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Causal association of circulating
cytokines with sepsis: a
Mendelian randomization study
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1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical
College, Nanchong, Sichuan, China, 2Department of Medical Intensive Care Unit, The First Affiliated
Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
Background: Observational studies have reported an association between

circulating cytokines and sepsis. However, the precise causal relationship

between these factors remains unclear. The objective of this study was to

explore the causal link between circulating cytokines and sepsis using genetic

data within the framework of Mendelian Randomization (MR).

Methods: We performed a two-sample MR analysis to investigate this causality

relationship in individuals of European ancestry. The publicly available genome-

wide association studies (GWAS) statistics were used. We selected eligible

instrumental single nucleotide polymorphisms (SNPs) that were significantly

related to the circulating cytokines. Multiple MR analysis approaches were

carried out, which included inverse variance weighted (IVW), Weighted Median,

MR-Egger, Weighted Mode, Simple Mode, and MR pleiotropy residual sum and

outlier (MR-PRESSO) methods.

Results: We found evidence to support the causal role of genetically predicted

circulating levels on decreased risk of sepsis, including RANTES (OR = 0.920, 95%

CI: 0.849-0.997, P = 0.041) and basic fibroblast growth factor (basic-FGF) (OR =

0.869, 95% CI: 0.766-0.986, P = 0.029). Additionally, MR analysis positive causal

association of between beta-nerve growth factor (b-NGF) and sepsis (OR =

1.120, 95% CI: 1.037-1.211, P = 0.004). The results of MR-Egger, Weighted

Median, Weighted Mode, and Simple Mode methods were consistent with the

IVW estimates. Sensitivity analysis showed no horizontal pleiotropy to bias the

causal estimates.

Conclusion: This MR study provides first novel evidence that genetically

predicted causal association of circulating levels of RANTES, basic-FGF, and b-
NGF with altered sepsis risk. The findings shed light on the potential involvement

of these cytokines in sepsis pathogenesis. Although requiring additional

confirmation, the results contribute new insights into cytokine mediators in

sepsis and suggest promising future research directions.
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Introduction

Sepsis, a systemic inflammatory response syndrome triggered

by the body in response to pathogens, is a critical condition that

demands prompt and effective treatment. Failure to intervene in a

timely manner can result in the dysfunction of multiple organs and

a mortality rate ranging from 30% to 50% (1). Epidemiological

studies have shed light on the global prevalence of sepsis, with

approximately 17 million cases reported in 2017, showing a notable

decrease of 18.8% compared to the 60.2 million cases reported in

1990 (2). The alarming impact of sepsis is further highlighted by

estimations of 11 million sepsis-related deaths worldwide in 2017,

making up a staggering 19.7% of all deaths that year (2). These

statistics underscore the urgent need for heightened awareness,

improved prevention strategies, and enhanced treatment options to

combat this life-threatening condition.

Inflammation lies at the heart of sepsis pathophysiology (3).

While an inflammatory response is vital to combat infection

initially, excessive inflammation can inflict damage on the host

(4). This explains the early use of glucocorticoids in sepsis to temper

harmful hyperinflammation (5, 6). However, as sepsis progresses,

the inflammatory response wanes while immunosuppression comes

to the fore (7). Prolonged glucocorticoid administration then risks

precipitating immune paralysis (8). The inflammatory cascade in

sepsis is driven by the release of potent cytokines including TNF-a,
interleukin (IL)-1, and IL-6, as well as other mediators like

chemokines, complement, and reactive oxygen species (4, 9–12).

The ensuing dysregulated immune response and tissue injury arise

from complex interplay between inflammatory pathways (13).

Though research continues to unravel these nuanced

relationships, the precise causal mechanisms remain enigmatic.

Recent advances harnessing models and technology have offered

fresh insights, while clinical studies illuminated potential anti-

inflammatory therapeutic targets (14, 15). In summary, despite

copious evidence linking inflammatory mediators to sepsis

pathogenesis, the intricate inflammatory imbalance underpinning

sepsis progression remains incompletely understood.

Mendelian randomization (MR) is an epidemiological

technique that utilizes genetic variants as instrumental variables

(IVs) to assess causal relationships between modifiable exposures

and disease outcomes (16). The random assortment of alleles at

conception results in a random distribution of genotypes in the

population. Therefore, genetic variants can be leveraged as

unconfounded proxies for exposures of interest. By examining the
Abbreviations: GWAS, genome-wide association studies; SNPs, single nucleotide

polymorphisms; IVs, instrumental variables; OR, odds ratio; CI, confdence

interval; IVW, inverse variance weighting; MR-PRESSO, MR pleiotropy

residual sum and outlier; CTACK, cutaneous T-cell attracting (CCL27);

RANTES, regulated on activation, normal T-cell expressed and secreted

(CCL5); TRAIL TNF-related apoptosis-inducing ligand; TNF-a, tumor

necrosis factor-alpha; IL, interleukin; ICD, International Classification of

Diseases; MCP-1, monocyte chemotactic protein-1; CGRP, calcitonin gene-

related peptide; basic-FGF, basic fibroblast growth factor; b-NGF, beta-nerve

growth factor.

Frontiers in Immunology 02
association between genetic variants linked to exposures and disease

risk, MR can infer causality while minimizing biases from reverse

causation and confounding that afflict conventional observational

studies (17).

In this study, we aimed to employ MR to explore the causal

nature of the relationship between circulating cytokines and sepsis.

