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Systemic therapy remains the primary therapeutic approach for advanced

hepatocellular carcinoma (HCC). Nonetheless, its efficacy in achieving control

of intrahepatic lesions is constrained. Hepatic arterial infusion chemotherapy

(HAIC) is a therapeutic approach that combines localized treatment with

systemic antitumor effects, which aim is to effectively manage the progression

of cancerous lesions within the liver, particularly in patients with portal vein

tumor thrombosis (PVTT). Combining HAIC with anti-programmed cell death

protein 1 (anti-PD-1) monoclonal antibody (mAb) immunotherapy is anticipated

to emerge as a novel therapeutic approach aimed at augmenting the response

inside the localized tumor site and achieving prolonged survival advantages. In

order to assess the effectiveness, safety, and applicability of various therapeutic

modalities and to address potential molecular mechanisms underlying the

efficacy of HAIC-sensitizing immunotherapy, we reviewed the literature about

the combination of HAIC with anti-PD-1 mAb therapies.
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1 Introduction

Primary liver cancer is a significant cause of death globally,

occupying the third position among cancer-related mortalities.

Hepatocellular carcinoma (HCC) is the predominant pathological

form with the 5-year survival rate ranging from 12.1% to 19% (1–5).

Around half of the patients who are diagnosed with advanced HCC

are recommended to undergo systemic therapy (6). Currently, there

is ongoing controversy among mainstream treatment guidelines

worldwide over the optimal first-line treatment for advanced HCC.

American and European liver disease guidelines recommend

targeted drugs and anti-PD-1 mAb monoclonal antibody drugs as

advanced HCC first-line treatment. Nevertheless, in the context of

advanced HCC, a significant number of patients exhibit a

substantial tumor burden and vascular invasion. Consequently,

immunotherapy as a standalone systemic treatment option yields

only modest improvements in overall survival. Hence, integrating

local therapy and systemic therapy is progressively gaining

acceptance (7–11).

Hepatic arterial infusion chemotherapy (HAIC) is an

interventional therapy for the hepatic artery that technically

resembles a local treatment but can have systemic therapeutic

effects. Compared to direct intravenous chemotherapy, HAIC

circumvents the first-pass effect of the liver, enhancing the

efficacy of local treatment and decreasing the systemic toxicity of

chemotherapy medications (12). In patients with advanced HCC

with PVTT, the objective response rate (ORR) achieved through

HAIC as a standalone treatment can range from 48% to 71%. A high

ORR directly impacts the downgrading of tumors and the

transformation of advanced unresectable HCC. Furthermore,

patients fortunate to have surgery will experience improved long-

term prognoses (13–15). The combination of HAIC and

immunotherapy exhibits a positive impact on reducing tumor size

in individuals with advanced HCC, leading to improved long-term

survival outcomes. In this analysis, we examined the literature about

HAIC and anti-PD-1 mAb combined therapy, and investigated the

potential mechanisms by which HAIC may augment the

effectiveness of immunotherapy in the heterogeneous and

suppressive immune microenvironment of HCC.
2 Regimens and technique of HAIC

Current chemotherapeutic agents now employed for HAIC

primarily consist of one or more cytotoxic chemotherapeutic

agents, such as platinums, 5-Fluorouracil (5-Fu), gemcitabine,

doxorubicin, and epirubicin. i) Epirubicin-HAIC: This regimen

was the initial chemotherapeutic approach employed in the

clinical setting. However, this regimen is associated with certain

limitations in terms of its efficacy and the occurrence of significant

side effects. Consequently, its utilization has become infrequent in

contemporary clinical practice (16, 17). ii) GEMOX-HAIC: This

regimen is predominantly utilized in France and other European

nations (18–20). The GEMOX regimen exhibits lower

nephrotoxicity and hepatotoxicity compared to the cisplatin

regimen, which will be discussed next. This characteristic renders
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this treatment protocol more appropriate for those diagnosed with

HCC accompanied by cirrhosis. However, this regimen is prone to

thrombocytopenic AEs, which may cause gastrointestinal

hemorrhage in patients with concomitant esophagogastric fundal

varices (21). iii) CDDP-HAIC or FP-HAIC: Cisplatin-based

solutions are mostly used in Japan and Korea. Multiple studies

have conclusively demonstrated the fundamental significance of

HAIC regimens featuring cisplatin (CDDP) as the primary

chemotherapeutic agent (13, 22–24) FP-HAIC is the most

common solution (13, 25, 26). Cisplatin monotherapy treats

about 11% of the population and shows superior efficiency and

outcome than targeted therapy (27–32). iv) FOLFOX-HAIC:

FOLFOX-HAIC regimen was first proposed by Chinese scholars

(33), and the survival improvement of FOLFOX-HAIC compared

with sorafenib monotherapy was confirmed in phase I/II or

retrospective studies (34–39).

Currently, there exist two distinct techniques for delivering

HAIC (40–42):i) Continuous perfusion chemotherapy with

disposable catheterization: The Seldinger method is employed for

the purpose of puncturing the right femoral artery or other arteries.

Subsequently, a catheter is inserted into the punctured artery,

allowing for angiography to be performed in the abdominal

cavity, explicitly targeting the upper and superior mesenteric

arteries. The microcatheter is inserted into the principal artery

that supplies blood to the tumor. After the microcatheter

placement, the visible segment of the catheter is affixed to the

skin in the right femoral groin and lower abdomen. Subsequently,

the administration of chemotherapeutic agents are carried out

following the prescribed chemotherapy schedule, after which both

the catheter and microcatheter are extracted. Angiography,

cannulation, and fixation are recanalized before each HAIC.

