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Dermatophytosis is a common superficial infection caused by dermatophytes, a

group of pathogenic keratinophilic fungi. Apart from invasion against skin barrier,

host immune responses to dermatophytes could also lead to pathologic

inflammation and tissue damage to some extent. Therefore, it is of great help

to understand the pathogenesis of dermatophytes, including fungal virulence

factors and anti-pathogen immune responses. This review aims to summarize

the recent advances in host-fungal interactions, focusing on the mechanisms of

anti-fungal immunity and the relationship between immune deficiency and

chronic dermatophytosis, in order to facilitate novel diagnostic and therapeutic

approaches to improve the outcomes of these patients.

KEYWORDS

dermatophyte, protease, innate immune response, pattern recognition receptors,
caspase-associated recruitment domain 9, type 1 immune response, type 17
immune response
1 Introduction

Dermatophytes are the most common pathogenic filamentous fungi, with an infection

rate of as high as 20%-25% worldwide (1). Dermatophytes usually infect the nails, skin, and

hairs (2, 3), causing multiple superficial dermatophytoses, such as tinea capitis,

onychomycosis, tinea corporis, and tinea pedis (4). Unfrequently, dermatophytes may

also invade the dermal tissue and even deep organs, particularly in immunocompromised

patients with congenital or acquired immunodeficiency (5), and these infections can

progress to life-threatening conditions if appropriate treatment is not provided (6).

Dermatophytes can be categorized into three types based on host preferences and

ecological niches (7): anthropophilic dermatophytes are mainly transmitted from person to

person and usually result in chronic infections with moderate clinical symptoms; zoophilic

dermatophytes prefer selective animal hosts but can normally infect other species,

including humans, often causing inflammatory skin infections; and geophilic

dermatophytes survive on keratinized waste present in the soil and are rarely pathogenic

but can produce more severe inflammation than anthropophilic species (8). Trichophyton
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rubrum is among the most frequently detected species globally and

is responsible for 50%-90% of dermatophytoses (9–13). However, a

sudden shift in the most prevalent pathogen from T. rubrum to T.

mentagrophytes complex in India has been observed in recent years,

which might result from advances in molecular identification (14).

Other important species include Microsporum canis ,

Epidermophyton floccosum, and T. tonsurans (Table 1) (22, 30,

31). In addition, a new emerging drug-resistant dermatophyte, T.

indotineae, has caused a concurrent overwhelming circumstantial

increase in reports on recalcitrance and drug resistance in India

(32–34). This strain has also been isolated from several European,

American, and Asian countries and has become a public health

issue due to the number of individuals affected and the misery it

causes (16, 35–42).

In recent years, the prevalence of dermatophytosis has

continuously increased, especially in tropical or subtropical

countries such as India (21, 43). Several risk factors may further

increase the risk of dermatophyte infection, including type 2

diabetes, lack of physical activities, vascular disease, anemia,

immunosuppression due to leukemia, organ transplant, acquired

immunodeficiency syndrome (AIDS), and the use of

immunosuppressants (44, 45). The elevated incidence of

dermatophyte infections, especially chronic and recurrent

dermatophytosis, has a large impact on patients’ quality of life

and often requires extended treatments, causing psychological and

economic burden (46–51). To provide a comprehensive

understanding of the mechanism of dermatophytosis, this review

summarizes recent findings on the pathogenesis of and the host’s

immune responses to dermatophyte infections.
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2 Virulence factors related to the
pathogenicity of dermatophytes
When dermatophytes infect human skin, the first obstacles they

need to overcome include physical, chemical, and morphological

barriers of the skin. Abnormalities in the stratum corneum, such as

macerations and occlusions, may promote fungal infection (52).

Once the pathogen crosses the skin barriers mentioned above,

colonization begins, and various other processes occur, including

adhesion, germination, and invasion. The first stage of infection by

arthroconidia includes adherence to the host epidermis via special

fungal surface proteins (53). For example, T. rubrum binds

epithelial cells through carbohydrate-specific adhesins on the

microconidial surface, while T. mentagrophytes protrudes fibrillar

projections when it requires adherence capabilities (54). In the next

stage, arthroconidia identify a favorable environment and initiate

metabolic reactivation and growth as hyphae (55). During the last

stage, the epidermal cornified layer is invaded by the germinating

tubes produced by hyphae that secrete various keratinases to digest

keratin into smaller peptides and amino acids (56, 57), which are

absorbed by dermatophytes as nutrients for growth and

reproduction. The initial stage of native keratin biodegradation is

sulfitolysis, during which the extensive keratin disulfide bridges are

hydrolyzed (58, 59). Afterward, keratin can be further hydrolyzed

by various proteases secreted by dermatophytes (60, 61).

Endoproteases degrade keratin to release free peptides, on which

exoproteases act to further decompose the peptides into smaller

peptides and amino acids (62, 63) (Figure 1).
TABLE 1 Primary species of dermatophytes and their typical characteristics.