By using genetic instruments as proxies for circulating cytokines, we

can assess whether inflammation has a causal role in sepsis

development or merely represents an epiphenomenon.

Elucidating these causal pathways will provide greater biological

insight and may uncover novel therapeutic targets for this

deadly syndrome.
Method

Study design

In our two-sample MR study (Figure 1), single nucleotide

polymorphisms (SNPs) were exploited as instrument variables

(IVs). To ensure the data validity, we chose SNPs through three

major assumptions: (1) IVs should be significantly associated with

the exposure factors (‘‘Relevance assumption’’); (2) IVs affect the

outcomes only via exposure factors rather than the other pathways,

which implies no horizontal pleiotropy (‘‘Exclusivity assumption’’);

(3) IVs were not relevant to any confounding factors

(‘‘Independence assumption’’) (18).
Data resource

SNPs on circulating cytokines and sepsis was selected from the

latest genome-wide association study (GWAS), as presented in

Supplementary Table 1.

Figure 1 depicts the study’s overview in detail. Summary data

from the most thorough and extensive cytokine GWAS were used

for the genetic tool of cytokines. The cytokine GWAS meta-analysis

included 8,293 Finns from three distinct population-based cohorts:

the Young Finns Cardiovascular Risk Study, FINRISK1997, and

FINRISK2002 studies (19). Participants were chosen at random

from five distinct geographic regions and between the ages of 25 and

74 during the survey’s administration in Finland. The subjects’

EDTA plasma, heparin plasma, and blood were tested for cytokine

levels. Only observations within each cytokine’s detectable range

and cytokines with more than 90% of their values missing were

removed from the study (7 out of 48). Written informed permission

was given by each subject.

To explore the causal effect of exposure of various circulating

cytokines on the risk of sepsis, we selected datasets for sepsis as the

outcome from the summary statistics of the GWAS from UK Biobank

(n = 11,643 for sepsis case, n = 474,841 for control). Notably, sepsis

cases were identified by International Classification of Diseases (ICD),

10th edition, codes A02, A39, A40, and A41, aligning with definitions

used in recent research (20–22). Cases were included when these codes

appeared in either the primary or secondary diagnostic position within

hospital episode statistics data, or similar datasets from devolved
frontiersin.org
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nations, as provided by UK Biobank. Then, using GWAS summary

statistics, we used two-sample MR methods to deduce the causative

link between inflammatory factors and sepsis. Since samples of

inflammatory regulators and sepsis were acquired from various

consortiums, there was no overlap.
SNPs selection

We performed a set of methods to filter valid SNPs that suit the

three core MR assumptions. Firstly, the independent SNPs strongly

linked to different circulating cytokines were selected (23, 24). SNPs

with P-value < 5×10-6 were considered to be significantly associated

with circulating cytokines to obtain more SNPs as IVs. Secondly, we

adopted the clumping process to evaluate the linkage disequilibrium

(LD) among the SNPs (r2< 0.001 and clumping distance = 10,000

kb). The SNPs with LD were removed to avoid biased results.

Thirdly, we searched all the screened SNPs on PhenoScanner V2

(ht tp : / /www.phenoscanner .medsch l . cam.ac .uk/ ) (25) .

PhenoScanner V2 provides the phenotypes information of SNPs,

which can be used to determine whether the SNPs only affect the

outcomes through exposure. The SNPs related to the confounding

factors, such as smoking, diabetes and worries, were excluded to

eliminate the bias. Finally, we harmonized the exposure and

outcome datasets to remove the non-concordant SNPs. The

remaining SNPs were used as the genetic IVs.

Moreover, the F statistics for the SNPs were calculated by the

following equation: F = R2 × (N–2)/(1–R2). R2 was the proportion of

variance. N represented the sample size. Weak instruments were

identified by IVs with an F statistic less than 10 (F < 10) and

excluded from the analysis (26).
Statistical analysis

After selecting the valid SNPs, we adopted inverse variance

weighted (IVW) as the main way to estimate the MR analysis. IVW
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assesses the overall causal impact of exposure on the outcomes. It is

the most accurate way to evaluate causality if all the selected SNPs

are valid (27). We also applied complementary methods to analyze

causal association, including Weighted Median, MR Egger,

Weighted Mode, and Simple Mode methods. The Weighted

Median method will generate a more potent effect when more

than half of the SNPs are valid (28). MR Egger provides accurate

effect estimates even if all the SNPs are invalid (29).

We further conducted the MR-Egger regression and the MR

Pleiotropy Residual Sum and Outlier (MR-PRESSO) test to evaluate

the possible horizontal pleiotropy (30, 31). In theMR-Egger regression,

the intercept term indicates the average pleiotropic effect of IVs (31).

We used Cochran’s Q statistic and MR-egger regression to test the

heterogeneities. Additionally, the leave-one-out analysis was utilized to

assess the robustness and consistency of the results.

All the analyses were performed with the packages “Two

Sample MR” and “MRPRESSO” in R version 4.2.1. P < 0.05 is

statistically significant.
Results

Causal effect of circulating cytokines
on sepsis

After the series of filters mentioned in the method, 4-16 SNPs

were left as IVs for circulating cytokines (Supplementary Table 1).

All the selected SNPs were robust instruments, as confirmed by the

F-statistic values being more than 10.

