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T-helper cells flexibility: the
possibility of reprogramming
T cells fate

Julia N. Khantakova* and Sergey V. Sennikov

Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research
Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
Various disciplines cooperate to find novel approaches to cure impaired body

functions by repairing, replacing, or regenerating cells, tissues, or organs. The

possibility that a stable differentiated cell can reprogram itself opens the door to

new therapeutic strategies against a multitude of diseases caused by the loss or

dysfunction of essential, irreparable, and specific cells. One approach to cell

therapy is to induce reprogramming of adult cells into other functionally active

cells. Understanding the factors that cause or contribute to T cell plasticity is not

only of clinical importance but also expands the knowledge of the factors that

induce cells to differentiate and improves the understanding of normal

developmental biology. The present review focuses on the advances in the

conversion of peripheral CD4+ T cells, the conditions of their reprogramming,

and the methods proposed to control such cell differentiation.
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Introduce

It has long been believed that mature T-helper (Th) lymphocytes are terminally

differentiated cells of functionally distinct subpopulations that differ in transcriptional and

cytokine profiles. However, recent studies have shown that T cells have varying degrees of

plasticity, allowing them to adapt to specific challenges and acquire new characteristics and

functions in immune responses, depending on the tissue microenvironment. Surprisingly,

lymphocytes recognized as terminally differentiated Th1 and Th2 can change their

functional specialization under certain microenvironmental conditions. Foxp3-

expressing regulatory T cells (Tregs) was previously thought to be remarkably stable

under both basal and inflammatory conditions (1, 2). But several recent studies have shown

that changes in expression and stability FoxP3 during inflammation can alter the

phenotypic properties of Tregs, converting Tregs effector function, thus confirming a

certain degree of plasticity cells (3–7). T-helper 17 cells (Th17) are largely unstable and can

reprogram into many types of T-helper lymphocytes. Determining the possible plasticity of

T cell subpopulations in various tissues is highly relevant for future therapeutic

interventions in such diverse immune pathologies as chronic viral infections, cancer,
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and autoimmune diseases. In this review the authors will not discuss

the processes occurring in the thymus during positive and negative

selection, and stability and flexibility CD8+ cytotoxic T cells as they

are widely analyzed in other publications (8–11). The present

review focuses on the advances in the conversion of peripheral

CD4+ T cells, the conditions of their reprogramming, and the

methods proposed to control such cell differentiation.
The differentiation of T-helper
lymphocyte subpopulations
in the periphery.

T cells differ from most somatic cells due to continued

differentiation in adulthood depending on the encountered antigen,

as well as the ability to reprogram between different CD4+ T-helper

cell lineages (12–18). CD4+ T-lymphocytes has the great potential to

perceive various activating signals such as cytokines, chemokines, and

other environmental factors, in response to which cascades of effector

programs are triggered. Traditionally, the activation process of naïve

T lymphocytes begins after 3 subsequent signals (19, 20): 1. T-cell

receptors (TCRs) recognize antigens presented on the surface of cells

in a complex with MHC. 2. Interaction of costimulatory molecules

(CD4/CD8/CD28, etc.). 3. Creation of a cytokine microenvironment.

Depending on the type of signal, the naive CD4+ T cell starts to

express various transcription factors leading to the activation of

transcription and translation of cytokine and chemokine genes

necessary for eliminating specific pathogens or preventing

immune-mediated pathologies (see Table 1).

TCR signaling plays a critical role in the selection of differentiation

lineages of various CD4+ T-cell subpopulations. The T-cell receptor

TCR belongs to the family of immunoreceptors. It consists of 2 chains:

a/b or g/d. In this review, a/b TCRs will be described, and all further

references to “TCR” will refer specifically to the ab TCR. We will not

discuss molecular models of TCR signaling initiation, which leads to

different cellular responses, as they are widely analyzed in other

publications (96–98). A brief description of intracellular events that

occur during the interaction of TCR and pMHC is described in Box 1.

The table summarizes some data on the role of different signaling

pathways and transcription factors, in the differentiation of T

lymphocyte subpopulations [adapted and added from 99)].

In doing so, the affinity strength of antigens to TCRs was shown to

be sufficient to induce differences in the physiology of differentiated T

cells. When naïve CD4+ T cells are subjected to strong TCR

stimulation, differentiation of Th1 preferentially proceeds, both in

vitro and in vivo (100–102). Conversely, weak TCR signaling favors

Th2 cell differentiation (101, 103). Besides, the strength of TCRs

signaling influence on initial cytokine production: low antigen

concentrations trigger interleukin (IL)-4-independent IL-4

production during the first 24 hours after T cell engagement,

whereas stimulation with high concentrations suppresses early IL-4

production but enhances interferon production (IFN)-g (19). The

issue of whether differences in the strength of TCRs signaling affect
Frontiers in Immunology 02
TABLE 1 Role of signaling pathways and transcription factors in the
differentiation of T lymphocyte subpopulations.

Pathway Role References

Ras-ERK1/2-
AP-1

early determination of the CD8+ T
cell memory

(21)

proliferation and Th1 differentiation
in vitro;
inhibition of regulatory T cell (Treg)
differentiation

(22)

BATF regulate the differentiation of
T helper (Th)17 cells and the
conversion of CD4+Foxp3+ cells to
CD4+IL-17+ cells.

(23)

JunB activates the expression of
Th17 lineage-specifying genes and
coordinately represses genes
controlling Th1 and regulatory T-cell
fate.

(24)

IP 3 -Ca
2+

-NFAT
Ca2+ signals control proliferation,

differentiation, apoptosis, and a variety
of transcriptional programs

(25–27)

development and function of
regulatory T cells

(28)

PKCq-IKK-
NF-kB

PKCq is recruited to the
immunologic synapse between APC
and T cell, triggering T cell activation
activation and proliferation of mature
B and T cells

(29–34)

cytoskeletal polarization in T cells (35)

PDK1 is essential for integrating the
TCR and CD28 signals and activating
NF-kB and PKCq in T-cells.