Ecological niche Pathogen Clinical picture Epidemiology Ref

Anthropophilic T. rubrum Tinea pedis
Tinea corporis
Onychomycosis

Most common species worldwide (10, 15)

T. interdigitale Tinea pedis
Tinea cruris
Onychomycosis

Distributed worldwide (16)

T. tonsurans Tinea corporis
Tinea capitis

Distributed worldwide (17)

T. violaceum Tinea pedis
Onychomycosis

Most important species in Africa (18)

M. audouinii Tinea capitis Distributed worldwide (19, 20)

E. floccosum Tinea pedis Distributed worldwide (21)

Zoophilic T. mentagrophytes Tinea corporis
Tinea capitis
Tinea cruris

Second most common species worldwide (9, 22–25)

M. canis Tinea capitis Leading agent of tinea capitis in most parts of Europe and Asia (26, 27)

T. benhamiae Tinea corporis
Tinea capitis
Tinea cruris

Distributed mainly in Japan, Europe, and the United States (28)

Geophilic Nannizzia gypsea Tinea corporis
Tinea capitis

Rarely infects humans (29)
fro
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2.1 Virulence factors involved in the
sulfitolysis process

Dermatophytes secrete a variety of proteases, most of which

cannot directly hydrolyze natural keratins. Disulfide bonds within

keratin molecules can cross-link within and between peptide chains,

forming a network structure that is 3-dimensional, making natural

keratin difficult to decompose (64). Therefore, cleavage of disulfide

bridges must be the first step in keratinolysis. The key enzymes

involved in the sulfitolysis process are cysteine dioxygenase (Cdol)

and sulfite efflux pump (Ssu1) (65). Kunert and Truper (66) first

reported the mechanisms of cysteine metabolism by N. gypseum

hyphae in 1986: Cdol catalyzes the oxidation of cysteine to cysteine

sulfinic acid, which is eventually metabolized to produce sulfites,

sulfates and taurine; sulfites can be excreted by Ssu1. Subsequently,

researchers found that L-cystine could induce the expression and

activation of Cdol in T. mentagrophytes, and they successfully

isolated recombinant Cdol (67, 68). Moreover, expression of the

CDO1 gene in T. schoenleinii was significantly upregulated after

coculture with keratin (69). In addition, CDO1 and SSU1 knockout

strains of T. benhamiae showed obvious growth defects when

cocultured with human hair and nails, suggesting that Cdo1 and

Ssu1 are important virulence factors of dermatophytes (56).
2.2 Proteases of the main species
of dermatophytes

Subtilisin-like serine protease 3 (Sub3) is the first keratinase

found in M. canis (70, 71) and is essential for adhesion to the

epidermis (72) (Figure 1). Subsequently, Brouta et al. (73, 74) revealed

the expression of metalloproteinases (Mep) inM. canis in vitro and in

vivo and discovered that metalloproteinases could mediate humoral

and cellular immune responses (75). Subsequently, the virulence

activities of Mep and Sub have been studied in various

dermatophyte species. Mep4, Mep5 and Sub6 proved to be the

predominant virulence factors of T. mentagrophytes (76, 77), while

SUB6, SUB7,MEP1,MEP2 andMEP5 expression in T. tonsurans was

associated with invasion (78). Leng et al. (79) demonstrated that

Sub3, Sub4 and Mep4 were required for T. rubrum to invade skin.

The expression of SUB1, SUB6-7, and MEP3 was upregulated

significantly after culturing in a medium containing nail chips,
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illustrating that these genes could contribute to the pathogenicity of

T. rubrum as well (80, 81). Recently, Baumbach et al. (82) observed

SUB3 and SUB6 expression in T. benhamiae in vitro and in vivo using

immunofluorescence methods, indicating that Sub3 and Sub6 might

play a primary role in the adhesion and invasion of T. benhamiae.

Apart from endoproteases, exoproteases also draw tremendous

attention in research on the pathogenicity of dermatophytes

(Figure 1). In 2005, Monod et al. (83) identified leucine

aminopeptidase (Lap) 1 and Lap2 and dipeptidyl peptidase (Dpp)

IV and DppV produced by coculturing T. rubrumwith keratin, which

were also found in T. violaceum and T. benhamiae (62, 84–86). In

addition, the expression level of family of serine hydrolases 1 (FSH1)

in M. canis cocultured with infant scalp was significantly increased

(87), and FSH1 knock-out significantly decreased M. canis virulence

(88), proving FSH1 as a potential virulence factor of M. canis.
2.3 Adaptation to skin pH changes

The pH of healthy skin and nails is slightly acidic; however, the

amino acid metabolism during keratin breakdown causes an alkaline

shift (89). Accordingly, the dermatophyte keratinases released during

the early infection stages exhibit optimal activity at a slightly acidic

pH, and other keratinases found in the later phases during keratin

breakdown have maximal activity at higher pH values (90), which

demonstrates that pathogenic fungi can sense and respond to the

environmental pH. This adaptive response relies on the conserved

PacC/Pal signal transduction pathway, which includes active PacC

protein as a pH signaling transcription regulator (91, 92). PacC is

essential for dermatophytes to grow on human tissues, as PacC gene

disruption reduces keratinolytic protease secretion and the ability of

mutant strains to invade the stratum corneum (93). Table 2

summarizes the main virulence factors of dermatophytes.
2.4 Mechanisms of antifungal resistance

There has been increasing concern about antifungal resistance

during the last decade, especially after the emergence of T. indotineae,

which can cause chronic or recurrent widespread superficial infections

(103, 104). The frequency of terbinafine resistance in T. indotineae

isolates is approximately 75% in India and more than 15% in other
FIGURE 1

Virulence factors of dermatophytes involved in the keratinolysis process. The initial stage of native keratin biodegradation is sulfitolysis, the key
enzymes of which are cysteine dioxygenase (Cdol) and sulfite efflux pump (Ssu1). Then, endoproteases degrade keratin to release free peptides,
which are further cleaved into amino acids by exoproteases.
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countries (33, 105). In addition, clinical failure of T. indotineae infection

to azole treatments has also been reported globally (16, 35, 106, 107).