Every time the blood supply to the tumor changes, the blood

supply vessel to the tumor should be recanalized. ii) Hepatic

Arterial Chemotherapy Kit Continuous Perfusion Chemotherapy:

The superior mesenteric artery and celiac artery are imaged when

the femoral or subclavian artery is pierced. The catheter’s other end

is attached to the cartridge, buried in the inguinal and subclavian

areas, and left in the innominate hepatic artery. After hepatic

arteriography revealed that the cartridge is in good working

condition, continuous HAIC was carried out. While the latter

helps prevent repeated arterial punctures, its hazards include

thrombosis, infection, catheter migration, and the inability to

alter the catheter location in response to changes in the tumor’s

blood supply (26). Most FOLFOX-HAIC implementations use a

single puncture placement strategy, which lowers the frequency of

catheter-related adverse events while still guaranteeing the precision

of the perfusion target area (36, 37).
3 Efficacy of combination therapy

3.1 HAIC plus targeted therapy

Sorafenib has significantly transformed the therapy approach

for HCC (43–47) and has been used most frequently in studies on

HAIC combination therapy. Administration of lenvatinib reduces
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angiogenesis, causes apoptosis, and enhances sensitivity to

FOLFOX medications. Researches on lenvatinib combined with

HAIC also showed the superior clinical outcome and tolerable AEs

of combination therapy (48, 49). To better demonstrate following

triple therapy, we provide thorough information regarding studies

employing HAIC coupled with sorafenib or lenvatinib in Table 1.
3.2 HAIC plus anti-PD-1 mAb

3.2.1 Dual therapy
Large-scale, randomised, controlled studies are currently

lacking for the dual combination of HAIC and immunotherapy.

Existing retrospective studies have demonstrated a greater disease

control rate (DCR) and survival benefit when FOLFOX-HAIC is

paired with anti-PD-1 mAb monoclonal antibody medications.

Nonetheless, no substantial disparity in ORR was observed

between the two cohorts when assessed using the modified

Response Evaluation Criteria in Solid Tumors (mRECIST).

Furthermore, the group receiving combination therapy did not

achieve any survival advantage in patients with PVTT or

extrahepatic metastases (54). According to a second retrospective

research, HAIC (Epirubicin + CDDP) combined with ICI had a

much better vascular response than any single regimen therapies.

However, there was no discernible difference in the three groups’

survival rates, presumably due to the fact that 85.4% of the

individuals in this experiment were diagnosed with PVTT Vp3/4

(54, 55). Moreover, toripalimab combined with FOLFOX-HAIC

demonstrated superior efficacy in terms of survival benefit

compared to lenvatinib monotherapy. Despite the exclusion of

individuals with advanced HCC and centra nervous system

(CNS) metastases, a considerable survival benefit and manageable

treatment-related adverse events (AEs) were achieved (56).
3.2.2 Triple therapy
The immune checkpoint inhibitor atelizumab is a humanized

anti-PD-L1 mAb that blockade the combination of PD-1 and B7.

Atelizumab exhibits immunological activity against tumor cells by

restoring the tumor cell killing effect of T cells (57). Bevacizumab is

an antibody that exhibits anti-angiogenic properties and modulates

the immune system that enhances anti-cancer immunity (58). The

coadministration of the atelizumab (trade name: Tecentriq) and

bevacizumab (trade name: Avastin) is commonly denoted as “T

+A”. The National Comprehensive Cancer Network (NCCN)

recommended the use of the “T+A” regimen as the initial

treatment for patients with unresectable advanced HCC. This

regimen demonstrated an ORR of 25.1%, thereby establishing a

basis for the application of targeted therapy in combination with

anti-PD-1 mAb treatment (59, 60). Triple therapy is used for rapid

tumor shrinkage and disease control, followed by targeted

immunological combination maintenance therapy for continuous

tumor control, which has the potential to impede disease

advancement and extend patient survival considerably. The

paradigm under consideration is established to address HCC by

emulating the principles of conventional chemotherapy. Compared
Frontiers in Immunology 03
with dual therapy combined with targeted immunity, triple

induction therapy combined with HAIC showed superior efficacy

in terms of survival outcomes and tumor control of intrahepatic and

extrahepatic lesions. However, due to the relatively poor economic

conditions of Chinese HCC patients, most studies chose

toripalimab in triple combination therapy instead of nivolumab

and pembrolizumab.

The specific situation of triple therapy based on lenvatinib and

toripalimab displayed superior tumor response and survival

outcome than monotherapy or targeted plus anti-PD-1 mAb

therapy (56). Most studies of triple therapy include multiple

immune drugs (toripalimab, pembrolizumab, nivolumab and

sintilimab, etc.), given the influence of factors like socioeconomics

on the selection of immunotherapy drugs and the lack of significant

randomized controlled studies that strictly control variables. The

findings demonstrated that in terms of treatment response and

survival advantages, the triple therapy group outperformed the

target-immune dual therapy group (54, 61–63). In addition, triple

therapy also delayed extrahepatic tumor progression compared

with dual therapy (61). In contrast to other solid tumors,

immunotherapy in advanced HCC does not necessitate particular

criteria for the expression level of PD-L1. Nevertheless, research

findings have indicated a positive correlation between increased

tumor mutation burden (TMB), as measured by combined positive

score (CPS), and the efficacy of pembrolizumab in stimulating the

immune response. Consequently, patients with a higher CPS are

more likely to derive therapeutic benefits from pembrolizumab (62).