Next, we adopted these SNPs to analyze the causal link. The MR

estimates between circulating cytokines and sepsis of different

methods are presented in (Supplementary Table 2). Specifically,

the preliminary results of IVW revealed negative causal effect of two

cytokines on sepsis, including RANTES (regulated on activation,

normal T-cell expressed and secreted (CCL5)) [OR = 0.920, 95% CI:

0.849-0.997, P = 0.041] and basic fibroblast growth factor (basic-

FGF) [OR = 0.869, 95% CI: 0.766-0.986, P = 0.029], and positive
FIGURE 1

Overview of the current Mendelian randomization (MR) study. SNPs, single nucleotide polymorphisms; IVs, instrumental variables. A √ symbol
indicates that the criteria was achieved; a × symbol indicates that the criteria was not achieved.
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causal effect of beta-nerve growth factor (b-NGF) and sepsis [OR =

1.120, 95% CI: 1.037-1.211, P = 0.004] (Table 1 and Figure 2). In

addition, the MR-Egger, Weighted Median method showed

consistent results. The scatter plots demonstrated the specific

effects of each method per outcome database (Supplementary

Figures 1, 3, 5).

The MR-Egger regression and MR-PRESSO global test results

revealed no horizontal pleiotropy (Table 2; Supplementary Table 3).

More importantly, Cochran’s Q statistic and MR-egger regression

showed no heterogeneity between the individual SNPs (P > 0.05).

Additionally, the p-values of the MR PRESSO global test for

circulating cytokines on sepsis were all greater than 0.05. The

leave-one-out analysis further confirmed that the causal estimates

of circulating cytokines were given (Supplementary Figures 2, 4, 6).

Apart from RANTES, basic-FGF and b-NGF, the other 38

cytokines (e.g., GRO-a, Trail, MIG, IL-17) did not show any

association with the risk of sepsis in either IVW primary MR

analysis or in other secondary analyses (Supplementary Table 2).

In the heterogeneity assay, most of the cytokines were significantly

non-heterogeneous, except for hepatocyte growth factor (P =

0.022). MR-egger regression did not show pleiotropy in p values

for all cytokines (Table 2). An additional solidity test, the MR-

PRESSO assay, did not show any abnormal values for the significant

MR results (Supplementary Table 3).
Frontiers in Immunology 04
No causal effect of sepsis on
circulating cytokines

To further explore the causal effect of sepsis on the circulating

cytokines, we selected independent SNPs as IVs for sepsis. The F-

statistic values were all higher than 10, which confirmed that all the

selected SNPs were valid instruments. The results of the IVW

analysis confirmed no causal effect of sepsis on all circulating

cytokines (Table 3). Furthermore, most results revealed no

heterogeneities based on the results of Cochran’s Q statistic,

except for macrophage inflammatory protein 1b (P = 0.009).

Horizontal pleiotropy was not detected in the results of several

cytokines based on the results of MR-Egger intercept (Pintercept >

0.05) and MR-PRESSO global test (Pglobal test > 0.05). The detailed

data are shown in Table 4; Supplementary Table 4.
Discussion

In the present study, we utilized the two-sample MR method

to investigate the potential causal associations between circulating

levels of 41 cytokines and the risk of sepsis. We found suggestive

evidence that the genetically predicted circulating levels of

RANTES, basic-FGF and b-NGF were associated with sepsis.
FIGURE 2

Forest plot for the causal effect of circulating cytokines on the risk of sepsis derived from IVW. OR, odds ratio; CI, confdence interval; IVW, inverse
variance weighting; CTACK, cutaneous T-cell attracting (CCL27); RANTES, regulated on activation, normal T-cell expressed and secreted (CCL5);
TRAIL TNF-related apoptosis-inducing ligand. The * symbol represents a p-value of less than 0.05, which is statistically significant. Bold values
represent p-values less than 0.05, which is statistically significant.
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TABLE 1 Primary results for MR analysis of circulating cytokines on sepsis.

Method Beta SE OR 95% CI P -value

CTACK levels Inverse variance weighted -0.006 0.026 0.994 0.944-1.046 0.812

beta-nerve growth factor levels* Inverse variance weighted 0.114 0.040 1.120 1.037-1.211 0.004

Vascular endothelial growth factor levels Inverse variance weighted 0.035 0.041 1.036 0.956-1.122 0.392

Macrophage Migration Inhibitory Factor levels Inverse variance weighted 0.009 0.037 1.009 0.939-1.084 0.812

TRAIL levels Inverse variance weighted 0.016 0.022 1.016 0.974-1.060 0.468

Tumor necrosis factor beta levels Inverse variance weighted 0.022 0.029 1.022 0.966-1.081 0.449

Tumor necrosis factor alpha levels Inverse variance weighted -0.007 0.049 0.993 0.903-1.092 0.883

Stromal-cell-derived factor 1 alpha levels Inverse variance weighted 0.040 0.053 1.041 0.938-1.156 0.450

Stem cell growth factor beta levels Inverse variance weighted 0.015 0.029 1.015 0.960-1.074 0.600

Stem cell factor levels Inverse variance weighted -0.040 0.055 0.961 0.863-1.070 0.471

Interleukin-16 levels Inverse variance weighted -0.031 0.023 0.970 0.928-1.014 0.176

RANTES levels* Inverse variance weighted -0.083 0.041 0.920 0.849-0.997 0.041

Platelet-derived growth factor BB levels Inverse variance weighted 0.052 0.037 1.053 0.980-1.133 0.160

Macrophage inflammatory protein 1b levels Inverse variance weighted -0.027 0.021 0.973 0.934-1.013 0.184