Typically, antifungal resistance is acquired due to changes that directly

or indirectly affect the drug–target interaction, including genetic

changes to the target binding site (108), elevated drug efflux activity

for intracellular drugs (103), or inhibition of prodrug activation (109).

In terms of T. indotineae, terbinafine resistance has been associated to

single nucleotide polymorphisms in the gene encoding the terbinafine

binding protein squalene epoxidase (SQLE). In terms of T. indotineae,

terbinafine resistance has been associated with single nucleotide

polymorphisms in the gene encoding the terbinafine binding protein

squalene epoxidase (SQLE). The Leu393Phe, Leu393Ser, and

Phe397Leu substitutions in the enzyme have been the most

frequently reported from resistant isolates (36). In addition, the

overexpression of the ATP-binding cassette transporter (ABC) family

gene MDR3 and the amplification of the C14-a-demethylase-encoding

gene CYP51B are associated with azole resistance (40, 110, 111).
3 Host immune responses to
dermatophytes

Apart from the direct damage caused by fungal virulence

factors, host immune responses to dermatophyte infection also
Frontiers in Immunology 04
result in inflammatory damage to skin. Host immune responses,

including those of the adaptive and innate immune systems, are

determined by the interaction of pathogen-associated molecular

patterns (PAMPs) and damage-associated molecular patterns

(DAMPs) with pattern recognition receptors (PRRs) (1).
3.1 Innate immune responses

In shaping immune responses, dermatophytes can be detected

by nonimmune and immune mediators via their cell wall

components, secreted extracellular molecules, or intracellular

content by multiple PRRs, which, when bound, cause

transduction of intracellular signals that stimulate phagocyte lysis,

cytokine and chemokine secretion, fungal phagocytosis, respiratory

burst, etc. (112, 113). Usually, PRRs are classified according to their

composition and activities: C-type lectin receptors (CLRs), retinoic

acid inducible gene (RIG)-like receptors (RLRs), Toll-like receptors

(TLRs), and nucleotide-binding and oligomerization domain

(NOD)-like receptors (NLRs) (114, 115). Dermatophytes interact

with the TLR, CLR, and NLR signaling pathways, which regulate

host antifungal immunity.

CLRs, including dectins, Mincle, and mannose receptor (MR),

recognize glycans, glycolipids, and glycoproteins contained in

fungal cell walls that are not found in mammals (113, 114).

Expressed on myeloid cells (neutrophils, dendritic cells [DCs],

monocytes, and macrophages), keratinocytes, and human B-cell

and T-cell subsets (116, 117), dectin-1 recognizes many pathogenic

fungi by b-1,3-glucans present on their cell wall (112) and is thus

one of the most important receptors in antifungal immune

activities. The immunoreceptor tyrosine-based activation motif

(ITAM)-comprising cytoplasmic domain is involved in dectin-1

signaling and is phosphorylated to recruit Syk kinase via a Src

family kinase, activating mucosa-associated lymphoid tissue

lymphoma translocation protein 1 (MALT1), caspase-associated

recruitment domain 9 (CARD9), and a molecular scaffold

composed of B-cell lymphoma/leukemia 10 (Bcl10) (118). This

activation subsequently activates the nuclear factor kB (NF-kB)
pathway, the canonical (NOD-like receptor thermal protein

domain-associated protein 3 [NLRP3]/caspase 1) and

noncanonical (MALT1/caspase 8) inflammasomes, and the Raf-1

kinase pathway (119) (Figure 2).

Dectin-2 and Mincle belong to the dectin-2 cluster, which are

predominantly expressed on myeloid cells and can identify O-

linked mannoproteins and a-mannans from multiple pathogenic

fungi (113). These receptors not only interact with the ITAM-

comprising Fc receptor g-chain (FcgR) to stimulate intracellular

signaling through the Syk-CARD9 pathway (120) but also

antagonize or synergize with other CLRs, such as TLRs, dectin-1,

and inflammasomes (121).

Previous reports have described the function of dectin-1 and

dectin-2 in protecting against dermatophyte infection. Both of these

proteins can identify and bind to T. rubrum and M. audouinii,

mediating innate immune responses (122). In addition, dectin-1

expression was markedly upregulated in T. rubrum cocultured with

keratinocytes (123). Defects in these receptors severely impair the
TABLE 2 Primary virulence factors of dermatophytes.