The superiority of triple therapy has also been demonstrated in

other retrospective studies that included multiple tyrosine kinase

inhibitor (TKI)-targeted agents (lenvatinib, regorafenib, sorafenib,

and apatinib) (64, 65). In addition to TKI drugs, the triple therapy

regimen incorporated an anti-vascular endothelial growth factor

receptor (VEGFR) agent known as bevacizumab, resulting in

notable tumor response (66). Additional information on HAIC

and anti-PD-1 mAb combined therapy was included in Table 2.
4 Safety and adverse effects of
combination therapy

The severity of all AEs was evaluated to be minimal, requiring

simple management. Furthermore, most investigations did not

reveal any statistically significant disparities between the

combination group and other groups. However, it is worth noting

that the combined therapy utilizing HAIC is more prone to

inducing chemotherapy-associated AEs. The safety profile shown

in Tables 1, 2 suggested that the most common AEs were

gastrointestinal AEs (diarrhea, nausea, vomiting, anorexia, and

oxaliplatin-related abdominal pain), hematologic AEs

(thrombocytopenia, neutropenia, leukopenia and anemia),

rash, alanine aminotransferase (ALT) and/or aspartate

aminotransferase (AST) elevated, hand-foot skin reaction, fever,

hypertension and hypothyroidism in combined therapy. In

particular, there was a higher prevalence of grade 3-4 AEs in the

domains of abdominal pain, hematologic AEs, and elevated ALT
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TABLE 1 Retrospective and phase I/II clinical trials evaluating HAIC and targeted agent combinations in advanced HCC.

Agent
Trial

description
Trial design

DCR/
ORR
(%)

mPFS/
mOS

(months)
Safety profile Reference

HAIC
+Sorafenib

Phase I trial
N=15

CDDP-HAIC (CDDP: 30 mg/m2)
+ Sorafenib

RECIST
1.1
DCR: 73.3
ORR: 26.7

mPFS: 5.0
mOS: 9.7

NA (31)

Phase II trial
N=38

CDDP-HAIC + Sorafenib

RECIST
1.1
DCR: 76.3
ORR: 57.9

mPFS: 6.2
mOS: 14.2

Grade 3-4 AEs: thrombocytopenia (13.2%),
AST elevation (7.9%), amylase and bilirubin
elevation (2.6%), creatinine increased
(2.6%), hepatic encephalopathy (2.6%),
allergic reaction (2.6%)

(28)

Retrospective
Study
N=71

HAIC (Cisplatin, Mitomycin, 5-Fu
and Leucovorin) + Sorafenib vs
Sorafenib

mRECTST
DCR: 88
vs 48
ORR: 73
vs 32

mPFS: 6 vs 4
a

mOS: 12 vs
12a

NA (32)

Phase III trial
N=205

FP-HAIC (Cisplatin: 20 mg/m²,
d1,8 +Fluorouracil:
330 mg/m² d1–5, d8–12, q4w) +
Sorafenib vs Sorafenib

RECIST
1.1
ORR: 36
vs 18

mTTP: 5.3 vs
3.5
mPFS: 4.8 vs
3.5 a

mOS: 11.8 vs
11.5 a

All AEs were similar in two groups.
Grade 3-4 AEs: anemia (17% vs 6%),
neutropenia (17% vs 1%),
thrombocytopenia (34% vs 12%), anorexia
(14% vs 6%).
More frequent in sorafenib group: alopecia,
hoarseness, diarrhea and elevated alanine
aminotransferase.
More frequent in combination group:
nausea, vomiting and decreased white cell
count.

(26)

Phase II trial
N=106

CDDP-HAIC (65 mg/m2, q4-6w)
+ Sorafenib vs Sorafenib

mRECIST
Response
rate: 21.7
vs 7.3a

mTTP: 3.1 vs
2.8 a

mOS: 10.6 vs
8.7 a

More frequent in combination group:
neutropenia, leukopenia, thrombocytopenia,
hyponatremia, nausea and hiccups.

(29)

Phase I trial
N=18

Interval FP-HAIC (CDDP: 20 mg/
m2 d1, 8 + 5-Fu: 330 mg/m2 d1-5,
d8-12, q3w) + Sorafenib

RECIST
1.1
DCR: 77.8
ORR: 38.9

mTTP: 9.7
mOS: 14.1

All AEs except hematology: hand-foot skin
reactions (61.1%), diarrhea (33.3%), appetite
loss (27.8%), hypertension (22.2%);
Grade 3 hematology AEs: leucopenia
(16.7%), neutropenia (11.1%), anemia
(11.1%), thrombocytopenia (16.7%)

(25)

Retrospective
Study
N-98

Long-interval FP-HAIC (treatment
cycle 2-3 m) + Sorafenib

mRECIST
DCR; 69.2
vs 44.4
ORR: 23.1
vs. 6.9 a

mOS: 17.1 vs
9.7

Grade 3-4 AEs were similar in two groups. (50)

Phase II trial
N=83

GEMOX-HAIC (Gemcitabine:
1000 mg/m2, d1 + Oxaliplatin: 100
mg/m2, d2, q4w) + Sorafenib vs
Sorafenib

RECIST
DCR: 77
vs 71
ORR: 15
vs 9
mRECIST
ORR: 28.2
vs 20.5

mPFS: 6.2 vs
4.6
mOS: 13.5 vs
14.8

Grade 3-4 AEs: neutropenia (23% vs 0%),
fatigue (21% vs 7%), thrombocytopenia
(33% vs 0%), diarrhea (18% vs 9%),
peripheral neuropathy (5% vs 0%), hand–
foot syndrome (5% vs 18%).

(18)

Phase II trial

FOLFOX-HAIC (Oxaliplatin, 85
mg/m2, d1; Leucovorin, 400mg/
m2, d1; 5-Fu, 400mg/m2, bolus at
d1 and 2400 mg/m2 over 46 h, d1-
2) + Sorafenib

RECIST
DCR: 77.1
ORR:40
mRECIST
DCR: 77.0
ORR:62.8

mPFS: 6.7
mOS: 13.2

Grade 3-4 AEs: AST elevation (31.4%),
hand-foot syndrome (17.1%),
thrombocytopenia (14.3%),
neutropenia (8.6%), esophageal hemorrhage
(8.6%).