(36–39)

TSC1/2-mTOR mTOR is involved in the activation,
differentiation, and function of effector
T cells (Th1, Th2, Th17), but blocks
Treg cell formation

(40–42)

Phosphatases Phosphorylation and
dephosphorylation of TCR signaling
molecules affect the formation of
signaling complexes and the
propagation of TCR signals

(43–45)

SHP-1 negatively regulates the
differentiation process from naïve T
cells to Th1 or Th2 effector T cells
and/or the proliferation of
differentiated T cells

(46)

SHP2 is to suppress the
differentiation of T cells to the Th2
phenotype.

(47)

Forced expression of miR-181a
enhances the TCR response in mature
T cells, making activation by
antagonistic ligands possible

(48)

Suppression of Ptpn22 (SHP2 gene)
increases the expansion and function
of effector/memory T cells

(49)

(Continued)
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Th17 cell differentiation remains controversial (104). It should be

noted that the strength of TCR signaling also regulates the

differentiation of regulatory T cells (Treg) (105, 106). A low density

of high-affinity ligands is important for the stable induction of

peripheral Treg cells (107, 108). Longer TCR-pMHC residence time

as well as high-affinity TCRs are positively associated with follicular

helper T cell (Tfh) differentiation (102, 109). Stable Th 9 function

requires sustained TCR signaling and the IL-9 secretion (110, 111).

An important principle of CD4+ T-cell differentiation is that one

of the characteristic cytokines produced by each differentiated cell
TABLE 1 Continued

Pathway Role References

Recruitment of the inhibitor
phosphatases PP2A and SHP2 is
involved in the induction of partial
anergy of T reg cells in response to
TCR and CD28 stimulation

(50)

DUSP2 inhibits signaling through
STAT3 and restricts Th17
differentiation

(51)

PTPN2 may support memory CD4+
T-cell responses by shaping memory
effector functions or prolonging
lymphocyte survival acting on STAT1

(52)

Ubiquitination
and degradation

Roquin1/2 ligases maintain immune
tolerance and block differentiation of
effector and Tfh cells

(53)

LMP7 (part of the
immunoproteasome) promotes Th1
and Th17 differentiation, has no effect
on Th2 cells, and blocks Treg cells

(54)

overexpression of Stub1 in Treg cells
abrogated their ability to suppress
inflammatory immune responses in
vitro and in vivo and conferred a T1-
like phenotype by promoting
degradation of the Foxp3

(55)

E3 ligases, including Cbl-b, the gene
related to anergy in lymphocytes

(56)

DAG kinases loss of DGKa and/or DGKz leading
to hyperactivation, impaired induction
of anergy

(57, 58)

loss of DGKz enhanced TCR
signaling, and increased generation of
nTreg cells in mice.

(59)

Ikaros
(including Helios
and Aiolos)

In mice, depending on the mutation
in Ikaros, the number of T, B, and NK
lymphocytes and their early precursors
are absent or significantly reduced, but
impaired hyperproliferation and
differentiation of CD4 lymphocytes
may be observed

(60, 61)

GATA-3 Th2 cell differentiation, deletion of
Gata-3 in early or late stage
thymocytes showed the arrest of the
DN3 population with decreased DN4,
DP, and SP populations or impaired
differentiation into CD4+ T cells,
respectively

(62–64)

Gata-3 induces expression of the
Zbtb7b gene, encoding a ThPOK
transcription factor that inhibits
differentiation of DP-thymocytes into
CD8-SP cells and promotes
differentiation into CD4-SP cells

(65)

Notch Provides differentiation of common
lymphoid precursors into T-
lymphocytes. In the absence of Notch,
B-lymphocytes are formed

(66, 67)

(Continued)
TABLE 1 Continued

Pathway Role References

STAT (signaling transducer and activator of transcription)

STAT1 STAT1 Is Required for IL-6–
Mediated Bcl6 Induction Tfh

(68)

Inhibits differentiation of Th17
lymphocytes

(69)

Together with Tbet, it is a key factor
in Th1 lineage differentiation, IFNg-
STAT1-T-bet pathway

(70, 71)

STAT3 Required for RORgt induction and
Th17 lymphocyte differentiation

(72)

STAT4 IL-12 activates STAT4, which is
critical for Th1 lymphocytes. Stat4-
deficient lymphocytes differentiate
predominantly into Th2 lymphocytes

(73, 74)

STAT4 is important for activating
the function of IL-23-stimulated Th17
pathogenic lymphocytes

(75)

STAT5 Activation of STAT5 by IL-2
stimulates differentiation of Th1, Th2,
and Th9 cells but suppresses the
development of Th17 and Tfh cells

(76–82)

Regulates FoxP3 expression and
Treg differentiation

(83)

STAT6 Activation of STAT6 under the
influence of IL-4 triggers Th2
lymphocyte differentiation

(84–86)

STAT6 suppresses FoxP3 expression
and differentiation of iTreg cells

(87, 88)

Blimp1 Blimp-1 suppresses Tfh cell
differentiation through suppression of
Bcl-6

(89, 90)

Bcl-6 Tfh cell differentiation, master
regulator

(90–92)

Bcl-3 Suppresses Th9 differentiation
through limiting glutathione
availability

(93)

BATF Binds to the Il6 promoter and
enhances IL-6 cytokine secretion

(94)

Together with STAT3, it is required
for RORgt induction and Th17
lymphocyte differentiation

