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bladder urothelial carcinoma
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1Department of Urology, Qilu Hospital of Shandong University, Jinan, China, 2Department of Clinical
Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong
Academy of Medical Sciences, Jinan, China
Introduction: Tryptophan metabolism is indirectly involved in immune tolerance

and promotes response to anticancer drugs. However, the mechanisms

underlying tryptophan metabolism and immune landscape in bladder urothelial

carcinoma (BLCA) are not fully understood.

Methods: A BLCA dataset containing 406 tumor samples with clinical survival

information and 19 normal samples were obtained from the Cancer Genome

Atlas database. The validation set, GSE32894, contained 223 BLCA tumor

samples with survival information, and the single-cell dataset, GSE135337,

included seven BLCA tumor samples; both were obtained from the gene

expression omnibus database. Univariate and multivariate Cox regression

analyses were conducted to evaluate clinical parameters and risk scores.

Immune infiltration and checkpoint analyses were performed to explore the

immune landscape of BLCA. Single-cell analysis was conducted to further

identify the roles of model genes in BLCA. Finally, NAMPT expression in BLCA

and adjacent tissues was detected using RT-qPCR, CCK-8 and Transwell assays

were conducted to determine the role of NAMPT in BLCA cells.

Results: Six crossover genes (TDO2, ACAT1, IDO1, KMO, KYNU, and NAMPT)

were identified by overlap analysis of tryptophan metabolism-related genes,

immune-related genes, and differentially expressed genes (DEGs). Three

biomarkers, NAMPT, IDO1, and ACAT1, were identified using Cox regression

analysis. Accordingly, a tryptophan metabolism- and immune-related gene risk

model was constructed, and the patients were divided into high- and low-risk

groups. There were significant differences in the clinical parameters, prognosis,

immune infiltration, and immunotherapy response between the risk groups. RT-
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qPCR revealed that NAMPT was upregulated in BLCA samples. Knocking down

NAMPT significantly inhibited BLCA cell proliferation, migration, and invasion.

Discussion: In our study, we constructed a tryptophanmetabolism- and immune-

related gene risk model based on three biomarkers, namely NAMPT, IDO1, and

ACAT1, that were significantly associated with the progression and immune

landscape of BLCA. The risk model could effectively predict patient prognosis

and immunotherapy response and can guide individualized immunotherapy.
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1 Introduction

Bladder urothelial carcinoma (BLCA) is the most prevalent

malignancy of the urinary system, with an estimated 573,000 new

cases and 213,000 deaths in 2020, making it the tenth most common

malignancy worldwide (1). Despite early diagnosis and advanced

treatment, BLCA remains the main cause of tumor-related deaths

due to its high recurrence and invasiveness (1, 2). Therefore, further

research on the complex pathogenesis of BLCA is urgently required.

As an essential amino acid in the human body, tryptophan

participates in the regulation of inflammatory responses, oxidative

stress, and immune activation through kynurenine metabolism, and

plays an important role in the tumor microenvironment and tumor

metabolism (3–5). Aberrant regulation of tryptophan metabolism is

closely associated with the occurrence and progression of various

tumors, including BLCA (6–9). Abnormal regulation of the immune

microenvironment also occurs in BLCA (10, 11). An abnormal

immune microenvironment can induce the immune escape of

BLCA cells by inhibiting the activity of T cells and natural killer

cells (10). In recent years, the rapid development of tumor

immunotherapy has provided a new method for the treatment of

BLCA. Tumor immunotherapy can regulate immune system function

and reactivate the ability of the immune system to kill cancer cells,

thereby suppressing tumor cell proliferation and invasion. Immune

checkpoint inhibitors (ICIs) are new methods for tumor treatment in

addition to surgery, chemotherapy, and radiotherapy, and have been

approved for the treatment of melanoma, lung cancer, colorectal

cancer, and BLCA (12, 13). Abnormal tryptophanmetabolism leads to

apoptosis and dysfunction of immune cells and induce the formation

of an immunosuppressive microenvironment, thereby weakening the

therapeutic effect of ICIs (6). Therefore, it is important to elucidate the

role of tryptophan metabolism in the progression and the immune

landscape of BLCA.