(36)

Phase III trial
N=245

FOLFOX-HAIC + Sorafenib

RECIST
ORR; 40.8
vs 2.46
DCR: 75.2

mPFS: 7.03 vs
2.6
mOS: 13.37
vs 7.13

All AEs were similar in two groups.
Grade 3-4 AEs: neutropenia (9.6% vs
2.48%), thrombocytopenia (12.9% vs
4.96%), vomiting (6.45% vs 0.83%).

(37)

(Continued)
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and/or AST levels, likely attributable to their increased incidence.

Moreover, higher frequency of hematologic AEs (especially

neutropenia and thrombocytopenia), ALT and/or AST elevated,

nausea, and vomiting were discovered in HAIC-combined therapy

compared to targeted and/or anti-PD-1 mAb therapy. Nevertheless,

it’s worth noting that the elevated transaminases caused by

combined therapy were likely to return to normal soon after

treatment (68), and there was no observed increase in immune-

associated AEs (such as rash, hypothyroidism, hyperthyroidism,

hypophysitis, pneumonitis and hepatitis) when comparing to the

anti-PD-1 mAb monotherapy (67). In conclusion, investigating of

the dosage and drug schedule of the HAIC regimen remains a
Frontiers in Immunology 05
valuable pursuit, as it has the potential to yield improved survival

outcomes and reduced toxicity. Long-interval or low-dose with

consecutive HAIC treatment may improve the synergy of

chemotherapy drugs and provide lower treatment-related AEs

and better survival outcome (25, 50–52, 69, 70).

In addition, various HAIC procedures impact the occurrence of

AEs. The utilization of repeated catheterization and digital

subtraction angiography (DSA) prior to each HAIC treatment

cycle has exhibited superior dependability in the targeted delivery,

as compared to implantable port catheter systems. According to a

previous report, the occurrence of grade 3–4 AEs (e.g., catheter tip

dislocation, thrombosis, and port-related infection) associated with
TABLE 1 Continued

Agent
Trial

description
Trial design

DCR/
ORR
(%)

mPFS/
mOS

(months)
Safety profile Reference

vs 49.2
mRECIST
ORR; 54.4
vs 7
DCR: 76.0
vs 50.8

Retrospective
study
N=225

FOLFOX-HAIC + Sorafenib vs
FOLFOX-HAIC

RECIST
1.1
DCR: 74.2
vs 55.9
ORR; 36.6
vs 33.3

mPFS: 6.9 vs
4.1
mOS: 13.0 vs
10.0

Grade 3–4 hand–foot skin reaction
was more frequent in the combination
group

(39)

Phase II trial
N=39

Long-interval FOLFOX-HAIC +
Sorafenib

RECIST
1.1
ORR: 18
DCR: 69
mRECIST
ORR: 28

mTTP: 7.7
mOS: 15.1

Grade 1-2 AEs: fatigue (69%),
hypophosphatemia (64%), diarrhea (59%),
ALT elevation (56%), nausea (54%),
thrombocytopenia (46%).
Grade 3 AEs: AST elevation (28%), ALT
elevation (15%), diarrhea (13%), bilirubin
(10%), anemia (10%), hand-foot syndrome
(8%), bleeding (8%).

(51)

Phase II trial
N=64

FOLFOX-HAIC + Sorafenib vs
Sorafenib

RECIST
1.1
ORR: 41
vs 3
mRECIST
ORR: 50
vs 3

mPFS: 9.0 vs
2.5
mOS: 16.3 vs
6.5

All AEs were similar in two groups. (91% vs
88%)
Grade 3-4 AEs: diarrhea (22% vs 16%),
hand-foot syndrome (19% vs 6%),
thrombocytopenia (22% vs 0%), and AST
elevation (6% vs 3%)

(52)

HAIC
+Lenvatinib

Retrospective
study
N=150

FOLFOX-HAIC+ Lenvatinib vs
FOLFOX-HAIC+ Lenvatinib+
Microwave ablation

NA

mPFS: 5.6 vs
12.8
mOS: 13.6 vs
>30

All AEs were similar in two groups. (48)

Retrospective
study
N=242

FOLFOX-HAIC+ Lenvatinib vs
FOLFOX-HAIC

ALBI
score b:
-2.60 to
-2.34 vs
-2.56 to
-2.34 a

mPFS: 19.4 vs
16.2 a

3-year
cumulative
OS rates:
63.6, 12.1, 3.0
vs 47.2, 11.8,
2.7

All AEs were similar in two groups.
Grade 3-4 AEs: leukopenia (0.8%),
neutropenia (0.8%), vomiting (1.5%),
and ALT elevation (1.5%)

(49)
AEs, adverse effects; mPFS, median progression-free survival; mOS, median overall survival; 1-year OS, 1-year overall survival rate; ORR, objective response rate; DCR, disease control rate;
mTTP, median time to progression; ALBI, albumin-bilirubin; BI, total bilirubin; AL, albumin. NA, not available
a: There was no significant statistically difference between the two groups.
b: AALBI score (53) = (log 10 BI (mmol/L) × 0.66) + (AL (g/L) × − 0.085), (grade 3, >− 1.39; grade 2, − 2.60 to − 1.39; grade 1, ≤ − 2.60).
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TABLE 2 Retrospective and phase I/II clinical trials evaluating HAIC, anti-PD-1 mAb, and/or targeted agent combinations in advanced HCC.