(95)
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also plays a critical role in the induction of such cells, potentially

providing a powerful positive feedback loop (Figure 1). These

“feedback” cytokines are IFN-g for Th1, IL-4 for Th2, IL-21 for

Th17, and TGF-b for iTreg. Thus, exposure to IL-12 or IFN-g
activates STAT-1 and triggers the expression of the transcription

factor T-bet, which is required for Th1 lymphocyte differentiation

(112). IL-4 signals activate STAT6 and further Gata3 required for
Frontiers in Immunology 04
polarization toward Th2 lymphocytes (J. 113). However, if TGF-b is

additionally present in the medium, other transcription factors, PU.1

and IRF4, are activated and direct differentiation toward Th9

lymphocytes (114). A combination of TGF-b and IL-6 or IL-21, via

the STAT3 pathway (115), induces the expression of RORgt and
directs CD4+ differentiation toward Th17 (116, 117). Besides, TGF-b
is essential for Treg cell differentiation through its effect on the FoxP3
BOX 1 Intracellular events TCRs initiation.

The TCR consists of an extracellular region, a transmembrane region, and a shorter cytoplasmic tail. At the same time, none of the TCR chains has internal kinase activity
or the ability to interact with non-receptor tyrosine kinases (Mariuzza et al., 2020). The TCR forms complexes with d-, g-, e- and z-chains of CD3, essential for cell surface
expression and intracellular signaling. The interaction between the extracellular domains of CD3 immunoglobulin subunits and TCR chains is necessary for the formation
of the antigen-recognition complex of T cells. Despite the presence of longer cytoplasmic fragments, CD3 chains also lack the enzymatic activity that would support
intracellular signal transduction during antigen recognition. For this purpose, co-receptor CD4 are located near the TCR chains, which bind the TCR to the Src family
kinases Lck and Fyn, which engage and phosphorylate the CD3 immunoreceptor tyrosine-based activation motif (ITAM) complex and initiate the downstream signaling
cascade, ultimately leading to T cell survival, differentiation, and effector functions (Walk et al., 1998). The combinatorial mutation of ITAM TCR demonstrated their
central importance for T cell development and function (Bettini et al., 2017; Holst et al., 2008; Love & Hayes, 2010). Decreased ITAMs lead to increased Treg formation in
mice (M. O. Li & Rudensky, 2016). Phosphorylation of ITAMs enables recruitment of the TCR-associated protein Zeta-chain-associated protein kinase 70 (Zap70), which
is then phosphorylated by Lck. Zap70 then phosphorylates four key sites on the linker for activation of T cells (LAT), which allows the proteins to be recruited to the LAT
signalosome. The subsequent effect is the activation of the Rat sarcoma (Ras)/extracellular signal-related kinase (Erk)/Activator protein 1 (AP-1) pathway, Protein kinase
C-q (PKCq)/kB kinase (IKK)/nuclear factor-kB (Nf-kB) pathway, and the calcium-dependent Calcineurin/nuclear factor of activated T cells (NFAT) pathway (Hwang et
al., 2020; Shah et al., 2021). Transcription factors downstream of these pathways, NFAT, Nf-kB, and AP-1 contribute to IL-2 transcription as well as to IL-2RA
transcription, which encodes the a-chain of the IL-2 receptor (CD25) (Y. Li et al., 2022). Phosphorylation and dephosphorylation of TCR signaling molecules such as Syk
and ZAP-70, as well as ubiquitination and degradation of CD3z, PKCq, ZAP-70, phospholipase C-g1, and phosphoinositide-3-kinase, negatively regulate TCR signaling
pathways. Signal transducer and activator of transcription (STAT) proteins control clone-specific transcription factor expression and also control epigenetic changes, such
as histone modifications or DNA methylation, which open specific DNA sites for transcription.
FIGURE 1

Scheme of differentiation pathways of naïve CD4+ T-lymphocytes depending on the cytokine microenvironment. T cell receptor (TCR) signals and
polarizing cytokine signals activate and/or enhance special transcription factors, which allow naïve CD4 T cells to differentiate into subsets of T
helper cells. Activation of IL-4 and Stat6 enhances GATA-3 expression and T helper 2 (Th2) cell differentiation, which strongly suppresses the
expression of Th1-related genes. Under the influence of IL-12 and IFN-g, Tbx1 together with STAT4 induces optimal production of IFN-g and triggers
the differentiation of Th1 lymphocytes. That's also suppresses Th2-related genes and IL-17A expression. With the synergistic influence of IL-6, IL-21
and TGF-b, Th17 differentiation occurs due to STAT3 activation and induction of RORgt expression. TGF-b may promote Treg cell differentiation by
influencing FoxP3; moreover, conventional T helper cells are given a regulatory phenotype with enhanced Foxp3 expression. Th17-associated
factors suppress Foxp3 expression through ROR-gt binding or STAT3 signaling. Tfh cell differentiation occurs upon activation of STAT3, presumably
by IL-6 and IL-21, which are triggered by the transcriptional regulator Bcl-6. Bcl-6 represses alternative T helper cytokines such as IFN-g and IL-17A.
Th9 lymphocytes are formed under the combined influence of IL-4 and TGF-b due to increased expression of the transcription factor PU.1 and
production of IL-9. AhR has been considered a transcription factor for IL-22 produced by Th22 cells Red color indicates activating transcription
factors. Blue color indicates inhibition transcription factors. Master regulators are shown in red boxes. Suggestive master regulators for Th9 and Th22
are indicated italic. Co-factors of master regulators are shown in black boxes.
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transcription factor (118). In the absence of TGF-b, IL-6 and IL-21

also induce the expression of another transcription factor, Bcl6, the

major transcription factor of Tfh cells, via STAT3 (119). STAT3,

stimulated by IL-6 and TNF, is required for the differentiation of

Th22 cells expressing AhR as their major transcription factor (120).