Virulence
factors

Description Ref

Endoproteases Subtilisin-like serine proteases (Sub1-
12), metalloproteinases (Mep1-5), and
neutral protease (NP-I, NP-II)

(58, 94, 95)

Exoproteases Leucine aminopeptidases (Lap1-2),
dipeptidyl peptidases (DppIV, DppV),
metallocarboxypeptidases (McpA,
McpB), and serine carboxypeptidases
(ScpA, ScpB)

(62, 94)

Other proteases Lipases, glucanases, elastases,
gelatinases, phosphatases, and DNases

(62, 94, 96)

Enzymes involved in
secondary metabolite
production

Polyketide synthase and nonribosomal
peptide synthetase

(62, 97)

Enzymes involved in
sulfitolysis

Cysteine dioxygenase (Cdol) and sulfite
efflux pump (Ssu1)

(56)

Hydrophobins Avoidance of immune recognition by
neutrophils

(98)

Heat shock proteins
(Hsps)

Adaptation to human temperature,
transformation of dimorphic
fungus, keratin degradation and drug
resistance

(99)

PacC gene Involved in the regulation of protease
expression to adapt to skin pH changes

(93)

LysM domain Binding to skin glycoproteins; involved
in immune evasion

(100)

ZafA gene Growth, reproduction, and zinc
absorption

(101, 102)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1285887
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2023.1285887
production of interferon g (IFN-g), tumor necrosis factor a (TNF-

a), interleukin-1b (IL-1b), IL-10, and IL-6, culminating in deep

dermatophytosis (124–126). These studies illustrated the major role

of dectins in antidermatophyte immunity.

As a type-I transmembrane protein mainly expressed by DCs

and macrophages, MR is responsible for L-fucose, D-mannose, or

N-acetyl glucosamine recognition (113); however, its function in

immunity to fungal pathogens seems controversial. MR activation

led to Grb2 recruitment followed by Rac/Pak/Cdc-42 signaling

cascade activation, which in turn limited phospho-inositide-3

kinase (PI3K) activity and phagosome-lysosome fusion (127).

Nevertheless, blockade of MR using soluble antibodies inhibited

macrophages from phagocytosing T. rubrum spores in vitro (128).

Therefore, further investigations are required to understand the

redundant roles of MR in the innate immune response.

TLRs are type-I integral membrane glycoproteins that can also

recognize fungal PAMPs; however, the primary structures of fungal

ligands are still only partially resolved to date. TLRs can hetero- or

homodimerize with CLRs in the presence of ligands and then

mediate intracellular signal transduction by Toll IL-1 receptor

domain (TIR)-comprising adaptor inducer interferon-b (TRIF)

and myeloid differentiation primary response 88 (MyD88),

thereby initiating inflammatory responses.
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TLR2 and TLR4 are representative TLRs in the recognition of

dermatophytes. Upon coculture with dermatophytes, TLR2 and

TLR4 expression in keratinocytes, neutrophils, myeloid cells, and

fibroblasts was significantly increased (123, 129, 130). Similar

results were obtained in patients with dermatophytosis (131).

Interestingly, reduced expression of TLR4 in patients with

disseminated dermatophytosis was found compared to that in

healthy controls, indicating that the lack of TLR4 might

contribute to the lack of infection resolution and the resulting

chronic state of dermatophytosis (132). TLR2 blockade by

neutralizing antibodies disrupts monocyte fungicidal activity

against T. rubrum and monocyte TNF-a secretion, suggesting the

importance of and requirement for TLR2 for effective conidium

phagocytosis, and the absence of TLR2 in human monocytes may

disrupt the successful inflammatory response (133). However,

another study showed that TLR2-deficient and wild-type (WT)

mice exhibited similar control of deep dermatophyte infection;

nevertheless, the TLR2-deficient mice exhibited a notable

elevation in IFN-g, IL-10, and IL-17 production and an increased

percentage of splenic regulatory T (Treg) cells (134). Therefore, how

TLR2 exerts its immune activities during dermatophyte infection is

still not completely clear, and more investigations are needed to

elucidate its role in protection against dermatophytosis.
FIGURE 2

Innate and adaptive immune responses against dermatophytes. Several pattern recognition receptors (PRRs) on antigen presenting cells (APCs),
including C-type lectin receptors (CLR) and TLR, are able to recognize dermatophytes, resulting in the release of transcription factors to nucleus that
will regulate expression of inflammatory cytokinesThe foreign antigens APCs present and pro-inflammatory cytokines APCs secrete promote the
polarization of T cells. T helper 17 (Th17) cells and other IL-17-secreting T cells (not shown) produce IL-17, promoting the production of neutrophil-
recruiting chemokines. Interferon g induced by Th1 cells activates macrophages. Then, macrophages and neutrophils together phagocytose and kill
dermatophytes. Bcl10, B-cell lymphoma/leukemia 10; CARD9, Caspase-associated recruitment domain 9; FcgR, Fc receptor g-chain; IFN-g,
Interferon g; IL, Interleukin; MALT1, Mucosa-associated lymphoid tissue lymphoma translocation protein 1; MHC, Major histocompatibility complex;
MyD88, Myeloid differentiation primary response 88; NF-kB, Nuclear factor kB; NLRP3, NOD-like receptor thermal protein domain-associated
protein 3; TCR, T-cell receptor; Th cells, T helper cells; TLRs, Toll-like receptors; TRIF, Toll IL-1 receptor domain (TIR)-comprising adaptor inducer
interferon-b.
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Similar to TLRs, NLRs are also associated with antifungal

immunity primarily via recognition of other PRRs. NLRP3 is the

most important NLR for antifungal immunity, and it is a part of the

inflammasome, characterized by subsequent IL-18 and IL-1b
generation owing to caspase-1 activation. Previous research has