Agent
Trial

description
Trial design

DCR/
ORR
(%)

mPFS/
mOS

(months)
Safety profile Reference

HAIC +
Anti-PD-1

mAb

Retrospective
study
N=229

FOLFOX-HAIC +
Anti-PD-1 mAbb

vs HAIC

mRECIST
ORR: 38 vs
30 a

DCR: 83 vs
66
Intrahepatic
response: 85
vs 74

mPFS: 10.0 vs
5.6
mOS: 18.0 vs
14.6

The most common AEs were pain, fever and vomiting. (54)

HAIC +
Lenvatinib
+ Anti-

PD-1 mAb

Retrospective
study
N=157

FOLFOX-HAIC+
Lenvatinib +
Toripalimab vs
Lenvatinib

RECIST 1.1
ORR: 59.2
vs 9.3
DCR: 90.1
vs 72.1
mRECIST
ORR: 67.6
vs 16.3
DCR: 90.1
vs 72.1

mPFS: 11.1 vs
5.1
mOS: NR vs 11

Grade 3–4 AEs: neutropenia (8.5% vs 1.2%),
thrombocytopenia (5.6% vs 0%), nausea (5.6% vs 0%).
Any grade liver dysfunction (elevated ALT, elevated
AST, hyperbilirubinemia, hypoalbuminemia) was more
frequent in combination group.

(56)

Phase II trial
N=36

FOLFOX-HAIC+
Lenvatinib +
Toripalimab

RECIST 1.1
ORR: 63.9
DCR: 88.9
mRECIST
ORR: 66.7
DCR: 88.9

mPFS: 10.9
mOS: 17.9

Grade 3–4 AEs: thrombocytopenia (13.9%), elevated
AST (13.9%), and hypertension (11.1%).
irAE: dermatitis (22.2%) and hypothyroidism (13.9%).

(67)

Retrospective
study
N=61

FOLFOX-HAIC+
Lenvatinib + Anti-
PD-1 mAbc

RECIST 1.1
ORR: 36.1
DCR: 82.0
mRECIST
ORR: 57.4
DCR: 82.0

mPFS: 6.0
mOS: NA

Grade 3–4 AEs: abdominal pain
(8.2%), neutropenia (6.6%), thrombocytopenia (4.9%),
elevated ALT (3.3), elevated AST (3.3%).

(63)

Retrospective
study
N=142

FOLFOX-HAIC+
Lenvatinib + Anti-
PD-1 mAbd vs
Lenvatinib + Anti-
PD-1 mAbd

mRECIST
ORR: 61.8
vs 20.8
DCR: 86.5
vs 56.6

mPFS: 11.1 vs
5.5
mOS: 26.3 vs
13.8

Grade 3–4 AEs: platelet count decreases (21.3% vs.
7.5%) and elevated AST (36.0% vs. 9.4%).

(61)

Retrospective
study
N=170

FOLFOX-HAIC+
Lenvatinib +
Pembrolizumab vs
Lenvatinib +
Pembrolizumab

RECIST 1.1
ORR: 46.4
vs 30.2
DCR: 90.5
vs 83.8
mRECIST
ORR: 59.5
vs 41.9
DCR: 88.1
vs 82.6

mPFS: 10.9 vs
6.8
mOS: 17.7 vs
12.6

All AEs were similar in two groups.
Grade 3–4 AEs: 4.8% vs 2.3%.

(62)

HAIC+
Targeted
agent +

Anti-PD-1
mAb

Retrospective
study
N=27

FOLFOX-HAIC+
TKIe + Anti-PD-1
mAbf

mRECIST
ORR: 63.0
DCR: 92.6

mPFS: 10.6
(patients who
had not
previously
received
treatment: NR)
mOS: NR

Grade 3 AEs: 55.6%
Grade 1–2 AEs: thrombocytopenia
(33.3%), elevated AST (44.4%), elevated total bilirubin
(51.9%).
Grade 1–2 irAE: hypothyroidism (29.6%), elevated
serum amylase 1 (3.7%), elevated lipase (3.7%)

(64)

Retrospective
study
N=30

FOLFOX-HAIC+
Lipiodol
embolization +
Targeted agentg +
Anti-PD-1 mAbh

RECIST 1.1
ORR: 63.3
DCR: 100
mRECIST
ORR: 83.3
DCR: 100

mDOR: 10.3
mPFS: 13.2
1-year OS: 96.7

Grade 3 AEs: elevated serum bilirubin (3.3%),
gastrointestinal bleeding (6.7%), stomachache (3.3%).

(65)

Grade 3 AEs: fatigue, pain and fever. (66)

(Continued)
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implantable port catheter systems was <12% (71). Whether the

difference in HAIC technology leads to differences in survival

outcomes still needs to be confirmed by more prospective studies.
5 Molecular mechanisms of
superior efficacy

The above studies have found that the FOLFOX-HAIC

combination therapy is more beneficial than the CDDP-based

HAIC combination therapy. Compared with cisplatin ’s

mechanism of inducing DNA damage, oxaliplatin promotes

tumor cell death by inducing ribosome biosynthesis stress (72).

Second, studies in colon cancer cells have shown that oxaliplatin

can stimulate cancer cells to expose proapoptotic calreticulin

(CRT), which is required for immunogenic cell death (ICD), and

advocate for the effectiveness of anti-tumor therapy (73).

Furthermore, the utilisation of oxaliplatin to provide HAIC

demonstrates significant pharmacokinetic advantages (74). In

addition, 5-Fu modulates the expression of multidrug resistance-

associated proteins, hence augmenting the effectiveness

of oxaliplatin.

Sorafenib has been observed to elicit apoptosis and perhaps

mitigate resistance to chemotherapeutic agents, which may be the

reason why HAIC combined with sorafenib has a relatively good

survival outcome in advanced HCC (75) Lenvatinib, also a

multitarget drug, has been shown to inhibit the activity of

multidrug resistance-associated transporters and increase the

sensitivity of FOLFOX regimen (76). This mechanism may

promote the stronger combined antitumor effect of the FOLFOX

regimen and Lenvatinib (38, 77). However, it is imperative to

acknowledge that triple therapy combined with anti-PD-1 mAb

has better tumor response and long-term survival benefit than

HAIC combined with targeted therapy. This has led to greater

interest in the underlying mechanisms of anti-tumor immune

responses generated by combination therapy. It was found that
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triple therapy can increase the level of CCL 28 and the number of

CD 8+ and CD 4+ T cells in peripheral blood and reduce the level of

betacellulin, which inhibits tumor angiogenesis and progression.