Thus, CD4+ T-cell plasticity is influenced by a number of

external (e.g., cytokines, various metabolites) and internal factors.

Effector CD4+ T-lymphocytes depending on the cytokine

microenvironment can develop into different subpopulations of

cells with specific functions. It is worth noting that a meta-analysis

of genes previously associated with Th1, Th2, Th17, and Treg

populations showed that except for master regulator genes (T-bet,

GATA-3, Bcl-6, FoxP3 and RORgt), all other genes considered

specific showed significant variability (121). This confirms the

ability of previously polarized T cells to change their phenotype

and repolarize toward other differentiation lineages.
Possibilities of reprogramming CD4+
lymphocyte subpopulations

For a long time, it was believed that different subpopulations of

CD4+ T cells were terminal lines of differentiation of T-helper cells.

However, accumulating data show the plasticity of CD4+ T cells and

their ability to acquire different properties and functions (122, 123).

T-helper lymphocytes can express not only their clonally specific

cytokines and Transcription factors but also simultaneously markers

of other T helper lineages, making them similar to hybrid cells (124).

This is especially shown for Th17-Treg pairs (125, 126) and Th17-

Th1 cells (127, 128). Still, there is also evidence for reciprocal

reprogramming of other Th lines, which will be discussed further.
Mutual plasticity of Th1-Th2 lymphocytes

The earliest discovered and most studied subpopulations of

helper T lymphocytes are Th1 and Th2 cells. Th1 and Th2 subsets

seem to be the most stable, as they are regulated by mutually

repressive and self-amplifying transcription and signaling factors

(T-bet and IFN-g for Th1 and GATA-3 and IL-4 for Th2) (19, 100–

103). However, it was soon shown that forced expression of the

GATA3 regulator GATA3 in Th1-lymphocytes using the viral

vector Th2-master induced the production of Th2-cytokines (IL-4

and IL-5), as well as CCR4. At the same time, transduced cells

partially preserve their Th1-specific profile (expression of IFN-g and
IL-12Rb2) (129). Conversely, expression of T-bet (Tbx21) in Th2

cells promoted a Th1 phenotype. It was also shown that memory

CD4+ T cells under repeated stimulation in vivo were able to

produce cytokines of the oppositional lineage, indicating the

existing functional plasticity in T helper cell responses (130).

However, this flexibility decreases as CD4+ lymphocytes mature

(131), which, in general, is characteristic of the differentiation

dynamics of any multipotent progenitor cells. This is thought to

occur due to chromatin remodeling in cytokine gene loci to increase

the efficiency of effector cytokine production and inhibition of

opposing cytokine programs (132).
Frontiers in Immunology 05
Chromatin modification is responsible for the suppression of

the differentiation program of oppositional Th cell lines. Thus, T-

bet activation in Th1 causes loss of HDAC-Sin3A at the Ifng locus

and promotes IFN-g expression (133). In Th2 cells, IFN-g

production is suppressed due to the deposition of the repressive

histone mark H3K27me3 to the Ifng locus (134). Demethylase

Jmjd3 changes in histone methylation (H3K27me3 and H3K4me3

levels) in target genes and regulates Th1, Th2, and Th17 lymphocyte

differentiation. Deletion of Jmjd3 results in Th2 and Th17

differentiation and blocks Th1 differentiation (135). After

activation and differentiation of human Th2 cells, the permissive

marks H3K9 acetylation and H3K4me3 were increased in the

respective loci of the Th2-specific genes Il-4, Il-5, and Il-13 (77).

Experimental studies showed that differentiated Th1 cells under

the influence of IL-4 or helminths can be converted into an IFN-g-
producing Th2 lineage (136, 137). Conversely, treatment of Th2

lymphocytes with IL-12 and anti-IL-4 induces repolarization

toward Th1 cells (138, 139). However, it is possible that

reprogramming of the Th1 phenotype to the Th2 phenotype may

reflect the growth of the Uncommitted Precursors population

rather than the growth of the Th subpopulation (138). Another

study shows that infections of Th2 lymphocytes with lymphocytic

choriomeningitis virus, known for its strong induction of type I and

type II interferons, results in the reprogramming toward GATA-3 +

T-bet + Th1-lymphocytes capable of producing Th1 and Th2

cytokines (140). It was also shown that deletion of the IL-10 gene

in naïve CD4+ lymphocytes led to Th1 lymphocyte differentiation

even under Th2 differentiation conditions (141).

As mentioned previously, TCR and costimulatory signals can also

influence plasticity between CD4+ T-cell subsets. TCR stimulation is

ubiquitously required for cytokines to reprogram T cell subpopulations

(140). The weaker stimulation of TCRs during priming in vivo makes

possible significant plasticity in their cytokine production upon

reactivation (142). Depending on signal strength and recall, the

antigen dose also redirects subsets of T helper cells: higher antigen

concentration promotes Th2 cell phenotypes in memory Th1 cells

(143). At low antigen concentrations, Th2-lymphocytes differentiate

with the participation of Itk kinase. Cells deprived of Itk kinase, even

under conditions of stimulation with low levels of antigen, show

increased expression of T-bet and differentiate into Th1 (144).
Plasticity of Th1/Th2 to other
Th lymphocytes

There are published data on mutual transitions of Th9, Tfh, and

Th22 into Th1/Th2 lymphocytes. The flexibility of all the above

populations with Th17 cells will be considered separately due to the

great plasticity of Th17 lymphocytes.