Our study aimed to explore the mechanisms of tryptophan

metabolism and immune-related genes in BLCA and construct a

risk model. We found that three biomarkers, NAMPT, IDO1, and

ACAT1, were significantly associated with the progression and the

immune landscape of BLCA. Accordingly, we constructed a
02
tryptophan metabolism- and immune-related gene risk model and

divided the patients into high- and low-risk groups. The risk model

could effectively predict patient prognosis and immunotherapy

response and guide individualized immunotherapy.

2 Materials and methods

2.1 Data sources

A BLCA dataset was obtained from the Cancer Genome Atlas

(TCGA) database, namely the TCGA-BLCA dataset (training set),

containing 406 BLCA (tumor) samples with clinical survival

information and 19 normal samples. The validation set, GSE32894,

containing 223 BLCA samples with survival information, and the

single-cell dataset GSE135337, including seven BLCA tumor samples,

were obtained from the GEO online database. Furthermore, 61-

tryptophan metabolism-related genes were obtained after removing

repetitive data using the MsigDB online database (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). A total of 2991 immune-related

genes were retrieved after removing the repetition data based on the

ImmPort (http://www.immport.org/), TISIDB (http://cis.hku.hk/

TISIDB), and InnateDB (http://www.innatedb.com) databases.
2.2 Screening and enrichment analysis of
crossover genes

Differentially expressed genes (DEGs) between the BLCA and

normal groups in the TCGA-BLCA dataset were acquired using the

DESeq2 (v. 1.34.0) (14) package (|Log2FC| > 1 and P. adj< 0.05). Heat

and volcano maps of these DEGs were plotted using the pheatmap (v

1.0.12) and ggplot2 (v 3.3.5) (15) packages, respectively. Furthermore,

61 tryptophan metabolism-related genes, 2991 immune-related

genes, and DEGs were subject to overlapping analysis to achieve

gene crossover. To study the related signaling pathways and

biological functions of these crossover genes, KEGG and GO

enrichment analyses (P. adj< 0.05) were conducted using the

ClusterProfiler (v. 4.6.0) package (16).
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2.3 The construction, evaluation, and
verification of the risk model

Univariate Cox analysis was performed on the above crossover

genes to identify the candidate genes related to prognosis (HR ≠ 1, P<

0.2) (17, 18). Subsequently, the LASSO algorithm was implemented

for the candidate genes to identify biomarkers (model genes). Based

on the expression of the above biomarkers, a risk model was created

and the samples in the training set, TCGA-BLCA, and validation set,

GSE32894, were classified into high- and low-risk groups,

respectively, using the optimum cut-off value of the risk score.

Riskscoresample =on
n=1(Coefi*xi)

Kaplan-Meier (K-M) survival curves and receiver operating

characteristic (ROC) curves (1-, 3-, and 5-year) were plotted.

Differences in risk scores between the different clinical indicator

subgroups (invasion, sex, T stage, M stage, N stage, Age, Grade, and

Stage) were analyzed using the Wilcoxon test (P< 0.05).

2.4 Independent prognostic analysis

The prognostic value of clinical survival prediction was evaluated

by combining risk scores with other clinical features. Clinical features

(invasion, age, etc.) and risk scores were included in univariate Cox

analysis. Multivariate Cox analysis was implemented for clinical

features acquired by univariate Cox analysis to determine

independent prognostic factors (P< 0.05). Furthermore, a nomogram

was created to predict the survival rates of patients with BLCA (1-, 3-,

and 5-year survival rates). Calibration curves and decision curve

analysis (DCA) were used to verify the nomogram’s validity.

2.5 Immune microenvironment analysis

The CIBERSORT algorithm was used to determine the

proportions of immune cell infiltrates in each sample. Differential

immune cells between the two subgroups were compared (P< 0.05).