Furthermore, it was shown that the levels of PD-1 and lenvatinib

targets were notably elevated in individuals exhibiting a high

expression of CCL28. The subgroup analysis revealed that those

in the high CCL28 group had a significantly extended mOS (67).

While additional research is required to investigate the cut-off

values of CCL28 and betacellulin in a more extensive population,

and the assessment of lymphocyte count in the tumor immune

microenvironment (TME) was not conducted in this study, it has

provided the impetus for further exploration into the underlying

processes of combination therapy.

Cytotoxic chemotherapeutic agents (e.g., Gemcitabine,

Oxaliplatin, and Cyclophosphamide) can enhance anti-tumor

immune responses via many mechanisms. Chemotherapeutic

agents induce apoptosis by up-regulating HLA1 and cation-

independent M6P receptor (MPR). This upregulation

subsequently enhances the sensitivity of cytotoxic T cells,

facilitating the infiltration of granzymes, including GrzB, into a

broader spectrum of tumor cells (78). GrzB is a member of the

granzyme family and is responsible for causing the release of pro-

apoptotic mitochondrial mediators into the cytoplasm, so initiating

the process of apoptosis (79). Additionally, it interferes with

signaling processes and suppresses immunological responses to

reinstate immune surveillance functionality (80). The activation

of the tumor-specific T cells can be facilitated by blocking the

pathway of PD-1/PD-L, which is recognized for inducing

immunological escape in tumors through upregulation (81, 82).

Following the administration of platinum-based drugs to human

colon cancer cells, it was observed that transcription 6 (STAT6)

played a crucial role in the regulation of the T-cell inhibitory

molecule known as programmed death receptor ligand 2 (PD-L2).

The down-regulation of PD-L2 resulted in an increase in the

secretion of Th1 cytokines and reversing the Th2-dominant TME,

enhancing the recognition of T cells to tumor cells (83). In addition,
TABLE 2 Continued

Agent
Trial

description
Trial design

DCR/
ORR
(%)

mPFS/
mOS

(months)
Safety profile Reference

Retrospective
study
N=135

FOLFOX-HAIC+
Targeted agenti +
Anti-PD-1 mAbj

mRECIST
ORR: 54.1
DCR: 94.6

successful
conversion
surgery vs
unsuccessful
conversion
surgery
mPFS: 28 vs 7
mOS: 30 vs 15
NR, not reached; NA, not available; irAE, immune-related AEs; TKI, tyrosine kinase inhibitors; mDOR, median duration of response.
a: There was no significant statistically difference between the two groups.
b: Nivolumab (4%), Keytruda (5%), Toripalimab (60%), Sintilimab (35%);
c: Pembrolizumab (1.6%), Camrelizumab (60.7%), Tislelizumab (19.7%), Sintilimab (14.8%), Toripalimab (3.3%);
d: Pembrolizumab (11.2% vs 37.7%), Sintilimab (36.0% vs 26.4%), Toripalimab (40.4% vs 17.0%), Camrelizumab (6.7% vs 11.3%), Tislelizumab (5.6% vs 7.5%);
e: Sorafenib (18.5%), Lenvatinib (40.7%), Regorafenib (37.0%), Apatinib (3.7%);
f: Camrelizumab (66.7%), Sintilimab (26.1%), Toripalimab (7.4%), Nivolumab (7.4%);
g: Bevacizumab (3.3%), Lenvatinib (46.7%), Sorafenib (50.0%);
h: Sintilimab (40.0%), Carrelizumab (56.7%), Atezolizumab (3.3%);
i: Bevacizumab (42.2%), Lenvatinib (49.6%), Sorafenib (4.44%), Apatinib (3.70%);
j: Sintilimab (71.1%), Atezolizumab (0.74%), Camrelizumab (23.0%), Pembrolizumab (0.74%).
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it has been observed that a pre-administered FP chemotherapy

regimen can effectively counteract the immunosuppressive TME

and, in conjunction, significantly augment the antitumor efficacy of

natural killer (NK) cells. The primary manifestation of this

phenomenon is observed in the heightened impact of 5-Fu on the

functionality of NK cells, as well as the augmented efficacy of

cisplatin in NK cell immunotherapy through the upregulation of

UL16 binding protein 2 (ULBP2) (84–86). Specifically, ULBP2 is a

ligand that functions as an activation receptor for NK cells,

facilitating the cytotoxicity of NK cells towards tumor cells (87).

In an experimental mouse model of liver tumors subjected to

cisplatin treatment, the expression of the androgen receptor (AR)

was suppressed, leading to an augmentation in its degradation. The

expression of ULBP2 was up-regulated and the cytotoxicity of NK

cells was enhanced due to the down-regulation of AR (86). Cancer

cells possess the capacity to augment subpopulations of cells

exhibiting pro-tumorigenic characteristics, among which myeloid-

derived suppressor cells (MDSCs) are included and impede the

immune response against tumors (88, 89). HAIC eliminates cells

with suppressive effects on tumor immunity, such as regulatory T

cells (Tregs) and MDSCs (90, 91). A retrospective study analysed

the immune response of various immune cells in patients treated

with FP-HAIC, including tumor-associated antigen (TAA) specific

T cells, Treg and MDSCs. It suggested a significant decrease of Treg

after anti-tumor treatment (92). Prior research has indicated that

the administration of 5-Fu results in the targeted elimination of

MDSCs. However, it has been observed that this treatment does not

improve the effectiveness of anti-PD-1 mAb through the induction

of ICD (93, 94). Hence, solely focusing on the targeting of

immunosuppressive cells is insufficient.