Macrophage inflammatory protein 1a levels Inverse variance weighted -0.017 0.045 0.983 0.900-1.073 0.698

Monokine induced by gamma interferon levels Inverse variance weighted 0.000 0.029 1.000 0.945-1.059 0.992

Macrophage colony stimulating factor levels Inverse variance weighted -0.047 0.026 0.954 0.907-1.003 0.065

Monocyte chemoattractant protein-3 levels Inverse variance weighted -0.039 0.033 0.962 0.902-1.026 0.237

Monocyte chemoattractant protein-1 levels Inverse variance weighted -0.058 0.033 0.944 0.885-1.007 0.079

Interleukin-12p70 levels Inverse variance weighted 0.022 0.035 1.022 0.956-1.094 0.520

Interferon gamma-induced protein 10 levels Inverse variance weighted -0.055 0.035 0.947 0.885-1.013 0.115

Interleukin-18 levels Inverse variance weighted -0.008 0.021 0.992 0.952-1.034 0.718

Interleukin-17 levels Inverse variance weighted 0.048 0.056 1.049 0.939-1.172 0.393

Interleukin-13 levels Inverse variance weighted 0.034 0.038 1.034 0.960-1.114 0.373

Interleukin-10 levels Inverse variance weighted 0.010 0.044 1.010 0.927-1.100 0.827

Interleukin-8 levels Inverse variance weighted -0.060 0.044 0.941 0.864-1.025 0.166

Interleukin-6 levels Inverse variance weighted -0.100 0.052 0.905 0.818-1.002 0.055

Interleukin-1-receptor antagonist levels Inverse variance weighted -0.044 0.039 0.957 0.887-1.033 0.259

Interleukin-1-beta levels Inverse variance weighted -0.019 0.056 0.981 0.879-1.095 0.732

Hepatocyte growth factor levels Inverse variance weighted 0.002 0.073 1.002 0.869-1.155 0.980

Interleukin-9 levels Inverse variance weighted -0.025 0.055 0.975 0.875-1.086 0.647

Interleukin-7 levels Inverse variance weighted 0.030 0.025 1.030 0.982-1.082 0.225

Interleukin-5 levels Inverse variance weighted -0.039 0.055 0.962 0.864-1.072 0.484

Interleukin-4 levels Inverse variance weighted 0.080 0.044 1.083 0.994-1.180 0.070

Interleukin-2 receptor antagonist levels Inverse variance weighted -0.006 0.027 0.994 0.943-1.049 0.833

Interleukin-2 levels Inverse variance weighted 0.018 0.035 1.018 0.951-1.090 0.609

Interferon gamma levels Inverse variance weighted -0.035 0.048 0.966 0.879-1.061 0.472

Growth-regulated protein alpha levels Inverse variance weighted 0.014 0.028 1.014 0.959-1.071 0.628

Granulocyte-colony stimulating factor levels Inverse variance weighted -0.048 0.037 0.953 0.887-1.024 0.189

(Continued)
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TABLE 1 Continued

Method Beta SE OR 95% CI P -value

Fibroblast growth factor basic levels* Inverse variance weighted -0.141 0.065 0.869 0.766-0.986 0.029

Eotaxin levels Inverse variance weighted -0.041 0.034 0.960 0.898-1.027 0.232
F
rontiers in Immunology
 06
 fr
MR, mendelian randomization; SE, standard error; OR, odds ratio; CI, confdence interval; CTACK, cutaneous T-cell attracting (CCL27); RANTES, regulated on activation, normal T-cell
expressed and secreted (CCL5); TRAIL TNF-related apoptosis-inducing ligand.
The * symbol represents a p-value of less than 0.05, which is statistically significant.
Bold values represent p-values less than 0.05, which is statistically significant.
TABLE 2 Heterogenity and pleiotropy analyses of circulating cytokines on sepsis.