demonstrated the critical role of the NLRP3 inflammasome in host

innate immunity against M. canis infection since M. canis-

stimulated IL-1b secretion relies on NLRP3, whereas dectin-1,

Syk, and CARD9 are linked with IL-1b secretion via pro-IL-1b
transcription modulation (135). In addition, bone marrow-derived

macrophages generate IL-1b in response to T. rubrum conidia in a

caspase-1 and NLRP3-dependent manner, exerting protection

against T. rubrum infection (136). A similar phenomenon was

observed in monocytes during T. schoenleinii infection (137). In

vivo experiments also showed that T. benhamiae, Arthroderma

vanbreuseghemii and M. canis could promote IL-1b production in

epithelial cells through the NLRP3-caspase1 pathway (138), which

played a protective role against dermatophyte infection. Taken

together, these results suggest that manipulating NLRP3 signaling

can be a novel approach for the control of dermatophytosis.

Mast cells (MCs) also largely contribute to the immune

responses in dermatophytosis infections as they are the first cells

to encounter pathogens along with the other innate immune cells

(Figure 3). MCs can participate in the direct killing of organisms by

phagocytosis and the production of reactive oxygen species (ROS)

and antimicrobial peptides (AMPs) (139). Another antifungal
Frontiers in Immunology 06
mechanism of MCs is the formation of extracellular traps

composed of DNA, histones, and granule proteins (140). Mast

cells can modulate host innate immune responses by secreting

eicosanoid metabolites, chemokines, and cytokines (141). The

release of histamine and other vasoactive mediators increases

vascular permeability and local blood flow to increase the

clearance of fungus (139). Chemotactic factors can enhance the

recruitment of multiple inflammatory cells, including eosinophils

(eotaxin), natural killer (NK) cells (IL-8), and neutrophils (IL-8 and

TNF-a) (142).
3.2 Adaptive immune responses

Adaptive and innate immunity are inextricably linked, and a

successful adaptive immune response represents a cooperative effort

that requires stimulation of antigen-presenting cells (APCs), tissue

resident cells, and antigen-specific B and T cells (143). The T cell-

mediated adaptive immune response is essential in antifungal

defense (144, 145). PRR activation initiates a signal cascade that

stimulates the MAPK and NF-kB pathways, which in turn induce

naive T-cell transformation into T helper (Th) cells (146).

Differentiation of Th cells is critical for antifungal immunity, as

these cells generate proinflammatory cytokines, such as IL-17 and

IFN-g, which promote the killing of fungi by recruiting and

activating phagocytes (146) (Figure 2).
FIGURE 3

Mast cells play an important role in host defense against dermatophytes. After recognition of the pathogen, mast cells initiate both direct and
indirect host defenses. They can kill pathogenic microorganisms by phagocytosis and the production of ROS, AMP, and extracellular traps. In
addition, granulation mast cells can release several proinflammatory mediators, including histamine, chemokines, and cytokines, which can
upregulate the innate immune response. Mast cell products have also been implicated in the regulation of adaptive immune responses, especially
the promotion of Th17 reactions. In addition, mast cells can enhance the maturation of dendritic cells (DCs), priming DCs to facilitate Th17 and Th1
polarization. AMP, Antimicrobial peptide; DCs, Dendritic cells; MCETs, Extracellular traps of mast cells; NK cells, Natural killer cells; PRRs, Pattern
recognition receptors; ROS, Reactive oxygen species; Th cells, T helper cells.
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The IL-17-mediated (type 17 or Th17) response was reported to

be a critical pathway for host defense against fungal invasion (145).

The IL-17 family consists of 6 six members (IL-17A to IL-17F) that

exert their biological activities via interaction with IL-17 receptors

(IL-17RA to IL-17RE). The most prevalent of these members are IL-

17A and IL-17F, which exert their biological functions by

interacting with IL-17RA and IL-17RC (147). In the skin, myeloid

cell PRRs recognize fungi, fibroblasts and keratinocytes and

stimulate IL-23, IL-1b, IL-6, and IL-21 synthesis (129, 148, 149);

these cytokines interact with their lymphocytic receptors,

alternatively inducing the phosphorylation and thus activation of

cellular signal transducer and transcription 3 (STAT3), activation of

retinoic-acid-receptor-related orphan nuclear receptor gamma

(RORgt) transcription factor activity and subsequently stimulating

type 17 cytokines (IL-22 and IL-17) or Th17 lineage production

(150). Several studies have found that MCs may play an essential

role in the functions of Th17 lymphocytes (Figure 3). MC-derived

TNF is required to develop IL-17-secreting Th17 cells in a murine

model (151). MCs can also induce Th17 differentiation in

eosinophil-deficient mice, leading to neutrophil-dominant

inflammation (152). In addition, MC-secreting chemokines might

participate in Th17 infiltration (153). Interestingly, Th17 cells

express the functional histamine H4 receptor; thus, MC-derived

histamine may affect Th17 activity (154). Indeed, stimulation with

histamine or an H4 receptor agonist increases the production of IL-

17 by human Th17 cells (154). IL-17 can stimulate the generation of

various cytokines (such as TNF and IL-6), vascular endothelial

growth factor (VEGF), and chemokines (CXCL1 and CXCL8),

increase AMP expression, and promote keratinocyte proliferation

(145), which may essentially lead to the clearance of cutaneous

fungal infection.

