the binding core. Hence, we evaluate NetMHCIIpan’s binding core

prediction accuracy by comparing its predictions to known cores

from experimental PDB structures. Our results show that the

anchors were incorrectly predicted in 33 of the 136 cases in the

benchmark dataset. In most cases, the observed shifts were by one

or two residues (26 of 33), but misalignments of up to 8 residues

were also observed (Supplementary Figure S4).
3.5 PANDORA as a pan-allele
modelling method

Owing to the high structural similarity across MHC-II alleles, it

is possible to model pMHC-II complexes using different MHC-II

alleles as templates. Our results show that even when a template

with the same MHC allele type for either of the chains was not

available in the template set (25% of cases), PANDORA was still

able to provide models with a mean L-RMSD of 0.86 Å for the best-

RMSD models and 1.05 Å for the top 10 ranked models (Figure 5).
3.6 Software improvements

PANDORA v2.0 includes major improvements from the

first release:

Frontend (User side):
Fron
- Capability to use MHC-sequence as input instead of only

allele name, leading to much broader allele coverage than

version 1.0.

- Addition of command-line interface for easier accessibility

and bash integration.

- Addition of restraints-flexible modelling mode to avoid small

clashes caused by rigid restraints (see Materials and Methods).

- Improvements in the python user interface.

- Easier software and database installation.

- Addition of an option to remove or keep beta2-microglobulin

in the generated models, as Beta2-microglobulin can be

crucial or not, depending on what the models will be used

for (MD, AI, manual exploration, etc.).
Backend (internal software side):
- BLAST-based template selection instead of allele-name based

template selection.

- Addition of a reference sequence database for allele names

and MHC sequence automatic retrieval.

- The allele name is now automatically retrieved with BLAST

when only the sequence is provided.

- Improvement in the MHC-II template parsing to prevent

multiple structures from being discarded or from missing

the allele name.

- Addition of parallelization and minor optimization

improvements for the template set generation, drastically

increasing its speed.
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4 Discussion

PANDORA is a 3D modelling software for both pMHC-I and

-II. Here we evaluated the performance of PANDORA on reliably

generating peptide conformations binding to MHC class II

complexes alongside the software improvements. We applied

homology-driven restraint-based modelling to reduce the

computational time during sampling (3.75 min/case on one CPU

core). The proposed method was tested on 136 complexes, making

it the largest modeling effort of pMHC-II complexes to date. Our

results show that PANDORA was able to effectively model these

complexes, achieving an 85% success rate (L-RMSD < 2 Å) for the

top 5 ranked models in the entire template set and generating

particularly high-quality peptide core conformations.

PANDORA outperforms pDock (32) and AlphaFold (39)

regarding computational time and core L-RMSD values. PANDORA

incorporates domain knowledge into the modeling. In contrast,

AlphaFold is a general protein structure prediction method that

relies on sequence conservation information, and conservation on

the peptide side has little or no bearing on this binding. Our

comparison shows that not all AlphaFold-generated pMHC-II

conformations have the correct anchor positions. AlphaFold’s higher

computational cost is a major impediment to model millions of

pMHCs, whereas PANDORA is a more practical choice.

PANDORA has the following unique features: 1) Fast: enabling

high-throughput modeling of 3D pMHC-II complexes; 2) Reliable:

generating low-energy models; 3) Efficient: With the use of anchor

distance restraints, it to work on both MHC-I and MHC-II; 4)

Template availability: providing an extensively cleaned template

database of pMHC complexes, valuable for reliable homology

modeling; 5) Highly Modular: It is easy to customize or extend;

6) Pan-allele: User may include MHCs from different species.

PANDORA has a user-friendly interface allowing users to

incorporate new configurations such as 1) more extensive

sampling (especially with longer peptides); 2) specification of

secondary structure restraints (23% of benchmark cases formed

beta-strand PFR, Supplementary Figure S5D); 3) fully fixed mode

vs. flexible mode for the core conformation; 4) Manually defining

the anchor residues; 5) Possibility of changing to other anchor

predictor software. Its highly modular framework (Supplementary

Figure S7) facilitates future community-wide development.

Knowledge of the peptide binding core is required to generate the

pMHC-II complex structure. When the user doesn’t input the anchor

residues’ position, PANDORA currently relies on NetMHCIIpan-4.0

as an anchor predictor (36). This software has a limited, yet large, set

of available MHC alleles to utilize, and it can sometimes fail to predict

the correct binding core (Supplementary Figure S4). Using an anchor

predictor relying on structural and physics-based data could

overcome these limitations for the pMHC anchor prediction,

allowing for more accurate, pan-allelic anchor predictions.

PFR can influence TCR interactions (46–49); introducing a

modeling program to generate credible PFR conformations is an

important step forward. It is important to note that a singular X-ray

structure exclusively depicts only one snapshot of the complex

conformation. This implies that a method could generate a possible
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PFR conformation that is not currently cataloged in the PDB but

holds biological significance. To address this issue, PANDORA

generates an ensemble of near-native conformations (top N-

ranked conformations).

Further work is needed to model the post-translational

modifications (PTM) in peptides binding to MHC, which have

been shown to modulate antigen presentation and recognition (50,

51) and, moreover, PTMs on peptides increase the vast number of

possible pMHC combinations. PTMs have a structural impact on the

stability of pMHC complexes and the consequent modulations of

immune responses (52). Although it has not yet been extensively

evaluated within our framework, we recognize its potential benefits

for the field and remain committed to conducting additional research

and possibly incorporating this method into our future research.

While PANDORA provides energy scores, its primary focus is

on 3D modeling rather than predicting binding affinity, it might be

possible to utilize the energy scores from PANDORA models or

running molecular dynamics on PANDORA models to gain

insights into MHC binding specificities. In addition, PANDORA

can potentially contribute to advancing our understanding of

cancer biology, particularly in unraveling the impact of peptide

mutations on MHC binding and the exposure of peptide side chains

to T-cells or (see * marked cases in Supplementary Tables S1, S2).

Although not intended for neoantigen identification, PANDORA

was used to evaluate the effects of point mutations on a melanoma

tumor antigen. PANDORA accurately modeled both peptides’ side

chains (see Supplementary Figure S6), resulting in high-affinity

energy scores and a slight improvement in mutant binding.

In conclusion, the ability of PANDORA to generate high-

quality peptide conformations within the MHC-II binding groove

lends great reliability to the models employed for analyzing

molecular interactions at the atomic level. Due to PANDORA’s

computational efficiency, initial conformations for molecular

dynamics simulations can be quickly built.

It is now feasible to enrich the actively accumulating wealth of

pMHC binding affinity and mass spectrometry data with physics-

based PANDORA models and aid structure-boosted artificial

intelligence algorithms in identifying antigenic peptides (for example,
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by training the deep learning framework DeepRank on these 3D

models). As such, it can be leveraged to identify cancer neoantigens or

viral antigenic peptides that hold promise as vaccine candidates. It will

therefore pave the way for developing novel cancer immunotherapies.
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FIGURE 5

The effect of modelling with a different template allele-type and its effect on performance. Given two allele-type for each a- and b-chains of the
template and target pMHC-II, 4 different scenarios are compared in each box-plot column; 1) Both allele-type is the same for template and target
(blue); 2) Only the Alpha allele-type the same (green); 3) Only Beta allele-type the same (orange); and 4) both chain allele-types are different (pink).
(A) Best L-RMSD models and (B) Top-ranked models using scoring.
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