Heterogenity MR-Egger intercept

Q Q_P -value Egger_intercept SE P -value

CTACK levels 10.741 0.465 0.007 0.014 0.638

beta-nerve growth factor levels 4.776 0.687 -0.014 0.032 0.681

Vascular endothelial growth factor levels 7.061 0.631 -0.021 0.020 0.319

Macrophage Migration Inhibitory Factor levels 4.582 0.801 0.017 0.016 0.342

TRAIL levels 18.536 0.293 -0.004 0.009 0.691

Tumor necrosis factor beta levels 4.239 0.237 0.018 0.014 0.322

Tumor necrosis factor alpha levels 5.675 0.225 -0.027 0.015 0.178

Stromal-cell-derived factor 1 alpha levels 9.083 0.335 0.002 0.012 0.851

Stem cell growth factor beta levels 18.002 0.207 -0.003 0.011 0.766

Stem cell factor levels 15.325 0.121 -0.013 0.016 0.432

Interleukin-16 levels 6.444 0.598 0.013 0.015 0.410

RANTES levels 4.965 0.664 0.012 0.021 0.584

Platelet-derived growth factor BB levels 17.646 0.171 -0.013 0.011 0.268

Macrophage inflammatory protein 1b levels 12.883 0.845 0.004 0.008 0.649

Macrophage inflammatory protein 1a levels 2.804 0.833 0.020 0.021 0.391

Monokine induced by gamma interferon levels 15.453 0.280 0.010 0.015 0.516

Macrophage colony stimulating factor levels 4.539 0.806 -0.009 0.017 0.612

Monocyte chemoattractant protein-3 levels 0.914 0.822 -0.003 0.029 0.932

Monocyte chemoattractant protein-1 levels 11.304 0.662 -0.013 0.010 0.232

Interleukin-12p70 levels 19.607 0.105 -0.008 0.010 0.401

Interferon gamma-induced protein 10 levels 6.051 0.642 -0.012 0.013 0.394

Interleukin-18 levels 11.363 0.878 0.002 0.009 0.860

Interleukin-17 levels 18.474 0.071 0.030 0.018 0.125

Interleukin-13 levels 8.215 0.314 -0.014 0.017 0.434

Interleukin-10 levels 15.142 0.127 -0.014 0.012 0.252

Interleukin-8 levels 1.225 0.747 0.001 0.014 0.960

Interleukin-6 levels 6.024 0.537 -0.015 0.014 0.323

Interleukin-1-receptor antagonist levels 6.355 0.608 0.017 0.017 0.338

Interleukin-1-beta levels 1.192 0.879 -0.020 0.019 0.371

Hepatocyte growth factor levels 16.328 0.022 -0.029 0.028 0.338

Interleukin-9 levels 11.663 0.070 0.019 0.029 0.552

(Continued)
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TABLE 2 Continued

Heterogenity MR-Egger intercept

Q Q_P -value Egger_intercept SE P -value

Interleukin-7 levels 6.919 0.806 -0.010 0.016 0.538

Interleukin-5 levels 4.865 0.301 -0.017 0.025 0.540

Interleukin-4 levels 8.296 0.600 0.012 0.011 0.311

Interleukin-2 receptor antagonist levels 1.875 0.966 -0.001 0.012 0.951

Interleukin-2 levels 9.779 0.369 0.007 0.012 0.557

Interferon gamma levels 13.637 0.325 0.014 0.012 0.275

Growth-regulated protein alpha levels 13.213 0.105 0.010 0.022 0.672

Granulocyte-colony stimulating factor levels 8.435 0.392 -0.017 0.011 0.162

Fibroblast growth factor basic levels 4.850 0.678 0.010 0.017 0.592

Eotaxin levels 10.516 0.724 0.005 0.012 0.661
F
rontiers in Immunology
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SE, standard error; CTACK, cutaneous T-cell attracting (CCL27); RANTES, regulated on activation, normal T-cell expressed and secreted (CCL5); TRAIL TNF-related apoptosis-inducing ligand.
TABLE 3 Primary results for MR analysis of sepsis on circulating cytokines (reverse).

Method Beta SE OR 95% CI P -value

CTACK levels Inverse variance weighted 0.088 0.123 1.092 0.859-1.390 0.472

beta-nerve growth factor levels Inverse variance weighted -0.193 0.124 0.825 0.647-1.051 0.119

Vascular endothelial growth factor levels Inverse variance weighted 0.026 0.084 1.026 0.871-1.210 0.756

Macrophage Migration Inhibitory Factor levels Inverse variance weighted -0.001 0.120 0.999 0.790-1.263 0.991

TRAIL levels Inverse variance weighted 0.076 0.081 1.079 0.920-1.264 0.351

Tumor necrosis factor beta levels Inverse variance weighted 0.071 0.253 1.073 0.653-1.762 0.780

Tumor necrosis factor alpha levels Inverse variance weighted -0.076 0.128 0.927 0.722-1.190 0.552

Stromal-cell-derived factor 1 alpha levels Inverse variance weighted 0.032 0.091 1.033 0.864-1.235 0.723

Stem cell growth factor beta levels Inverse variance weighted 0.197 0.124 1.218 0.955-1.552 0.112

Stem cell factor levels Inverse variance weighted 0.100 0.076 1.105 0.951-1.283 0.192

Interleukin-16 levels Inverse variance weighted -0.063 0.129 0.939 0.729-1.209 0.626

RANTES levels Inverse variance weighted -0.031 0.122 0.970 0.763-1.232 0.802

Platelet-derived growth factor BB levels Inverse variance weighted 0.103 0.076 1.108 0.956-1.285 0.174

Macrophage inflammatory protein 1b levels Inverse variance weighted 0.049 0.117 1.050 0.835-1.320 0.678

Macrophage inflammatory protein 1a levels Inverse variance weighted -0.069 0.124 0.934 0.732-1.190 0.579

Monokine induced by gamma interferon levels Inverse variance weighted -0.050 0.176 0.951 0.674-1.343 0.777

Macrophage colony stimulating factor levels Inverse variance weighted -0.003 0.216 0.997 0.653-1.522 0.989

Monocyte chemoattractant protein-3 levels Inverse variance weighted -0.376 0.459 0.687 0.279-1.688 0.413

Monocyte chemoattractant protein-1 levels Inverse variance weighted 0.029 0.085 1.029 0.871-1.216 0.737

Interleukin-12p70 levels Inverse variance weighted 0.006 0.082 1.006 0.856-1.182 0.943

Interferon gamma-induced protein 10 levels Inverse variance weighted -0.049 0.126 0.952 0.743-1.220 0.698

Interleukin-18 levels Inverse variance weighted 0.074 0.113 1.077 0.863-1.344 0.510

Interleukin-17 levels Inverse variance weighted 0.090 0.085 1.094 0.927-1.292 0.289

(Continued)
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These findings provide new insights into the pathogenesis

of sepsis.