Treatment of Th2 lymphocytes with TGF-b causes the loss of

their characteristic profile and induces the secretion of IL-9, and in

combination with IL-4, it drives the differentiation of Th9 cells

(145). On the other hand, under Th1 culture conditions (in the

presence of IL-12), Th9 lymphocytes can acquire a Th1 phenotype

and produce IFN-g in vivo (146, 147). Polyamines play a critical role

in the regulation of Th2/Th9 balance. Endogenously generated
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polyamines enhance GATA-3 expression and promote Th2 cell

differentiation (148). Under polyamine deficiency, even under Th2

environmental conditions, expression of Th9-related genes (Il9,

Irf4, and Batf3) is enhanced through suppression of GATA-3.

Helminth load results in reprogramming of Th2 lymphocytes

into the Tfh population, via the Smad3/Smad4 and IRF-4 activation

pathway (149, 150), and expresses the canonical Tfh markers Bcl6

and IL-21, as well as GATA3, a master regulator of Th2 cell

differentiation (151). On the other hand, the formation of Th2

lymphocytes from IL-4-producing Tfh lymphocytes was shown in

allergic asthma in vivo. Impairment of Tfh cell responses during the

sensitization phase or Tfh cell depletion prevented Th2 cell-

mediated responses following the challenge (152). In addition,

pre-differentiated Tfh cells in Th1-, Th2-, or Th17-conditions

acquire the ability to produce IFN-g, IL-4, or IL-17, respectively,

while retaining their Tfh potential (capacity to produce IL-

21) (153).

Tfh can also be reprogrammed toward Tr1 cells in vivo upon

Blimp1 upregulation (154). It was also shown that deletion of the

IL-6 gene in naïve CD4+ lymphocytes led to Tr1 differentiation

even under Th2 differentiation conditions (141). Th1 lymphocytes

under IL-12 hyperstimulation and under conditions of high TCR

ligation/chronic infection can also switch from proinflammatory

effector cells to Tr1 cells producing IL-10 (155–157). It is important

to note that IL-10 production by CD4+FoxP3- T-lymphocytes is

considered to be the main marker of the Tr1 cell population. To

date, data on cytokine production by different subpopulations of Th

cells (Th1, Th2, and Th17) were obtained. Such IL-10+Th cells can

control their own effector functions by turning IL-10 production on

and off. Thus, Tr1 cells can be very heterogeneous and do not

represent a separate lineage.

Taken together, the present data demonstrate the existing

flexibility of Th1 and Th2, capable of acquiring different functional

and phenotypic properties upon repeated antigen stimulation and

under the influence of the respective microenvironment.
Mutual plasticity of Treg and
Th17 lymphocytes

Th17 and peripheral Treg differentiation are closely linked and are

likely necessary to maintain tolerance and prevent the development of

inflammatory diseases (158). Data from fate-mapping experiments in

mouse models identified transdifferentiation events of Th17-to-T

regulatory cells (12). In humans with autoimmune diseases, an

increase in the number of IL-17-producing FoxP3+ Treg cells in

peripheral blood correlates with disease severity (4, 159–162). A

better understanding of the mechanisms underlying Th17-Treg

transdifferentiation in the human condition may be critical for

resolving inflammation in autoimmune diseases.

Upon stimulation with TGF-b, naive CD4+ T cells undergo a

dual expression stage of the transcription factors Foxp3 and RORgT
(163–165) and, depending on the microenvironmental factors,

differentiate into Treg or Th17 cells. High levels of TGF-b, retinoic
acid, and IL-2 activate Foxp3 and support the differentiation of Treg

cells (6). Combination of TGF-b and IL-6 or IL-21, via the pyruvate
Frontiers in Immunology 06
kinase M2 and STAT3 pathway (115), induces the expression of

RORgt and enhances CD4+ differentiation toward Th17 (116, 117,

166, 167), by inhibiting the expression of Foxp3 (X. 168). Decreased

STAT3 activation upon treatment of T cells with CK2 inhibitors

results in decreased expression of the IL-23 receptor, required for

optimal differentiation and maintenance of Th17, and increased

differentiation of FoxP3+ Treg cells (169, 170). Enhancement of

aryl hydrocarbon receptor (AHR) expression under the influence of

TGF-b promotes phosphorylation of SMAD2/3 and STAT3,

enhances Th17 lymphocyte differentiation, and blocks Th1

phenotype cell differentiation (IL-2 and T-bet) (167). On the other

hand, AhR promotes transactivation of Il10, and could potentially

reprogram inflammatory Th17 lymphocytes toward IL-10+ Tr1 and

termination of the immune response (12). In addition, the master

regulators themselves are in reciprocal interactions: RORgT interacts

directly with exon 2 of the Foxp3 gene to suppress development and

activate Th17 cytokine transcription. Similarly, Foxp3 can bind

RORgT to suppress IL-17 production (168).

The Tec family kinase, Itk, plays an important role in Treg/

Th17 differentiation (144, 171, 172). Itk deletion, even in a Th17-

conditioned microenvironment, decreases Th17 lymphocyte

differentiation but increases expression (171, 173). In addition,

Itk -/- CD4 T cells gave an increase in the number of Treg cells

when cultured under inducible Treg conditions. This was associated

with decreased activation of the Akt/mammalian target of the

rapamycin (mTOR) pathway and increased sensitivity to IL-2

(171). mTOR and HIF-1 are well-known integrators of metabolic

signals responsible for initiating an adaptive cellular response, and

in particular promote the development of Th17, but inhibit Treg

differentiation. Optimal activation of mTOR leads to increased

glycolysis and STAT signaling, promotes the development of

Th17, while inhibiting the Treg differentiation (42). Constitutive

activation of mTORC1 in mouse T cells by deletion of the mTORC1

tuberous sclerosis 1 (TSC1) gene-negative regulator enhances Th1

and Th17 cell differentiation and blocked Tregs differentiation

(174). mTOR, in turn, stimulates HIF-1 to support glycolysis and

is required to control the Th17 phenotype (175). Inhibition of

mTOR can lead to increased fatty acid oxidation (FAO) and

promote Treg differentiation (176).