Mounting evidence has illustrated the potent antifungal

immunity of AMPs induced by IL-17, which mainly involves

S100 proteins, cathelicidin, and b-defensins. Cathelicidin is a

synergistic agent for Th17 differentiation, and mice lacking

cathelicidin are unable to produce adequate IL-17 levels in

response to inflammation (155). b-defensins are key components

of innate immunity that directly kill or inhibit the growth of

pathogens (156). S-100 proteins can exert direct antifungal effects

on fungal growth and indirect antifungal activity by regulating host

immune responses (157). Previous studies have demonstrated that

the expression of AMPs is increased in dermatophytosis (158) and

that the reduced production of AMPs is related to chronic and

widespread infection (159). Interestingly, some cytokines, such as

IL-22 and TNF-a, synergize with IL-17 function by increasing

AMPs production, thus playing an indispensable role in limiting the

dissemination of pathogens (160, 161).

Several in vivo and in vitro studies have indicated the protective

function of the Th17 immune response against dermatophyte

infection. In guinea pigs infected with T. benhamiae and A.

vanbreuseghemii, the in situ cytokine profile was characterized by

the overexpression of transforming growth factor-b (TGF-b), IL-1b
and IL-6 during infection, illustrating Th17 pathway involvement in

the establishment of immunity (138). Increased levels of Th17 cells

were also found in mice infected with T. mentagrophytes (162).

Moreover, Il-17ra-/- or Il17a/f -/- mice suffered from a higher fungal
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load after inoculation ofM. canis on the skin, which proved the role

of the type 17 response in reducing the fungal burden (148).

Consistent with this finding, patients with STAT3 mutations have

enhanced dermatophytosis and candidiasis susceptibility because of

a diminished type 17 response (163). In addition, a reduction in

type 17 immune activity has been linked to dermatophytosis

(invasive or chronic) susceptibility, as has been indicated in adult

T-cell leukemia/lymphoma (ATLL) individuals (164), those with

STAT3-related malfunction (163), patients with gain-of-function

(GOF) mutations (165), and those receiving anti-IL-17 antibody-

related therapy (i.e., secukinumab and ixekizumab) (166–168).

Thus, the type 17 immune response is essential for protecting the

host from dermatophyte invasion.

The function of IFN-g-modulated (Th1 or type 1) activities

related to anti-dermatophyte-relevant skin immunoprotection is

not adequately understood compared to IL-17-induced immune

activities. Baltazar et al. (169) established an Ifn-g-/- mouse model of

T. rubrum infection and found that the fungal load increased

significantly compared with that of WT mice. Moreover, Ifn-g-/-

mouse macrophages were less effective at engulfing T. rubrum

conidia and killing them by generating ROS and IL-1b (169).

Sardana et al. (146) therefore concluded that the elimination of a

fungal infection is mainly mediated by an IFN-g-induced (type 1 or

Th1) response, as Th1 cells can produce proinflammatory cytokines

and stimulate phagocytes.

However, in an M. canis infection model, WT mice with

dermatophyte infection did not exhibit an elevation of the

number of antigen-related IFN-g-secreting T cells in the lymph

nodes draining the skin (148). However, mice in which IL-17

expression was downregulated exhibited an alternative pathway of

Th1 activity, indicating the presence of IFN-g-regulated
compensation for controlling M. canis infection. Nevertheless,

studies with IL-17RA KO mice revealed that IFN-g neutralization
enhanced the secretion of Th17 lineage cytokines (IL-22, IL-1b, IL-
17, and IL-6) in the skin and markedly suppressed fungal growth

(148). Thus, IFN-g deregulation is a possibility when IL-17 signaling

is absent and might cause superficial M. canis overgrowth by

suppressing type 17-linked activities. Similarly, individuals with

STAT1 GOF mutations that induce IFN gene transcription and

alleviate IL-17-regulated immunity have an enhanced chance of

developing chronic dermatophytosis and mucocutaneous

candidiasis (165, 170). Regarding this finding, an elevated STAT1

response to Th1 cytokines (IL-27 and IFN-g) inhibited IL-17-

producing T-cell differentiation (171, 172). Enhanced STAT1

phosphorylation activities caused by IFN-g can be inhibited after

Janus kinase (JAK) inhibitor and ruxolitinib treatment (173).

Interestingly, individuals with STAT1 GOF mutations who are

managed with ruxolitinib suffer from mucocutaneous candidiasis

remission (174). The M. canis model experimental results are

supported by the clinical data, indicating that the cause of

dermatophyte susceptibility is correlated with IL-17-induced

immune-related deficiency and that type 1 and 17 immunities

oppositely modulate each other. The impact of a dysregulated

Th1 response on dermatophyte infection in the absence of a

functional type 17 immune response needs to be addressed in the

future (175).
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Nevertheless, in mice infected with T. benhamiae, the type 1 and

type 17 responses were both found to be involved in fungal clearance,

and persistent superficial infection occurred only when the IL-17 and

IFN-g pathways were both defective (176), suggesting that Th1 and

Th17 responses function in a complementary manner. The

contrasting results regarding the type 1 response in T. rubrum, M.

canis, and T. benhamiae infection reminded us that different

pathogens might have distinct virulence factors or activate unique

subsets of APCs, thus selectively inducing the activation of different

immune pathways. Briefly, the Th1 response may impair the

protection mediated by the Th17 response but may also

complement with the Th17 response to clear dermatophyte infection.