RANTES/CCL5 is a chemokine that plays an important role in

inflammation by recruiting leukocytes including monocytes,

memory T cells, eosinophils and NK cells to sites of inflammation

(32). Little is known about the role of RANTES in sepsis, and the

studies that are currently available have inconsistent results

regarding the role of RANTES. In basic research, Ness et al.

found in a mouse sepsis model that the use of CCL5 increased

sepsis-induced lethality in wild-type mice, while neutralization of

CCL5 improved survival (33), in contrast to a recent study by Xie

et al. who demonstrated that RANTES levels were significantly

elevated in septic mice (34). In some small-sample clinical

observat ional s tudies it was indicated that RANTES

concentrations were significantly lower in the plasma of septic

neonates and could be used as a biomarker for predicting

neonatal infections (35–37). However, Cavaillon et al. found that

RANTES levels were significantly higher in sepsis survivors than in

non-survivors; moreover, RANTES levels did not correlate with any

other cellular levels (including IL-6, IL-8, monocyte chemotactic

protein-1 [MCP-1], etc.), and negatively correlated with acute

physiologic assessment and chronic health evaluation II

(APACHE II) scores, with low levels being significantly predictive

of poor outcome (38). These findings do not entirely align with our

own research. The specific role of RANTES in sepsis is currently

unclear, as various studies have produced conflicting results and
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there are doubts about its clinical significance. These discrepancies

may be due to variations in the animal models used, the timing and

dosage of RANTES administration, and other factors that can affect

its effects. Additionally, the limited sample size in current clinical

studies may have contributed to individual differences.

Nevertheless, our MR analysis suggests that circulating RANTES

may have a potential protective effect against sepsis, although

further studies are needed to validate these findings. Importantly,

our inverse MR analysis did not identify a causal relationship

between sepsis and basal levels of RANTES. Mechanistically,

RANTES plays a crucial role in recruiting immune cells, such as

monocytes, to sites of infection in order to eliminate pathogens and

provide protection against infections (32). Additionally, it is capable

of facilitating T cell proliferation and differentiation (39).

Furthermore, elevated levels of RANTES may counteract

immunosuppression in sepsis, particularly in advanced stages, by

supporting the recovery of T lymphocytes (40). Given these

functions, further research is necessary to fully understand the

exact mechanisms through which RANTES contributes to the

development of sepsis.

Basic-FGF, also known as FGF-2, is a member of the fibroblast

growth factor family (41). It is a potent mitogen involved in wound

healing, angiogenesis and embryonic development. Basic-FGF

stimulates the proliferation, differentiation and migration of many

cell types involved in inflammation and tissue repair, including

endothelial cells, fibroblasts, smooth muscle cells and keratinocytes
TABLE 3 Continued

Method Beta SE OR 95% CI P -value

Interleukin-13 levels Inverse variance weighted -0.239 0.126 0.787 0.615-1.007 0.057

Interleukin-10 levels Inverse variance weighted -0.021 0.093 0.979 0.816-1.174 0.817

Interleukin-8 levels Inverse variance weighted -0.069 0.114 0.934 0.746-1.168 0.548

Interleukin-6 levels Inverse variance weighted -0.045 0.083 0.956 0.813-1.125 0.591

Interleukin-1-receptor antagonist levels Inverse variance weighted -0.202 0.124 0.817 0.641-1.042 0.104

Interleukin-1-beta levels Inverse variance weighted -0.146 0.094 0.864 0.719-1.038 0.119

Hepatocyte growth factor levels Inverse variance weighted -0.072 0.079 0.931 0.798-1.086 0.361

Interleukin-9 levels Inverse variance weighted -0.158 0.124 0.854 0.669-1.090 0.205

Interleukin-7 levels Inverse variance weighted -0.096 0.154 0.909 0.673-1.228 0.534

Interleukin-5 levels Inverse variance weighted -0.164 0.150 0.848 0.632-1.139 0.274

Interleukin-4 levels Inverse variance weighted 0.059 0.083 1.061 0.902-1.248 0.473

Interleukin-2 receptor antagonist levels Inverse variance weighted -0.037 0.117 0.963 0.766-1.212 0.750

Interleukin-2 levels Inverse variance weighted -0.007 0.127 0.993 0.775-1.272 0.954

Interferon gamma levels Inverse variance weighted 0.062 0.088 1.064 0.896-1.263 0.482

Growth-regulated protein alpha levels Inverse variance weighted -0.010 0.115 0.990 0.791-1.240 0.931

Granulocyte-colony stimulating factor levels Inverse variance weighted 0.055 0.083 1.057 0.899-1.243 0.502

Fibroblast growth factor basic levels Inverse variance weighted 0.046 0.085 1.047 0.886-1.238 0.588

Eotaxin levels Inverse variance weighted -0.043 0.086 0.958 0.810-1.133 0.618
fr
MR, mendelian randomization; SE, standard error; OR, odds ratio; CI, confdence interval; CTACK, cutaneous T-cell attracting (CCL27); RANTES, regulated on activation, normal T-cell
expressed and secreted (CCL5); TRAIL, TNF-related apoptosis-inducing ligand.
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TABLE 4 Heterogenity and pleiotropy analyses of sepsis on circulating cytokines (reverse).