The relationships between the differentially expressed immune cells

were analyzed using Spearman’s method. The relationships between

biomarkers and differential immune cells were computed using the

Spearman method. Moreover, the expression differences of 48

immune checkpoints (IDO1, CD27, PDCD1, etc.) between the two

risk subgroups were compared. Associations between differential

immune checkpoints and biomarkers were computed using

Spearman’s method. The Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm was used from the TIDE online

database (http://tide.dfci.harvard.edu/) to detect dysfunction and

exclusion scores. Immunophenoscore (IPS) was calculated based on

the gene expression of representative cell types using the TCIA

database (https://tcia.at/). Moreover, the differences in the TIDE

and IPS scores between the two subgroups were compared.

2.6 Mutation analysis

In this study, we used the maftools (v 2.10.5) package (19) to

analyze the tumor mutation burden (TMB) in the two risk
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subgroups. In TCGA-BLCA dataset, mutations in IDO1, IDO2,

and TDO2 between the two risk subgroups were analyzed.

Furthermore, the BLCA samples in TCGA-BLCA dataset were

divided into four groups: high TMB-high-risk, low TMB-high-

risk, high TMB-low-risk, and low TMB-low-risk. K-M survival

curves for the four subgroups were plotted.

2.7 Single-cell analysis

In this study, we used the Seurat (v 4.1.0) package for the quality

control of the GSE135337 dataset. First, cells with less than 200

genes, genes included in less than three cells, and cells with

expressed genes fewer than 100 or more than 5000 were excluded,

the proportion of mitochondria genes was limited to less than 5%.

The ‘Normalize Data’ and ‘Find Variable Features’ functions were

used to standardize the data. Principal components analysis (PCA)

was conducted using the ‘JackStrawPlot’ function. The cells were

clustered using uniform manifold approximation and projection

(UMAP) (resolution = 0.4). The cell groups were annotated using

marker genes (PDPN, TAGLN, PECAM1, EPCAM, CD3E, DCN,

KRT8, CD2, KRT18, CD14, CSF1R, AIF1, VWF, CD3D, and

CLDN5) (20). Subsequently, the expression levels of the three

biomarkers in different cell groups were analyzed and visualized.

2.8 Patient samples

BLCA and paracancerous tissues were obtained from patients

with BLCA at the Qilu Hospital of Shandong University between

2021 and 2022. All participants were informed of the study before

surgery and provided consent. This study was approved by the

Institutional Review Board of the Qilu Hospital of Shandong

University (No.2020046).

2.9 Cell culture

BLCA cell lines, T24 and 5637, were purchased from the Type

Culture Collection of the Chinese Academy of Sciences (Shanghai,

China). All cell lines were tested for mycoplasma and resulted

negative. T24 and 5637 were cultured in 1640 medium (Gibco,

USA) supplemented with 10% fetal bovine serum (FBS, Gibco,

USA). All cell lines were cultured in a 5% CO2 incubator at 37°C.
2.10 siRNA transfection

Cells were plated in six-well dishes and transfected with siRNA-

NAMPT or negative control using Lipofectamine 3000 (Invitrogen,

USA). All siRNA sequences are listed in Supplementary Table 1.

2.11 RNA isolation and quantitative
reverse transcription polymerase
chain reaction (RT-qPCR)

Total RNA was extracted from tissues and cell lines using the

TRIzol reagent (Invitrogen, USA). cDNA was synthesized from the
frontiersin.org
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total RNA using Evo M-MLV RT Premix (Accurate Biology,

China). RT-qPCR was performed using a Premix Pro Taq HS

qPCR Kit (Accurate Biology, China) on a LightCycler 96

instrument (Roche, Basel, Switzerland). b-actin was used as an

internal control. All assays were replicated three times, and the data

were analyzed using the 2−DDCT method. All PCR primers were

purchased from Accurate Biology (Shanghai, China), and sequences

are listed in Supplementary Table 2.
2.12 Cell Counting kit-8 (CCK-8) and
transwell assays

Cells were seeded in 96 well plates at a density of approximately

2000 cells per well. Cell Counting kit-8 (CCK-8) (Bioss, China) was

used to detect cell proliferation at 0, 24, 48, 72, and 96 h after

culture. Absorbance was measured at 450 nm using a

spectrophotometer (Tecan, Switzerland).