The demise of cancer cells within the TME can be categorized

into immunogenic and non-immunogenic. In contrast to the

process of apoptosis, ICD triggers the activation of pattern

recognition receptors (PRRs) in macrophages and dendritic cells

(DCs) by the exposure of certain endogenous chemicals known as

damage-associated molecular patterns (DAMPs). The antigen

presentation process by sensing and activating innate immune

cells to T cells is crucial in initiating an anticancer immune

response (95). ICD can strongly mimic the immune system and

enhance the immune response induced by immunotherapeutic

regimens, ultimately contributing to durable protective anti-

tumor immunity (96). Cytotoxic drugs can enhance the

antigenicity of tumor cells by inducing ICD, while concurrently

mitigating the occurrence of unintended immunosuppression in the

tumor microenvironment (97). The induction of ICD was shown in

colon cancer through in vitro investigations, wherein either

trifluridine/tipyrimidine (FTD/TPI) or oxaliplatin alone were

determined to be responsible for this effect. Additionally, it

resulted in the reduction of immunosuppressive tumor-associated

macrophages of type 2 (TAM2), reversed the immunological

tolerance generated by the tumor, increased the infiltration and

activation of cytotoxic CD8+ T cells, and enhanced the effectiveness

of anti-PD-1 mAb treatment. Nevertheless, it is imperative to note

that the induction of ICD in in vivo trials necessitates the
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combination of both medications, so implying that the synergistic

utilization of these two agents could potentially enhance the

effectiveness of immunotherapy (98). Oxaliplatin can facilitate the

initiation of DAMPs, including augmented exposure of CRT,

elevated secretion of adenosine triphosphate (ATP), and increased

release of high mobility group 1 (HMGB1). Consequently, this

process promotes ICD (99). The co-culture system exhibited an

augmentation in DCs and activated CD8+ T cells, alongside a

reduction in Treg cells, whereas such changes were not observed

in the cisplatin-treated group (100). DCs assume a pivotal function

in the identification of apoptotic cells and the initiation of immune

responses. Additionally, they are capable of instigating T cell-

mediated anti-tumor response (101). Previous studies have

indicated an association has been observed between increased

levels of CD8+ T cells infiltrating and a favorable prognosis (102,

103). In contrast, Treg cells and B cells expressing PD-1 (often

referred to as regulatory B cells) exert inhibitory effects on the

aforementioned process (104). In brief, oxaliplatin functions as an

inducer of ICD and as a regulator of the TME, thereby facilitating

the recruitment of DCs and CD8+ T cells to the “tumor bed”. In

conjunction with the administration of anti-PD-1 mAb, this

approach has the capacity to impede the production of PD-L1 on

neoplastic cells, hence facilitating the ability of immune system to

identify and engulf these malignant cells. Furthermore, it was

discovered that progenitor cells that were depleted and enriched

with CD 44+PD-1+Tim-3- cells exhibited greater susceptibility to

anti-PD-1 mAb monoclonal antibody in comparison to terminally

depleted CD 8+ T cells that were enriched with CD 44+PD-1+Tim-

3+ cells (105). The combination of FTD/TPI and oxaliplatin resulted

in an elevated proportion of progenitor cells in comparison to

terminally depleted CD 8+ T cells. Proposing the utilization of this

combined therapeutic approach to modulate the T cell phenotype

with the aim of augmenting the inhibition of PD-1 actions (98).

Lenvatinib appears to have a more potent anti-tumor immune

gain effect than sorafenib. Research findings indicated that the

expression of PD-1 on T cells was notably increased by vascular

endothelial growth factor A (VEGFA) and basic fibroblast growth

factor (bFGF). Concurrently, the secretion of interferon gamma

(IFNG) and granzyme B (GZMB) was inhibited, and the

cytotoxicity of T cells is suppressed. The process was reversed by

lenvatinib through the inhibition of two targets. In contrast,

sorafenib exclusively targets a single entity. In addition, lenvatinib

reduced PD-L1 expression on vascular endothelial cells. This

subsequently led to the restoration of T-cell activity, while having

no impact on the expression of PD-L1 on HCC tumor cells.

Consequently, the sensitivity of tumor cells to PD-1 mAb was

preserved (106). Thus, the concurrent administration of PD-1

inhibitors and anti-VEGF medicines has the potential to enhance

the anti-tumor response by synergistically modulating the function

of effector T cells and normalizing the tumor vasculature inside the

TME, thereby converting “cold tumors” into “hot tumors”. In brief,

the reported synergistic effect of the anti-PD-1 mAb and HAIC

provides a fundamental rationale for the effectiveness of combined

therapy in the treatment of advanced HCC (Figure 1).
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6 Discussion

The application of HAIC has demonstrated potential benefits

for managing primary intrahepatic lesions in the short term.

Hatooka’s study showed that after receiving a course of HAIC,

the DCR and ORR were 79.9% and 25.4%, respectively (107).

Nevertheless, when sorafenib was exclusively administered as the

initial therapeutic intervention for advanced HCC, the DCR ranged

from 35.3% to 43%, while the ORR ranged from 2% to 3.3% (43,

108). The Japanese Society of Hepatology (JSH) recommends HAIC

as the first-line treatment for advanced HCC patients with large

vessel invasion (Vp3 and Vp4), elevated tumor markers, and

Child−Pugh B grade liver function (11). While the administration

of HAIC as a standalone treatment has demonstrated the ability to

regress local tumors at a rapid pace effectively, it may not suffice in

adequately controlling the progression of tumors over an extended

period in cases with advanced HCC.

We selected representative relevant clinical studies and identified

differences in treatment design and efficacy evaluation criteria across

the trials described above. Significant disparities were observed in the

response evaluations between RECIST 1.1 and mRECIST. The

RECIST1.1 criteria use the maximum diameter of the tumor

(including the surviving tumor and necrotic areas) to determine

the efficacy of the treatment, whereas the mRECIST criteria use the

“surviving tumor” to evaluate the efficacy of the treatment (109).