Heterogenity MR-Egger intercept

Q Q_pvalue Egger_intercept SE P -value

CTACK levels 8.626 0.375 0.027 0.025 0.311

beta-nerve growth factor levels 10.155 0.338 -0.021 0.026 0.451

Vascular endothelial growth factor levels 7.820 0.552 0.017 0.017 0.350

Macrophage Migration Inhibitory Factor levels 3.086 0.929 -0.003 0.025 0.922

TRAIL levels 5.240 0.813 -0.011 0.017 0.538

Tumor necrosis factor beta levels 2.919 0.571 -0.175 0.143 0.309

Tumor necrosis factor alpha levels 6.101 0.636 0.013 0.027 0.641

Stromal-cell-derived factor 1 alpha levels 11.099 0.269 -0.010 0.020 0.620

Stem cell growth factor beta levels 7.917 0.442 0.035 0.026 0.213

Stem cell factor levels 4.236 0.895 -0.012 0.016 0.470

Interleukin-16 levels 5.774 0.673 0.025 0.028 0.395

RANTES levels 9.402 0.401 0.027 0.025 0.312

Platelet-derived growth factor BB levels 9.541 0.482 0.008 0.016 0.639

Macrophage inflammatory protein 1b levels 23.445 0.009 0.010 0.025 0.701

Macrophage inflammatory protein 1a levels 3.523 0.940 0.025 0.026 0.362

Monokine induced by gamma interferon levels 16.230 0.059 0.027 0.038 0.499

Macrophage colony stimulating factor levels 13.500 0.061 0.032 0.048 0.523

Monocyte chemoattractant protein-3 levels 9.322 0.054 -0.095 0.295 0.769

Monocyte chemoattractant protein-1 levels 3.110 0.875 0.015 0.018 0.439

Interleukin-12p70 levels 2.570 0.958 0.007 0.017 0.678

Interferon gamma-induced protein 10 levels 10.775 0.291 -0.008 0.028 0.767

Interleukin-18 levels 5.590 0.848 0.021 0.023 0.392

Interleukin-17 levels 9.080 0.430 0.007 0.019 0.726

Interleukin-13 levels 4.788 0.780 0.037 0.026 0.198

Interleukin-10 levels 9.412 0.309 -0.001 0.021 0.957

Interleukin-8 levels 8.135 0.616 0.030 0.024 0.234

Interleukin-6 levels 7.137 0.522 0.006 0.017 0.745

Interleukin-1-receptor antagonist levels 3.290 0.915 0.000 0.026 0.993

Interleukin-1-beta levels 9.218 0.417 0.041 0.019 0.062

Hepatocyte growth factor levels 4.966 0.761 -0.022 0.016 0.226

Interleukin-9 levels 4.223 0.836 0.027 0.026 0.326

Interleukin-7 levels 9.510 0.218 0.038 0.032 0.275

Interleukin-5 levels 12.607 0.181 0.076 0.027 0.021

Interleukin-4 levels 9.211 0.418 0.008 0.018 0.668

Interleukin-2 receptor antagonist levels 3.139 0.925 0.005 0.024 0.840

Interleukin-2 levels 1.905 0.984 0.000 0.026 0.989

Interferon gamma levels 11.091 0.270 -0.007 0.019 0.737

Growth-regulated protein alpha levels 7.117 0.714 0.038 0.024 0.146

(Continued)
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(42). In addition to its effects on cell growth and motility, basic-FGF

also regulates the production of inflammatory mediators,

extracellular matrix components and proteinases (43). Through

its diverse biological activities, basic-FGF plays a key role in

mediating inflammatory responses, angiogenesis and wound

healing (44). Currently, there is only one clinical study that

compares blood FGF-2 concentrations in 118 healthy control

subjects with 18 sepsis patients. This study found that the median

FGF-2 concentration in sepsis patients was significantly lower than

that in healthy controls (25.7 vs. 37.7, P =0.0057) (45). Other studies

have focused on basic research. For example, Pan et al. found that

FGF-2 had a therapeutic effect on sepsis-associated acute lung

injury by improving capillary leakage and reducing inflammatory

response through cellular and animal experiments (46). Similarly,

Sun et al. suggested that FGF-2 inhibited coagulant activity in septic

mice, reduced lung and liver injuries, and improved survival,

highlighting the role of FGF-2 in ameliorating sepsis-induced

coagulation abnormalities (47). Moreover, in sepsis-induced

cardiac injury, delivery of basic-FGF via nanoparticles as a carrier

has been shown to treat sepsis-induced cardiac injury and protect

cardiomyocytes from oxidative and inflammatory damage (48).

Although an observational study found that basic-FGF levels were

lower in sepsis patients compared to the normal population,

analysis of prognosis was absent. Evidence from experimental

studies supports our finding of a potential protective effect of

basic-FGF in sepsis. These data suggest that basic-FGF may be a

potential therapeutic target for sepsis, but further studies are

warranted to confirm the underlying biological mechanisms.

Specifically, large-scale clinical studies analyzing the prognostic

value of basic-FGF levels in sepsis patients are needed.