High-NaCl conditions regulate the expression of FoxP3 and IL-

17A through the p38/MAPK pathway involving NFAT5 and SGK1

and promote the differentiation of a stable, pathogen-specific, anti-

inflammatory Th17 cell in human T cells in vitro in the presence of

TGF-b (177). Butyrate promotes IL-10 Treg production (178–181)

and promoted IFN-g production under Th1 conditions, but not

Th17 lymphocytes in vitro (182, 183). Inhibition of histone

deacetylases (HDACs) in T cells by butyrate increased acetylation

of p70 S6 kinase and phosphorylation of rS6, regulating the mTOR

pathway required for Th17, Th1, and IL-10(+) Treg cell formation

in the respective cytokine microenvironment (181). Interestingly,

under butyrate exposure, IL-10 production increases in any CD4+

T-cell lineage due to the expression of B-lymphocyte-induced

maturation protein 1 (Blimp1) (182). In addition, butyrate

enhances histone acetylation at the Foxp3 promoter, promoting

stable Foxp3 expression (178, 179). Neutralization of RAGE by the

soluble receptor for advanced glycation end products (sRAGE)
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inhibits fatty acid synthesis and promotes polarization of CD4+ T

cells toward Treg rather than Th17 (184).

In vitro and in vivo, biotin deficiency decreased FoxP3

expression and the number of Treg cell, but increased the

expression of T-bet and RORgt and differentiation of CD4+ T

cells into Th1 and Th17 cells with a significant increase in the

production of proinflammatory cytokines IFN-g, TNF, and IL-17

(185). Culturing in the presence of lactate reprograms Th17

lymphocytes toward Treg cells, significantly reducing IL-17A

production and increasing FoxP3 expression through ROS-driven

IL-2 secretion (186).

It is worth noting that co-expression of FoxP3 and master

regulators of other Th cells was shown for peripheral FoxP3+

Treg. Thus, in the intestine, up to 40% of Treg cells

simultaneously express FoxP3 and RORgT and show enhanced

immunosuppressive function, effectively restraining intestinal

inflammation (5). RORgT is thought to maintain stable FoxP3

expression in Treg cells by blocking T-bet activation, which

prevents Treg from reprogramming into a Th1-like effector

phenotype. Treg in B-follicles of secondary lymphoid organs

similar to Tfh express Bcl6, CXCR5, and PD-1 (7). Other Treg,

similar to Th1 lymphocytes, express T-bet and CXCR3 (187) and

may originate from Foxp3+ T cells under the influence of IFN-g and
STAT1 (187), and may also develop from T-bet+CD4+Th1 cells

through the action of the immunosuppressive cytokine TGFb (3). A

high frequency of such T-bet+FoxP3+ Treg cells is observed in

oncology and potently inhibits T helper 1 (Th1) cell responses (188).

Similar to Th2 lymphocytes, Treg located in barrier sites, including

the gastrointestinal tract and skin, can co-express GATA3, CCR8,

and ST2 (IL-33 receptor a-chain) (189). These double-positive Treg,
unlike their Th counterparts, are unable to produce proinflammatory

cytokines. It was suggested that by expressing these Th cell-

associated molecules, they accumulate in the same immune

environments as their Th cell counterparts and selectively inhibit

specific Th response modules.
Plasticity of Th17 and other
Th lymphocytes

Th17 lymphocytes that express IL-17 and IFN-g and that are

transcriptionally similar to murine pathogenic Th17 lymphocytes

were found at sites of inflammation in humans (158). In mice, it was

shown that although both types of Th17 cells produced IL-17, non-

pathogenic Th17 lymphocytes additionally expressed the

immunoregulatory genes Il10, Il9, Maf, and Ahr, whereas

expression of pro-inflammatory genes including Csf2, Ifng, Tbx21,

IL23r, and Gzmb was upregulated in pathogenic Th17 (190, 191).

IL-6 induces early expression of IL-1R required for early

differentiation of Th17 cells in vivo (192). In addition, they differ

in generation conditions: highly pathogenic Th17 lymphocytes are

generated using a combination of IL-6 and IL-23 with IL-1b or

TGFb (190, 193).

Pathogenic Th17 lymphocytes exhibit dual Th1/Th17 positive

characteristics, co-express RORgt and T-bet, as well as IL-12Rb2
and IL-23R (194, 195). They are characterized by co-expression of
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pro-inflammatory cytokines such as granulocyte-macrophage

colony-stimulating factor (GM-CSF), IFN-g, IL-26, CCL20, and
IL-22 (196–198). Phenotypic instability is thought to predispose

Th17 cells to acquire a pro-inflammatory phenotype in chronically

inflamed tissues.

Mycobacterium tuberculosis induces a Th1 population that co-

expresses T-bet and RORgt, CXCR3, and CCR6 and produces IFN-g
(but not IL-17) (199). In addition, patients with RORC mutations

lack Th1 (199), suggesting that they may originate from Th17 cells

via plastic events in an IL-12-, TNF-a-, and/or IL-1b-dependent
manner (200). Reverse trans-differentiation was shown. Non-

classical CD161+CCR6+ Th1 lymphocytes of rheumatoid arthritis

patients, unlike classical CD161-CCR6- Th1 cells, are

reprogrammed into pathogenic Th17 lymphocytes in Th17-

inducing conditions (127), which may contribute to their

pathogenicity during the course of rheumatoid arthritis.

Circulating CD4+ memory T cells producing both IL-4 and IL-

17, as well as IL-23R and CCR6, GATA3, and RORgt, were
identified in patients with allergic asthma (201, 202) and with

palmoplantar pustulosis (203). However, it is still unclear whether

Th17/Th2 cells originate from Th17 or Th2 and whether IL-4 (Th17

to Th2 cell translation) or IL-1b, IL-6, IL-21 (Th2 to Th17 cell

translation) occurs or whether additional cytokines are required.