Enhanced computed tomography (CT) is frequently employed for

evaluating the effectiveness of treatment. The region exhibiting

vascular enhancement in arterial enhancement phase corresponds
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to the active area of HCC, specifically referred to as the target lesion in

the mRECIST criteria (110). Due to the potential temporal

discrepancy between morphological alterations in images and

changes in tumor vascular distribution/activity following

antiangiogenic therapy, the evaluation of tumor lesions according

to the RECIST1.1 standard does not allow for differentiation between

surviving and necrotic lesions post-treatment. No substantial

alteration is observed in the overall volume of tumor lesions after

local treatment of HCC. However, a notable decrease in the

enhancement area and an increase in necrosis area are observed,

indicating significant changes in these aspects. The utilisation of

mRECIST criteria facilitates the prompt detection of biological

responses after therapeutic intervention and identifies the regimen

more sensitively (18, 52). Hence, it is advisable to assess the

therapeutic efficacy of the combination therapy involving HAIC

and anti-PD-1 mAb based on the mRECIST criteria in the context

of clinical application.

Several clinicopathological factors can influence the prognosis of

patients. Among all HCC patients with vascular invasions, there are

10 to 40% HCC patients were diagnosed with PVTT, of which the

median survival time is less than 4 months without effective

treatment (111). The present of PVTT not only causes elevated

portal pressure and worsening of liver function, but also accelerates

the spread of the tumor through the liver, which is closely associated

to bad prognosis. There are various treatment modalities for

advanced HCC with PVTT, but all have limitations. Transcatheter

arterial chemoembolization (TACE) treatment is controversial

because of the potential for ischemic liver injury. Systemic
FIGURE 1

ICD formation is encouraged by HAIC-based chemotherapy drugs, which also affect a variety of immunells and boost anti-PD-1 mAb-induced
immune responses against tumors. Additionally, sorafenib and lenvatinib were shown to modulate cytotoxic T-lymphocytes, and immunotherapy
had synergistic anti-tumor effects. More specific definitions for the abbreviations are presented at the end of the article.
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chemotherapy provides limited survival benefit. Surgical resection is

demanding in terms of tumor site, general condition of the patient

and surgical operation (112). HCC patients with PVTT may

represent a potentially advantageous cohort for HAIC and anti-

PD-1 mAb combination therapy (113). Some studies have shown that

after stratification according to the grade of portal vein invasion, the

combination therapy group also had a significant survival difference

compared with the single drug group (mOS: Vp 3 patients were

16.3 m and 5.5 m, and Vp 4 patients were 13.6 m and 6.5 m; mPFS:

Vp 3 patients were 9.9 m and 2.5 m, and Vp 4 patients were 6.8 m and

2.5 m) (52). Furthermore, the question of whether combination

therapy benefits the population with extrahepatic metastases

remains a subject of controversy. The study conducted by Chen

et al. (32) did not demonstrate any significant survival benefit in the

group that received combination treatment, probably due to

excluding patients with extrahepatic metastases. Other researchers

speculated that HCC patients with extrahepatic metastases might

possess the demographic traits that would result in a survival

advantage in the combination therapy group (18).

The effectiveness and safety of HAIC primarily rely on clinical

experience, particularly in East Asian nations. Most research

consists of retrospective cohort studies, which are limited in

terms of high-quality evidence and large sample sizes. The

combination therapy of HAIC and anti-PD-1 mAb similarly

encounters the aforementioned predicament. Simultaneously, a

considerable proportion of clinical investigations in China

predominantly rely on the FOLFOX regimen. While the results

demonstrate a more favorable outcome compared to systemic

therapy, it is important to note that there exists a considerable

prevalence of Hepatitis B virus (HBV) infection among the studied

population. A study found that patients with alcoholic cirrhosis or

HCV infection were more likely to benefit from the HAIC

treatment compared to HBV-infected patients. However, the

combination of antiviral medication with lamivudine prolonged

the survival of HBV-infected patients, which suggested that

antiviral therapy of HBV-infected patients should be standardized

throughout the length of HAIC administration (114, 115).

Therefore, the applicability of the same treatment paradigm to

different regions remains uncertain.

Except the anti-PD-1 mAb, drugs targeting other immune

checkpoints include cytotoxic T-lymphocyte associated protein-4

(CTLA-4), programmed cell death-1 (PD-1) and lymphocyte

activation gene-3 (LAG-3). The antitumor activity of CD8+ T cells is

suppressed by CTLA-4 through the upregulation of its expression and

its competitive interaction with CD28 for the B7 receptor. Moreover,

upregulated CTLA-4 on regulatory T cells (Treg cells) suppresses the

activity of dendritic cells (DCs) and CD8+ T cells. The aforementioned

mechanisms support the possibility of combining anti-PD-1/PD-L1

antibodies with anti-CTLA-4 antibodies as a viable therapeutic

approach for HCC. Several studies have been conducted to

investigate the efficacy of dual-immunity combinations, which have

demonstrated that the use of dual-immunity combinations resulted in

improved survival rates and better tumor control outcomes compared

to sorafenib monotherapy (116, 117). Nevertheless, there remains a

dearth of clinical trials of dual-immunity combinations or anti-CTLA-4

antibodies combined with HAIC.
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In this study, we conducted a comprehensive evaluation of the

efficacy, safety, and molecular mechanisms underlying the

combination of HAIC with anti-PD-1 mAb. HAIC with anti-PD-

1 mAb represents a highly advantageous therapeutic approach for

advanced HCC. HAIC facilitates the development of TME that is

favorable for the effectiveness of anticancer immunotherapy. This is

achieved through ICD and the control of immune cell function.

Further investigation is required to delve into the molecular

processes that contribute to enhancing chemotherapeutic drugs

for immunotherapy in the HAIC modality. Additionally, it is

imperative to validate these mechanisms through extensive,

meticulously planned prospective clinical studies in the future.
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