Additionally, more research is required to elucidate the complex

immunomodulatory effects of basic-FGF in sepsis through in vitro

and animal models. Gaining a better understanding of how basic-

FGF regulates inflammatory pathways and mediates organ damage

and recovery will be crucial in determining its viability as a sepsis

treatment. Overall, basic-FGF shows promise as a therapeutic target

in sepsis, but clinical and mechanistic validation is still lacking.

b-NGF, also known as nerve growth factor beta (NGFB), is a vital
component of the nerve growth factor family. It is synthesized by

multiple types of cells and plays a crucial role in the development,

maintenance, and survival of neurons in the central and peripheral

nervous systems (49). By binding to tropomyosin receptor kinase A

(TrkA) and p75 neurotrophin receptor (p75NTR), b-NGF activates

signaling cascades that regulate neuronal differentiation, neurite

outgrowth, and nociception (50). In inflammation, b-NGF elicits

hypersensitivity to pain and heat by increasing neurotransmitter
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release from damaged sensory neurons (51). It also stimulates

endothelial cells to enhance adhesion molecule expression and

facilitate leukocyte infiltration (52). Additionally, b-NGF triggers

mast cell degranulation and histamine release, while activating

production of inflammatory mediators like substance P and

calcitonin gene-related peptide (CGRP) (53). Overall, b-NGF plays

a crucial role as a mediator of neuroinflammation and development

of inflammatory hyperalgesia, exerting pro-inflammatory effects on

both nerve and immune cells. To date, there have been no direct

studies examining the relationship between b-NGF and sepsis.

However, Boucly et al. discovered that serum b-NGF levels can

serve as a predictor of death or lung transplantation in patients with

pulmonary arterial hypertension (54). Additionally, a study by

Hepburn et al. revealed that b-NGF plays a key regulatory role in

the immune response to S. aureus infection by enhancing

phagocytosis and superoxide-dependent killing, stimulating

proinflammatory cytokine production, and promoting calcium-

dependent neutrophil recruitment (55). These findings provide

indirect support for our result that genetically predicted higher b-
NGF levels increase sepsis risk. This association may be due to the

fact that b-NGF is connected to excessive inflammatory response and

cellular damage in sepsis. Further research is still needed to directly

investigate the mechanistic links between b-NGF and

sepsis pathogenesis.

In summary, the role of RANTES in sepsis has produced

inconsistent results in previous research. However, our MR

analysis suggests that RANTES may have a protective effect,

although further validation is necessary. Mechanistically,

RANTES recruits immune cells to the infection sites, promotes T

cell proliferation, and may counteract immunosuppression in late-

stage sepsis. Future research should focus on determining its effects

on inflammatory pathways in sepsis and confirming its prognostic

value through extensive clinical studies. Moreover, basic-FGF shows

promise as a therapeutic target, as experimental studies have

demonstrated its protective effects against sepsis-associated organ

damage and coagulation abnormalities. However, there is a lack of

clinical research, and further work is needed to validate the

prognostic value and mechanisms of basic-FGF in sepsis using

human samples. Understanding its immunomodulatory functions

may provide support for the potential use of basic-FGF as a

treatment. Finally, it is suggested that b-NGF may contribute to

excessive inflammation and cellular injury in sepsis, although there

is currently no direct evidence linking it to sepsis pathogenesis.

Moving forward, it is crucial for studies to investigate the direct

involvement of b-NGF in sepsis development through clinical

evaluations and mechanistic experiments.
TABLE 4 Continued

Heterogenity MR-Egger intercept

Q Q_pvalue Egger_intercept SE P -value

Granulocyte-colony stimulating factor levels 3.133 0.959 -0.006 0.017 0.720

Fibroblast growth factor basic levels 4.690 0.860 0.004 0.018 0.835

Eotaxin levels 2.731 0.909 0.000 0.018 0.996
fr
SE, standard error; CTACK, cutaneous T-cell attracting (CCL27); RANTES, regulated on activation, normal T-cell expressed and secreted (CCL5); TRAIL TNF-related apoptosis-inducing ligand.
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This study has numerous strengths. Firstly, it employs MR to

establish causal inferences while minimizing confounding bias,

giving it a significant advantage over conventional observational

studies. Secondly, it explores a wide range of 41 cytokines, offering a

comprehensive overview of potential cytokine mediators in sepsis.

Thirdly, it uncovers new connections between RANTES, basic-FGF,

b-NGF, and sepsis risk, providing valuable insights into novel

pathogenic mechanisms. Lastly, it proposes logical directions for

future research to validate and build upon these findings.

However, it is important to acknowledge the limitations of this

study. Firstly, our selection of IVs utilized a relaxed significance

threshold of P < 5 × 10-6, which introduces the potential for false-

positive variants and subsequent bias. However, it is worth noting

that the IVs consistently demonstrated F-statistics greater than 10,

indicating a weak instrumental bias is less likely. Secondly, the focus

on a single ethnicity (European) limits the generalizability of our

findings to other populations. Thirdly, while efforts were made to

mitigate confounding, it is impossible to completely rule out the

presence of pleiotropy. Lastly, we did not examine potential

downstream mechanisms that could elucidate the connection

between the identified cytokines and the pathogenesis of sepsis.
Conclusions

This MR study provides first novel evidence that genetically

predicted causal association of circulating levels of RANTES, basic

FGF, and b-NGF with altered sepsis risk. The findings shed light on

the potential involvement of these cytokines in sepsis pathogenesis.

Further experimental research is warranted to validate the observed

associations and elucidate the underlying biological mechanisms

linking RANTES, basic-FGF, b-NGF to sepsis development.

Clinical studies with diverse patient populations are also needed

to confirm the prognostic utility of these cytokines. Although

requiring additional confirmation, the results contribute new

insights into cytokine mediators in sepsis and suggest promising

future research directions.
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Leave-one-out plot of b-NGF levels on sepsis.
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Scatter plot of RANTES levels on sepsis.
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Leave-one-out plot of RANTES levels on sepsis.
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Scatter plot of basic-FGF levels on sepsis.
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Leave-one-out plot of basic-FGF levels on sepsis.
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