For Transwell assay, cells were seeded into an 8.0 Corning™ 24-

well Transwell assay plate (Corning, USA) at a density of

approximately 20,000 cells per well. After 24 h in an incubator

with 5% CO2 at 37°C, the cells below the membrane were fixed with

methanol and stained with crystal violet. The cell numbers in three

random fields were counted.
3 Results

3.1 A total of six crossover genes were
acquired by crossing tryptophan
metabolism-related genes, immune-
related genes, and DEGs

There were 8867 DEGs between BLCA and normal samples

(Figure 1A; Supplementary Table 3). The expression heatmap of the

top 10 upregulated and downregulated DEGs is shown in Figure 1B.

Through an intersection analysis, using the Venn diagram, six genes

(TDO2, ACAT1, IDO1, KMO, KYNU, and NAMPT) were identified

(Figure 1C). The enrichment analysis results showed that the

crossover genes were mainly associated with ‘alpha-amino acid

catabolic process’, ‘dioxygenase activity’ GO terms, and

‘Tryptophan metabolism’, ‘Biosynthesis of cofactors’ KEGG

pathways (Figures 1D, E; Supplementary Tables 4, 5).
3.2 NAMPT, IDO1, and ACAT1 are
tryptophan metabolism- and immune-
related biomarkers for BLCA

Three candidate prognostic genes, NAMPT, IDO1, and ACAT1,

were identified by univariate Cox regression analysis (Figure 2A).

Three biomarkers (NAMPT, IDO1, and ACAT1) were identified

using the LASSO algorithm (lambda = 0.001919658) (Figure 2B). In

the TCGA-BLCA dataset, BLCA samples were classified into two risk

subgroups using the best cut-off value of risk score at 1.933147; the

proportion of deaths in the high-risk group was significantly higher
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than that in the low-risk group (Figures 2C–E). With an increase in

the risk score, we found that the expression of IDO1 was

downregulated, while those of NAMPT and ACAT1 were

upregulated (Figure 2F). We found a distinct survival difference

between these two subgroups (P< 0.05), with patients in the high-

risk group usually having a poorer prognosis than those in the low-

risk group (Figure 2G). Moreover, the area under the ROC curve

(AUC) values (1-, 3-, and 5-year) were all above or equal to 0.6,

suggesting that the risk score could better predict the survival status of

BLCA patients (Figure 2H).
3.3 Accuracy of the predictive model was
confirmed using the validation set

We verified the risk model’s utility using the validation set

GSE32894 and found that the results were consistent with those of

the training set (Figures 3A–E). Furthermore, there were significant

differences in the corresponding risk scores for invasion (YES and

NO), tumor stage (Stage 1/2 and Stage 3, Stage 1/2, and Stage 4),

grade (High and Low), T stage (T0/1/2 and T3, T0/1/2, and T4), and

M stage (M0 and M1) (Figure 3F).
3.4 Construction of a nomogram
comprising independent prognostic factors
(risk score and invasion)

Univariate and multivariate Cox regression analyses were

conducted to evaluate the clinical parameters and risk score to

assess their prognostic value. The results demonstrated that risk

score, age, invasion, T stage, N stage, and M stage were significant

prognostic factors (Figure 4A). Multivariate Cox analysis was

implemented for clinical features acquired by univariate Cox

analysis to determine independent prognostic factors, the results

demonstrated that risk score and invasion remained independent

prognostic factors for BLCA (Figure 4B). Subsequently, a nomogram

for predicting survival in patients with BLCA (1, 3- and 5-year) was

created based on risk score and invasion (Figure 4C). Calibration

curves and DCA indicated that the nomogram had a favorable

predictive ability for BLCA (Figures 4D, E).
3.5 Immune infiltration and immune
checkpoint analyses for tryptophan
metabolism and immune-related
biomarkers in BLCA

To clarify the relationship between our prognostic risk model and

the tumor immune microenvironment, we investigated the

differences in immune cell infiltration between the high- and low-

risk groups using the CIBERSORT algorithm (Figure 5A).