Treg cells ensure a controlled immune response in the presence

of microbes, thereby preventing pathological immune responses

(145). However, pathogen clearance might be hindered, and

persistent infection can be promoted if Tregs excessively inhibit

the immune response (146). Thus, maintaining a balance between

immunological disease prevention and protective immune

responses against pathogens requires optimal Treg activity and

activation. Treg cell marker expression on peripheral blood CD4+

T cells was found to be considerably higher in individuals with

persistent dermatophytosis than in healthy controls (177).

Similarly, Kaya et al. (178) discovered that onychomycosis

patients had a greater expression of CD25+ CD4+ Treg cells than

healthy controls. These findings demonstrated that elevated Treg

cell levels might contribute to vulnerability to dermatophytosis and

infection persistence.
4 CARD9 deficiencies in deep
dermatophytosis

Invasions of dermatophytes into the deeper tissues and even the

hypodermis and dermis define the severe, resistant, and, in rare

cases, fatal illness known as deep dermatophytosis. Deep

dermatophytosis is more common in those who have had a solid
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organ transplant, are using immunosuppressants topically, or have

a CARD9 mutation (6).

CARD9 is a caspase recruitment domain-containing signaling

protein essential for CLR downstream signaling and cross-signaling

with other innate receptors (179). In addition, it is also involved in

stimulating T-cell differentiation into different Th cells, initiating

optimal adaptive immune responses (146). Therefore, CARD9 is

vital for antifungal adaptive and innate immunity.

Patients with CARD9 deficiency have impaired cytokine and

chemokine production in response to fungal infections (180). A

homozygous premature stop codon mutation (Q289) could be

detected in 15 individuals within seven unrelated Tunisian and

Algerian families, and a homozygous missense mutation (R101C)

could be detected in two Moroccan related families, providing the

first evidence linking autosomal recessive (AR) CARD9 deficiency

and T. violaceum- or T. rubrum-mediated deep dermatophytosis

(181). Subsequently, a CARD9 Q289 mutation was documented in

Egyptian individuals suffering from T. rubrum affecting the skin,

nails, and other superficial tissues (182), as well as in an Algerian

women with T. rubrum infection of her brain (183). Since then,

novel AR CARD9 mutations, such as R101L and R70W, have been

found in patients with deep and chronic dermatophytosis (184,

185). We summarized the CARD9 mutations found in

dermatophyte infection patients (Table 3) (181–186), more than

50% of whom are from North Africa. Interestingly, CARD9

mutations are more common in Asia (187), however, African

patients accounted for the majority of CARD9 mutation-related

dermatophytosis cases. One possible explanation is that different

CARD9 mutations causing different infections might have different

geographic distributions. For example, homozygous (HMZ)

p.Q289X, HMZ p.Q295X and HMZ p.D274fsX60 are the most

commonly identified CARD9 mutations, among which the HMZ

p.Q289X mutation is mainly found in Africa and is associated with

a significant increase in the risk of developing deep dermatophytosis

compared to other mutations (187). This could explain the high

prevalence of dermatophyte infection in African CARD9-deficient
TABLE 3 Summary of CARD9 mutations in patients with dermatophyte infection.

Number Country Age
of
onset

Infection
site

Consangui-neous
marriage

Pathogen Mutation Deficiency
of cytokine
secretion

Th17
cells in
PB

Treatment

Pedigree
1-1

Algeria 6 Skin, scalp,
nails, LN

Yes T. violaceum p. Q289X IL-6 Decrease NR

Pedigree
1-2

Algeria 2 Skin, scalp,
nails, LN,
brain

Yes T. violaceum NR NR NR NR

Pedigree
2-1

Algeria 9 Skin, scalp,
nails, LN

Yes T. rubrum p. Q289X IL-6 Decrease NR

Pedigree
3-1

Algeria 8 Skin, scalp,
nails

Yes T. violaceum p. Q289X IL-6 Decrease NR

Pedigree
3-2

Algeria 8 Skin, scalp,
nails, LN

Yes T. violaceum NR NR NR NR

(Continued)
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patients, as mutations are specific in particular populations or

geographic regions.

CARD9 deficiency is also related to an impaired type 17

immune response, since the Th17 cell proportion and IL-17A

and IL-22 expression in CARD9-defective patients are

significantly lower than that in healthy people (188).

Interestingly, in individuals with both STAT3 and CARD9

mutations, high eosinophil and serum immunoglobulin E (IgE)

levels were observed in addition to an increased susceptibility to

fungal infections (189), which indicated an efficient biological
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mechanism that resulted in reduced Th17 pathway activity and

enhanced Th2 pathway activity. Therefore, serum IgE and

eosinophil levels could be utilized as indices in gene mutation

tests for individuals with invasive dermatophytosis. In summary,

the differentiation of Th cells (i.e., Th17) and the function of

adaptive immune pathways were significantly impaired in

CARD9 mutant patients due to a deficiency in the

production of proinflammatory cytokines (i.e., IL-6, IL-1b,
TNF-a), resulting in increased susceptibility to chronic or