A fraction of circulating human memory Tfh cells express

CXCR5 and CCR6, Bcl6, and RORgt and produce IL-21, IL-22,

and IL-17 (hence termed Tfh17) (204, 205). It remains to be

clarified whether Tfh17 cells originate from Tfh or Th17 cells.

Th17-to-Tfh plasticity may be relevant for Th17-mediated

autoantibody generation.

Many different T cells with specific cytokine profiles are

required for defense against various pathogenic exo- and

endogenous influences. CD4+ T-lymphocyte subpopulations have

varied degrees of plasticity and the ability to acquire new

characteristics during the immune response. Even recognized

terminally differentiated Th1/Th2 lymphocytes under certain

conditions can transdifferentiate not only into each other but also

into other subpopulations of Th lymphocytes. Th17 lymphocytes

are characterized by a significant degree of instability; this is a highly

heterogeneous subpopulation of effector cells whose protective role

in inflammatory diseases remains to be studied. Treg cells, despite

their isolated role in suppressing inflammatory reactions, also show

features of plasticity and the possibility of transition to other

subpopulations. In general, Treg cell plasticity is justified by the

need to control different types of immune responses. Another

important but poorly understood aspect of T cell plasticity is how

different tissue microenvironments affect the differentiation and

stability of human T cells. Determining the relative plasticity or

stability of T cell subsets in different tissues is important for future

therapeutic interventions in immune pathologies as diverse as

chronic viral infections, cancer, and autoimmune diseases.
Conclusion

Decades of research on T-helper cells, using modern research

tools such as ChiPseq, RNAseq, and scRNAseq, demonstrated the
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diversity and heterogeneity of cell subpopulations, which provides

the ability to respond rapidly and successfully to various challenges.

T-helper cells are characterized by susceptibility to many exogenous

and endogenous signals that can alter existing transcriptional

programs, resulting in changes in the identity of T-helper cell

subpopulations. It became evident that basic transcriptional

networks could be cross-regulated and cross-expressed, creating

unique subpopulations of T lymphocytes required for specific

patterns of stimulation. Maintenance of tissue homeostasis and

intracellular metabolism is closely linked to the stabilization of T

cell subpopulations. Unraveling these complex mechanisms of

plasticity and flexibility of T-helper cells and the conditions of

their maintenance will allow for the generation of specific

subpopulations of antigen-specific T-helper cells, regulating and

controlling the type of immune response under a specific antigen. In

the future, this could be a powerful tool for discovering new targets

and optimizing existing therapies for specific patients and/or

specific diseases.
Author contributions

JK : Inves t i ga t ion , Wr i t ing – or ig ina l d ra f t . SS :

Conceptualization, Writing – review & editing.
Frontiers in Immunology 08
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the grant of the Russian Science Foundation

(project no. 21-65-00004): https://rscf.ru/en/project/21-65-00004/

(accessed on 20 April 2021).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, et al. Stability of the
regulatory T cell lineage in vivo. Science (2010) 329(5999):1667–71. doi: 10.1126/
science.1191996

2. Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, et al.
Plasticity of foxp3+ T cells reflects promiscuous foxp3 expression in conventional T
cells but not reprogramming of regulatory T cells. Immunity (2012) 36(2):262–75.
doi: 10.1016/j.immuni.2011.12.012

3. Kachler K, Holzinger C, Trufa DI, Sirbu H, Finotto S. The role of Foxp3 and Tbet
co-expressing Treg cells in lung carcinoma. OncoImmunology (2018):e1456612.
doi: 10.1080/2162402X.2018.1456612

4. Jiang C, Wang H, Xue M, Lin L, Wang J, Cai G, et al. Reprograming of
peripheral Foxp3+ regulatory T cell towards Th17-like cell in patients with active
systemic lupus erythematosus. Clin Immunol (2019) 209:108267. doi: 10.1016/
j.clim.2019.108267

5. Bhaumik S, Mickael ME, Moran M, Spell M, Basu R. RORgt promotes foxp3
expression by antagonizing the effector program in colonic regulatory T cells. J
Immunol (2021) 207(8):2027–38. doi: 10.4049/jimmunol.2100175
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Ruiz J, Terrazas LI, et al. STAT6 is critical for the induction of regulatory t cells In vivo
controlling the initial steps of colitis-associated cancer. Int J Mol Sci (2021) 22(8):4049.
doi: 10.3390/ijms22084049

89. Crotty S, Johnston RJ, Schoenberger SP. Effectors and memories: Bcl-6 and
blimp-1 in t and b lymphocyte differentiation. Nat Immunol (2010) 11(2):114–20.
doi: 10.1038/ni.1837

90. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and
blimp-1 are reciprocal and antagonistic regulators of t follicular helper cell
differentiation. Science (2009) 325(5943):1006–10. doi: 10.1126/science.1175870

91. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al.
Bcl6 mediates the development of t follicular helper cells. Science (2009) 325
(5943):1001–5. doi: 10.1126/science.1176676

92. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The transcriptional
repressor bcl-6 directs t follicular helper cell lineage commitment. Immunity (2009) 31
(3):457–68. doi: 10.1016/j.immuni.2009.07.002

93. Tang W, Wang H, Murphy PM, Siebenlist U. Bcl-3 suppresses Th9
differentiation by regulating glutamine utilization. BioRxiv (2021):2021.07.06.451316.
doi: 10.1101/2021.07.06.451316

94. Tsuda M, Hamade H, Thomas LS, Salumbides BC, Potdar AA, Wong MH, et al.
A role for BATF3 in TH9 differentiation and t-cell-driven mucosal pathologies.
Mucosal Immunol (2019) 12(3):644–55. doi: 10.1038/s41385-018-0122-4

95. Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, et al. Diverse
targets of the transcription factor STAT3 contribute to t cell pathogenicity and
homeostasis. Immunity (2010) 32(5):605–15. doi: 10.1016/j.immuni.2010.05.003
Frontiers in Immunology 10
96. Chakraborty AK, Weiss A. Insights into the initiation of TCR signaling. Nat
Immunol (2014) 15(9):798–807. doi: 10.1038/ni.2940

97. Courtney AH, Lo WL, Weiss A. TCR signaling: mechanisms of initiation and
propagation. Trends Biochem Sci (2018) 43(2):108–23. doi: 10.1016/j.tibs.2017.11.008

98. Bhattacharyya ND, Feng CG. Regulation of T helper cell fate by TCR signal
strength. Front Immunol (2020) 11:624/BIBTEX. doi: 10.3389/FIMMU.2020.00624/
BIBTEX

99. Hwang J-R, Byeon Y, Kim D, Park S-G. Recent insights of T cell receptor-
mediated signaling pathways for T cell activation and development. Exp Mol Med
(2020) 52(5):750–61. doi: 10.1038/s12276-020-0435-8

100. Rogers PR, Croft M. Peptide dose, affinity, and time of differentiation can
contribute to the Th1/Th2 cytokine balance. J Immunol (Baltimore Md.: 1950) (1999)
163(3):1205–13. doi: 10.4049/jimmunol.163.3.1205

101. Keck S, Schmaler M, Ganter S, Wyss L, Oberle S, Huseby ES, et al. Antigen
affinity and antigen dose exert distinct influences on CD4 T-cell differentiation. Proc
Natl Acad Sci (2014) 111(41):14852–7. doi: 10.1073/pnas.1403271111

102. van Panhuys N, Klauschen F, Germain RN. T-cell-receptor-dependent signal
intensity dominantly controls CD4+ T cell polarization in vivo. Immunity (2014) 41
(1):63–74. doi: 10.1016/j.immuni.2014.06.003

103. Yamane H, Zhu J, Paul WE. Independent roles for IL-2 and GATA-3 in
stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J
Exp Med (2005) 202(6):793–804. doi: 10.1084/JEM.20051304

104. Bhaumik S, Basu R. Cellular and molecular dynamics of th17 differentiation
and its developmental plasticity in the intestinal immune response. Front Immunol
(2017) 8:254. doi: 10.3389/fimmu.2017.00254

105. Wyss L, Stadinski BD, King CG, Schallenberg S, McCarthy NI, Lee JY, et al.
Affinity for self antigen selects Treg cells with distinct functional properties. Nat
Immunol (2016) 17(9):1093–101. doi: 10.1038/ni.3522

106. This S, Valbon SF, Lebel M-È, Melichar HJ. Strength and numbers: the role of
affinity and avidity in the ‘Quality’ of T cell tolerance. Cells (2021) 10(6):1530.
doi: 10.3390/cells10061530

107. Hogquist KA, Jameson SC. The self-obsession of T cells: how TCR signaling
thresholds affect fate “decisions” and effector function. Nat Immunol (2014) 15(9):815–
23. doi: 10.1038/ni.2938

108. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of
the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol (2014) 14
(6):377–91. doi: 10.1038/nri3667

109. Kotov DI, Mitchell JS, Pengo T, Ruedl C, Way SS, Langlois RA, et al. TCR
affinity biases th cell differentiation by regulating CD25, eef1e1, and gbp2. J Immunol
(2019) 202(9):2535–45. doi: 10.4049/jimmunol.1801609
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Glossary

AP-1 activating protein-1

BATF Basic leucine zipper transcription factor

Bcl2/Bcl6 B-cell CLL/lymphoma 2/6

Blimp1 B-lymphocyte-induced maturation protein 1

CCR CC chemokines receptor

CXCR CXC chemokines receptor

DGK Diacylglycerol kinase

DNA Deoxyribonucleic acid

DUSP2 Dual Specificity Phosphatase 2

EOMES eomesodermin

ERK extracellular signal-regulated kinase

FOXO forkhead box O

FOXP3 forkhead box P3

GATA-3 GATA Binding Protein 3

GFI1 growth-factor independent 1

HIF1a hypoxia-inducible factor 1a

IFN interferon

IKK IkB kinase

IL interleukin

IP 3 inositol 1, 4, 5-trisphosphate

IRF4 interferon-regulatory factor 4

ITAM immunoreceptor tyrosine-based activation motif

Itk interleukin-2-inducible T-cell kinase

iTreg inducible regulatory T-cell

LAT linker for activation of T cells

LMP7 low molecular weight polypeptide 7

MAF macrophage-activating factor

MHC major histocompatibility complex

mTOR mammalian target of rapamycin

NFAT Nuclear factor of activated T-cells

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

NR4A nuclear receptor 4A

PKCq Protein kinase C theta

PP2A Protein phosphatase 2A

RAR retinoic acid receptor;

Ras small GTFase, from Rat sarcoma virus

ROR retinoic acid receptor-related orphan receptor;

RUNX3 runt-related transcription factor 3

SHP Src-homology 2 domain-containing protein tyrosine phosphatases
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STAT Signal transducer and activator of transcription

Stub1 STIP1 Homology And U-Box Containing Protein 1

T-bet T-Cell-Specific T-Box Transcription Factor (or TBX21)

TCR T cell receptor

Tfh follicular helper T cell

TGF-b transforming growth factor

Th T-helper cell

TNF tumor necrosis factor

Tregs regulatory T-cells

TSC tuberous sclerosis complex

Zap70 Zeta-chain-associated protein kinase 70
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