Furthermore, we found five immune cells [CD8+ T cells,

macrophage with M1 phenotype, and regulatory T cells (Tregs)]

that were differentially expressed between the two risk subgroups

(Figure 5B). In the BLCA samples, we analyzed the Spearman
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correlation between differentially infiltrating immune cells and found

a significant correlation between CD8 + T cells and macrophage with

M1 phenotype (macrophage M1) (|Cor| > 0.3) (Figure 5C).

Moreover, NAMPT was significantly negatively correlated with

regulatory T cells (Tregs) (Cor = -0.307), and there was a

significant positive relationship between macrophages M1 and
Frontiers in Immunology 05
IDO1 (Cor = 0.626) (Figure 5D). We found that 15 immune

checkpoints (including IDO1, CD27, PDCD1, etc.) were

differentially expressed between the two risk subgroups (P< 0.05)

(Figure 5E). Among these, IDO1 was positively correlated with most

differential immune checkpoints and highly positively associated with

PDCD1, CTLA4, CD27, LAG3, and TIGIT (Cor > 0.6) (Figure 5F).
A B

D

E

C

FIGURE 1

A total of six crossover genes were acquired through the overlap of tryptophan metabolism-related genes, immune-related genes, and DEGs.
(A) Differentially expressed genes (DEGs) between the BLCA and normal groups. (B) The expressional heat map of the top 10 up- and down-
regulated DEGs. (C) Six crossover genes achieved by intersection analysis. (D, E) GO and KEGG analyses of crossover genes.
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3.6 Analysis of TIDE, IPS, and mutations
between the two risk score groups

To explore the guiding value of the risk model for tumor

immune exclusion and dysfunction, we used the TIDE algorithm

to predict the response to ICIs. The results revealed that the high-
Frontiers in Immunology 06
risk group had higher exclusion scores but significantly lower

dysfunction scores than the low-risk group, suggesting that the

high-risk group was more likely to experience T cell exhaustion

than the low-risk group, while the low-risk group was more likely to

experience immune cell dysfunction (Figure 6A). Subsequently, we

used IPS to predict the immunotherapeutic response of BLCA
A B

D E

F G

H

C

FIGURE 2

NAMPT, IDO1, and ACAT1 are tryptophan metabolism and immune-related biomarkers for BLCA. (A) Univariate Cox analysis of the prognostic
candidate genes. (B) Average of coefficients of the three biomarkers (NAMPT, IDO1, and ACAT1) in the LASSO Cox regression at each lambda value
(above). The partial likelihood deviance varies in accordance with the trend of the log lambda (below). (C–E) The distribution of risk scores (C), the
distribution of survival status (D), and the proportion of people with different survival statuses (E) in the training set. (F) Heatmap of the three
biomarkers. (G) Kaplan Meier curve for the training set. (H) 1-, 3-, and 5-year ROC curves for the training set.
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patients who received different treatment modalities (such as no

treatment, anti-CTLA4, anti-PD1/PD-L1/PD-L2, or combination

therapy). We found that patients in the low-risk group had a higher

IPS, indicating better immunotherapy efficacy. Thus, these patients

were more likely to benefit from immunotherapy (Figure 6B).
Frontiers in Immunology 07
By analyzing the tumor mutation burden (TMB), we found that

only the IDO1 gene was mutated (missense mutation) in the high-risk

group, whereas in the low-risk group, NAMTP, ACAT1, and IDO1

were all mutated, most of which were missense mutations and a small

fraction were insertion frameshift mutations (Figures 6C, D). Three
A B

D E

F

C

FIGURE 3

The accuracy of the predictive model was confirmed in the validation set. (A–C) The distribution of risk scores (A), the distribution of survival status
(B), and the proportion of people with different survival statuses (C) in the validation set. (D) Kaplan Meier curve for the validation set. (E) 1-, 3-, and 5-
year ROC curves for the validation set. (F) Distribution of risk scores for different clinical features. *P< 0.05, **P< 0.01, ***P< 0.001. . ns, No significance.
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genes (IDO2, IDO1, and TDO2) in the high-risk group were mutated

in five samples, whereas these genes in the low-risk group were

mutated in seven samples (Figures 6E, F). Based on the mutation

data from TCGA-BLCA dataset, the BLCA samples in TCGA-BLCA

were divided into high TMB-high-risk, high TMB-low-risk, low TMB-

high-risk, and low TMB-low-risk groups. K-M curves of the four

groups were then analyzed. We found a significant difference in

survival among the four groups (P< 0.05), and the survival status

was the worst in the low-TMB-high-risk group (Figure 6G).
Frontiers in Immunology 08
3.7 Single-cell analysis for tryptophan
metabolism- and immune-related
biomarkers in BLCA