deep fungal infections.
TABLE 3 Continued

Number Country Age
of
onset

Infection
site

Consangui-neous
marriage

Pathogen Mutation Deficiency
of cytokine
secretion

Th17
cells in
PB

Treatment

Pedigree
3-3

Algeria 8 Nails Yes T. violaceum p. Q289X IL-6 Decrease NR

Pedigree
4-1

Algeria 19 Skin, scalp,
nails, LN

Yes NR p. Q289X IL-6 Decrease NR

Pedigree
4-2

Algeria 21 Skin, scalp,
LN

Yes NR p. Q289X IL-6 Decrease NR

Pedigree
4-3

Algeria NR Skin, scalp Yes NR NR NR NR NR

Pedigree
5-1

Algeria NR Skin, scalp,
LN

Yes T. violaceum p. Q289X IL-6 Decrease NR

Pedigree
5-2

Algeria NR Nails Yes NR p. Q289X IL-6 Decrease NR

Pedigree
6-1

Morocco NR Skin, nails,
LN,
skeleton

Yes T. rubrum p. R101C IL-6 Decrease NR

Pedigree
6-2

Morocco NR Scalp, nails Yes NR p. R101C IL-6 Decrease NR

Pedigree
7-1

Tunisia 6 Skin, scalp,
nails

Yes NR p. Q289X IL-6 Decrease NR

Pedigree
7-2

Tunisia 12 Scalp, nails Yes T. rubrum p. Q289X IL-6 Decrease NR

Pedigree
7-3

Tunisia 5 Skin, scalp,
nails, LN

Yes T. rubrum, T. violaceum p. Q289X IL-6 Decrease NR

Pedigree
8-1

Tunisia 6 Skin, scalp,
nails, LN

No T. rubrum, T. violaceum p. Q289X IL-6 Decrease NR

Sporadic
9-1

Egypt 13 Skin, nails No T. rubrum p. Q289X NR NR Posaconazole

Sporadic
10-1

Brazil 11 Skin No T. mentagrophytes p. R101L NR NR Itraconazole, KCZ,
posaconazole,
terbinafine, AmB

Sporadic
11-1

Algeria 47 Skin, scalp,
nails, LN,
brain

NR T. rubrum p. Q289X NR NR Itraconazole

Pedigree
12-1

Turkey 8 Skin, oral
cavity,
nails, LN

Yes T. rubrum, T. violaceum,
T. verrucosum

p. R70W IL-6 Decrease Itraconazole, KCZ,
terbinafine, FCZ

Pedigree
12-2

Turkey NR NR NR NR NR NR NR NR

Sporadic
13-1

USA 16 Skin, nails NR T. rubrum, T. violaceum,
Aspergillus fumigatus,
and A. flavus

p.Y91H NR Decrease Griseofulvin, KCZ,
itraconazole,
posaconazole, AmB
AmB, amphotericin B; FCZ, fluconazole; IL, interleukin; KCZ, ketoconazole; LN, lymph node; NR, not reported; PB, peripheral blood.
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5 Conclusion

Dermatophytes are the most common pathogenic fungi

worldwide, causing superficial and even deep infections. In the

past few decades, scientists have made tremendous breakthroughs

in understanding the pathogenicity of dermatophytes and the host

immune responses against pathogenic fungi through in vivo and in

vitro studies. With the increasing incidence of dermatophytosis and

the emergence of drug-resistant T. indotineae strains (190), there is

an urgent need for a better understanding of the virulence factors of

dermatophytes and pathogen−host interactions to identify new

targets for clinical treatment.
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Glossary

ATP-binding cassette transporter ABC

Adult T-cell leukemia/lymphoma ATLL

Antigen-presenting cells APCs

Antimicrobial peptides AMPs

Autosomal recessive AR

B-cell lymphoma/leukemia 10 Bcl10

Caspase-associated recruitment domain 9 CARD9

C-type lectin receptors CLRs

Cysteine dioxygenase Cdol

Damage-associated molecular patterns DAMPs

Dendritic cells DCs

Dipeptidyl peptidase Dpp

Family of serine hydrolases FSH

Fc receptor g-chain FcgR

Gain-of-function GOF

Immunoglobulin E IgE

Immunoreceptor tyrosine-based activation
motif

ITAM

Interferon g IFN-g

Interleukin IL

Janus kinase JAK

Leucine aminopeptidase Lap

Mannose receptor MR

Metalloproteinases Mep

Mucosa-associated lymphoid tissue
lymphoma translocation protein 1

MALT1

Myeloid differentiation primary response 88 MyD88

Natural killer cells NK cells

NOD-like receptor thermal protein domain-
associated protein 3

NLRP3

Nuclear factor kB NF-kB

Nucleotide-binding and oligomerization
domain

NOD)-like receptors, NLRs

Pathogen-associated molecular patterns PAMPs

Pattern recognition receptors PRRs

Phospho-inositide-3 kinase PI3K

Reactive oxygen species ROS

Retinoic acid inducible gene RIG)-like receptors, RLRs

Retinoic-acid-receptor-related orphan
nuclear receptor gamma

RORgt

(Continued)
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Squalene epoxidase SQLE

Signal transducer and transcription 3 STAT3

Subtilisin-like serine protease Sub

Sulfite efflux pump Ssu1

T helper cells Th cells

Toll IL-1 receptor domain TIR)-comprising adaptor
inducer interferon-b, TRIF

Toll-like receptors TLRs

Transforming growth factor-b TGF-b

Tumor necrosis factor a TNF-a

Vascular endothelial growth factor VEGF.
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