Based on the single-cell sequencing dataset (GSE135337),

18,718 core cel ls were acquired after quality control

(Figure 7A). After normalizing the data, the top 2000 highly

variable genes were screened for downstream analysis

(Figure 7B). According to PCA results , 20 principal
A

B

D E

C

FIGURE 4

A nomogram comprising independent prognostic factors (risk score and invasion) was created. (A, B) Univariate (A) and multivariate (B) Cox
regression analyses of potential prognostic factors for overall survival. (C) The nomogram for predicting survival in BLCA patients (1-, 3- and 5-year).
(D, E) Evaluation of the accuracy of prediction using the calibration curve (D) and DCA curve (E).
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components (P< 0.05) were selected for subsequent analyses

(Figure 7C). Using UMAP, the core cells were clustered into 15

classes (Figure 7D). The main annotations included five cell

types: endothelial cells, epithelial cells, myeloid/macrophages,

fibroblasts, and T cells. We found that NAMPT was expressed
Frontiers in Immunology 09
in all five cell groups; IDO1 was partially expressed in epithelial

cells, myeloid/macrophages, and T cells, and ACAT1 was highly

expressed in endothelial cells, epithelial cells, and fibroblasts

and partially expressed in myeloid/macrophages and T cells

(Figures 7E–G).
A

B

D

E

F

C

FIGURE 5

Immune infiltration and immune checkpoint analyses for tryptophan metabolism and immune-related biomarkers for BLCA. (A) Immune cell infiltration
levels in BLCA patients. (B) Differential immune cells between the two risk subgroups. (C) Correlation heatmap of differential immune cells. (D) Correlation
heatmap between model genes and differential immune cells. (E) Immune checkpoints with differential expression. (F) Correlation heatmap between
model genes and differential immune checkpoints. *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001. ns, No significance.
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3.8 NAMPT was upregulated in BLCA
tissues and could regulate BLCA cell
proliferation and invasion in vitro

NAMPT expression was significantly higher in cancer

tissues than in adjacent tissues (Figure 8A). The effects of

NAMPT on cell proliferation and invasion were explored to
Frontiers in Immunology 10
determine its role in BLCA cells. The efficiency of NAMPT

knockdown was verified using RT-qPCR (Figure 8B). CCK-8

assay demonstrated that NAMPT knockdown significantly

inhibited the proliferation of T24 and 5637 cells (Figure 8C).

Moreover, the migration and invasion abilities of T24

and 5637 cells were significantly decreased after NAMPT

knockdown (Figure 8D).
A

B

D

E

F

G

C

FIGURE 6

Analysis of TIDE, IPS, and mutations between the two risk score groups. (A) TIDE analysis between high- and low-risk groups. (B) IPS scores between
high- and low-risk groups. (C, D) Mutation analysis for genes in the model in the high- (C) and low-risk (D) groups. (E, F) Mutation analysis for IDO1,
IDO2, and TDO2 in the high- (E) and low-risk (F) groups. (G) Kaplan Meier curve analysis for the four different groups. *P< 0.05, **P< 0.01, ***P< 0.001.
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4 Discussion

BLCA is a common malignancy of the urine system. The

incidence and mortality rates of BLCA have increased recently.

The 5-year survival rate of muscle-invasive BLCA (MIBC) is less

than 50%, and the prognosis of metastatic BLCA is even worse, with
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a 5-year survival rate of less than 15% (2). Ultrasonography and

cystoscopy are traditional methods for diagnosing bladder cancer.

In recent years, the researches on bladder cancer biomarkers have

received significant attention in order to improve the accuracy of

non-invasive detection of bladder cancer. Many cancer-associated

molecules have been identified over the recent years which include
A B
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G

C

FIGURE 7

Single-cell analysis for the model genes. (A) A total of 18,718 core cells were analyzed after quality control. (B) Screening for highly variable gene
expression. (C) Scatter plots (left) and gravel plots (right) of principal components according to PCA results. (D) After UMAP dimensionality reduction,
cells were divided into 15 groups. (E) Annotation of cell populations using marker genes. (F) Expression of model genes in different cell populations.
(G) Violin plot for expression of model genes in different cell populations.
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EGFR, NMP22, FGFR3, p53 etc. (21–23). However, due to the lack

of sufficient sensitivity and specificity in most biomarkers, there is

still no ideal biomarker in clinical practice that can replace

cystoscopy for the diagnosis, treatment, and prognostic evaluation

of bladder cancer.

Due to the heterogeneity of BLCA, the response to different

molecular subtypes of bladder cancer varies greatly with

chemotherapy and targeted therapy. Therefore, there is an urgent

need to develop new therapeutic drugs that can significantly inhibit
Frontiers in Immunology 12
tumor proliferation and effectively improve the prognosis of

patients with locally advanced and metastatic BLCA. In recent

years, immunotherapy has led to significant breakthroughs in

BLCA treatment. Immunotherapeutic drugs such as ICIs have

been widely used in BLCA (24). Immune checkpoints are a class

of immune regulatory molecules comprising receptors expressed on

the surface of immune cells and ligands expressed on the surface of

tumor cells. The interaction between these two components can

regulate the immune system activity and affect tumor immunity.
A B

D

C

FIGURE 8

NAMPT was upregulated in BLCA tissues and could regulate BLCA cell proliferation and invasion in vitro. (A) NAMPT expression in BLCA and
matched adjacent normal tissues detected by RT-qPCR. (B) Efficiency of NAMPT knockdown was verified by RT-qPCR. (C) The proliferative ability of
NAMPT knockdown cells was determined using CCK-8 assay. (D) Transwell assay was used to detect the migration and invasion abilities of cells with
NAMPT knockdown. *P< 0.05, **P< 0.01, ***P< 0.001.
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However, owing to the complexity of the tumor immune

microenvironment, the overall effective rate of immunotherapy is

only 10– 30%, and most patients cannot benefit from

immunotherapy (25). Therefore, improving the responsiveness of

patients to immunotherapy and restoring the body’s antitumor

immune response are important problems that urgently need to

be solved.

In order to adapt to the hypoxic and nutrient-poor

microenvironment to achieve rapid growth, tumor cells change

their energy metabolism behavior, referred to as “metabolic

reprogramming,” basic characteristics of tumors (26). In addition

to participating in protein synthesis, tryptophan is an important

energy source for the immune system (27). Disorders in tryptophan

metabolism can lead to apoptosis and dysfunction of immune cells,

induce the formation of an immunosuppressive microenvironment,

and affect the efficacy of ICIs. Specifically, abnormal tryptophan

metabolism leads to tryptophan depletion, which leads to

insufficient energy in immune cells and affects the activity of the

immune system (5, 6, 28). Tryptophan depletion leads to increased

levels of free tRNAs, which directly activate regulatory T cells

(Tregs) through the General Control Non-derepressible-2

(GCN2) pathway, thus inhibiting the activity of antigen-

presenting cells and the proliferation of CD8+ T cells (29, 30).

Furthermore, the accumulation of tryptophan metabolites enhances

IDO1 activity and creates an inhibitory immune microenvironment

(6, 31). Therefore, inhibiting the activity of key enzymes (IDO1,

IDO2, and TDO) in the tryptophan metabolism pathway can

restore the activity of immune cells, which has been investigated

as a potential strategy to restore immune function and improve the

response to immunotherapy.

Unlike single-gene biomarkers, risk scoring models analyze

different model genes together, resulting in higher sensitivity and

specificity. Therefore, risk scoring models can be used for early

diagnosis, treatment decisions, individual monitoring and follow-

up of bladder cancer. Using univariate and multivariate Cox

regression analyses, we constructed a risk model that included the

NAMPT, ACAT1, and IDO1 genes. The K-M survival and ROC

curves were used to verify the validity of the risk model, and the

results showed that there was a significant survival difference

between the high- and low-risk groups, indicating that the risk

model had good predictive ability. NAMPT plays a significant role

in various cellular processes, including energy metabolism,

nicotinamide adenine dinucleotide (NAD+) biosynthesis, and cell

survival (32). High NAMPT expression is associated with enhanced

NAD+ biosynthesis, which may lead to advantages in tumor cell

proliferation and survival (32, 33). Moreover, an upregulated

expression of NAMPT has been associated with chemoresistance

and reduced chemotherapy efficacy (34). In this study, we verified

that NAMPT knockdown significantly inhibited BLCA cell

proliferation, migration and invasion. ACAT1 plays a crucial role

in cellular lipid metabolism (35), and several studies have

investigated the roles of lipid metabolism and related enzymes in

BLCA (36, 37). As a result, there may have potential implications

for ACAT1 action in BLCA, although more research is needed to

understand its precise role in this context.
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Single-cell sequencing allows researchers to study the genetic

and genomic characteristics of individual cells, revealing the cellular

heterogeneity in tissues and organs. Using a single-cell sequencing

dataset, we found that NAMPT and ACAT1 were expressed in

various cell types, whereas IDO1 was mainly expressed in immune

cells. This further verified that NAMPT and ACAT1 play biological

roles mainly by regulating the energy metabolism of various cell

types, whereas IDO1 affects tumor progression by regulating the

activity of immune cells.

In addition to the tryptophan metabolism pathway, KEGG

pathway analysis suggested the enrichment of the NOD-like

receptor signaling pathway. NOD-like receptors (NLRs) are a

class of signaling receptors found in immune cells that are

involved in biological processes such as apoptosis, inflammation,

and immune responses (38, 39). Moreover, the NLR signaling

pathway can regulate tryptophan metabolism (40), which is

involved in the immune response and plays a critical role in

tumor immune evasion.

Abnormalities in the tumor microenvironment (TME) are

important factors that induce tumor metabolic reprogramming (41,

42). The TME is a complex network composed of the extracellular

matrix, hematopoietic cells, and mesenchymal cells. An aberrant

tumor immune microenvironment is conducive to the differentiation

of tumor cells into highly aggressive cell subtypes and suppression of

antitumor immune responses, leading to tumor progression (43). In

this study, we further explored the relationship between tryptophan

metabolism and the tumor immune microenvironment in BLCA.

The CIBERSORT algorithm demonstrated that five immune cells

(CD8+ T cells, macrophages M1 and M2, regulatory T cells (Tregs),

and B cells) were differentially expressed between the two risk

subgroups. The low-risk group was associated with a higher level of

CD8+ T cell infiltration, indicating that the immune system in the

low-risk group exerted a more effective response against tumor

proliferation. Moreover, the infiltration of macrophages M1 was

negatively associated with risk scores, whereas macrophage M2 was

positively associated with risk scores. Macrophages M1 inhibit tumor

growth by directly killing tumor cells or stimulating other immune

cells to enhance the host antitumor immune response, whereas

macrophages M2 suppress immune system activity, thereby

weakening antitumor immunity. IPS analysis revealed that patients

in the low-risk groups had better immunotherapy efficacy and were

more likely to benefit from immunotherapy. These results indicate

that differences in tryptophan metabolism between the high- and

low-risk groups could affect the TME. The high-risk group, which

represents higher tryptophan metabolism, is more likely to form an

immunosuppressive microenvironment, induce immune escape of

tumor cells, and result in a worse immunotherapy response

and prognosis.

In conclusion, the tryptophan metabolism- and immune-

related gene risk model can effectively predict patient prognosis

and immunotherapy response and is an effective prognostic model

for BLCA. Our study further explored the potential applications of

tryptophan metabolism in improving the response to

immunotherapy and has crucial implications for individualized

therapy to improve the prognosis of patients with BLCA.
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However, further validation using basic experiments is required to

confirm our findings.
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