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Utilizing predictive machine-
learning modelling unveils
feature-based risk assessment
system for hyperinflammatory
patterns and infectious
outcomes in polytrauma
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Christian B. Bergmann2, Ingo Marzi3,
Christoph Hoeschen1 and Borna Relja2,3*

1Institute for Medical Technology, Medical Systems Technology, Faculty of Electrical Engineering and
Information Technology, Otto von Guericke University Magdeburg, Magdeburg, Germany,
2Translational and Experimental Trauma Research, Department of Trauma, Hand, Plastic and
Reconstructive Surgery, Ulm University Medical Center, University Ulm, Ulm, Germany, 3Department
of Trauma, Hand and Reconstructive Surgery, Medical Faculty, Goethe University Frankfurt,
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Purpose: Earlier research has identified several potentially predictive features

including biomarkers associated with trauma, which can be used to assess the

risk for harmful outcomes of polytraumatized patients. These features

encompass various aspects such as the nature and severity of the injury,

accompanying health conditions, immune and inflammatory markers, and

blood parameters linked to organ functioning, however their applicability is

limited. Numerous indicators relevant to the patients` outcome are routinely

gathered in the intensive care unit (ICU) and recorded in electronic medical

records, rendering them suitable predictors for risk assessment of

polytraumatized patients.

Methods: 317 polytraumatized patients were included, and the influence of 29

clinical and biological features on the complication patterns for systemic

inflammatory response syndrome (SIRS), pneumonia and sepsis were analyzed

with a machine learning workflow including clustering, classification and

explainability using SHapley Additive exPlanations (SHAP) values. The predictive

ability of the analyzed features within three days after admission to the hospital

were compared based on patient-specific outcomes using receiver-

operating characteristics.

Results: A correlation and clustering analysis revealed that distinct patterns of

injury and biomarker patterns were observed for the major complication classes.

A k-means clustering suggested four different clusters based on the major

complications SIRS, pneumonia and sepsis as well as a patient subgroup that

developed no complications. For classification of the outcome groups with no

complications, pneumonia and sepsis based on boosting ensemble classification,

90% were correctly classified as low-risk group (no complications). For the high-
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risk groups associated with development of pneumonia and sepsis, 80% of the

patients were correctly identified. The explainability analysis with SHAP values

identified the top-ranking features that had the largest impact on the

development of adverse outcome patterns. For both investigated risk scenarios

(infectious complications and long ICU stay) the most important features are

SOFA score, Glasgow Coma Scale, lactate, GGT and hemoglobin

blood concentration.

Conclusion: The machine learning-based identification of prognostic feature

patterns in patients with traumatic injuries may improve tailoring personalized

treatment modalities to mitigate the adverse outcomes in high-risk patient clusters.
KEYWORDS

risk assessment, clinical decision making, classification, explainability, SHAP values,
blood, biomarker
1 Introduction

Severe trauma stands as a noteworthy global public health

challenge, constituting nearly 8% of all deaths and resulting in over

4.4 million deaths worldwide annually (1). The World Health

Organization highlights road traffic accidents, suicides and

homicides as primary contributors to injury and violence-related

deaths (1). Advances in prehospital transport and resuscitation

strategies have significantly influenced the patterns of traumatic

deaths over recent decades (2). Trauma-related fatalities display a

bimodal distribution, with a majority occurring in the initial days

following the injury, often due to severe head injury or uncontrollable

bleeding. Survivors of the initial traumatic event frequently confront a

critical illness characterized by prolonged stays in intensive care units

(ICU) or hospitals (length of stays, LOS), along with an elevated risk

of inflammatory complications (3, 4).

In the realm of post-injury scenarios, the pivotal determinant of

outcomes lies in the concurrent immuno-inflammatory response (5,

6). When this response is appropriately controlled in terms of both

intensity and duration, it plays a crucial role in restoring the host
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homeostasis. Conversely, an irregular response is associated with

the onset of multiple organ dysfunction syndrome (MODS),

culminating in prolonged critical illness and a sustained elevated

susceptibility to complications and mortality even post-discharge

(7). Experiencing multiple traumas triggers substantial blood loss

and the accumulation of necrotic or devitalized tissue within an

ischemic-hypoxic environment devoid of oxygen and nutrients,

both of which contribute to coagulatory and inflammatory

alterations. The inflammatory response following polytrauma

plays a pivotal role in the body`s molecular defense mechanisms.

The initial phase of inflammation after polytrauma involves two

coordinated processes: the systemic inflammatory response

syndrome (SIRS) representing a pro-inflammatory reaction, and

the compensatory anti-inflammatory response syndrome

constituting an anti-inflammatory reaction (8). SIRS manifests

through changes in heart rate, respiratory rate, temperature

regulation, and activation of immune cells. In the typical course

of the inflammatory response following trauma, a delicate

equilibrium is maintained between the pro- and anti-

inflammatory reactions, ensuring biological homeostasis and

fostering controlled regeneration processes that support a normal

recovery without significant complications. However, an

exaggerated inflammatory response following trauma has the

potential to simultaneously activate both innate pro- and anti-

inflammatory mediators while suppressing adaptive immunity, that

can lead to the early onset of multiple organ dysfunction syndrome

(MODS) (9). Furthermore, an extended and dysregulated immune-

inflammatory state is linked to delayed recovery and complications,

particularly the emergence of late-stage MODS. The intricate

interplay of these factors can result in severe SIRS, acute

respiratory distress syndrome, sepsis, acute kidney injury, and

ultimately MODS. Various influencing factors include the type of

injured tissue, post-injury surgical management, age, sex, genetics,

and critically, underlying comorbidities and physical conditions,

encompassing both exogenous and endogenous factors (7, 10).

Accurately identifying the risks faced by patients in ICUs after
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traumatic injuries is essential for tailoring existing treatment

strategies and mitigating subsequent complications, particularly in

high-risk patient sub-groups. Consequently, the identification of

patients with a heightened risk of unfavorable outcomes can aid

clinicians in ascertaining the optimal care setting and treatment

modalities during trauma management (11).

Within clinical medicine, there is an increasing interest towards

utilizing model predictions. Machine learning tools have been applied

to predict outcomes such as acute kidney injury or sepsis and septic

shock in hospitalized patients (12–16). Nevertheless, there exists a

scarcity of studies exploring the use of distinct machine learning

algorithms for predicting risks related to infectious complications and

LOS in polytraumatized patients. To address this gap in knowledge,

we conducted a cohort study to thoroughly assess the performance of

various machine learning algorithms in identifying features including

biomarkers for risk assessment and informing clinical decision-

making. The aim of this study is to create a prognostic machine

learning approach that combines data from electronic medical

records, including patient demographics, injury patterns and

severity, and laboratory data of polytraumatized patients. The

methodology outlined in this study involves the sequential

application of feature selection, correlation analyses, clustering,

classification, and explainability techniques to anticipate adverse

outcome patterns in a cohort of polytrauma patients. Serial blood

measurements taken within the first three days of hospital admission,

along with routinely recorded data from electronic medical records,

were utilized. The risk classification model, employing an ensemble

classification algorithm, demonstrated accurate predictions of the risk

of infectious complications and prolonged stays in the ICU or

hospital with high precision when tested on an independent patient

dataset. Furthermore, critical clinical and inflammatory biomarkers

for the early-stage prediction of risk patterns following

hospitalization were identified.
2 Materials and methods

2.1 Data collection and sampling

A total of 317 polytraumatized patients were enrolled in the

study at the emergency department (ED) of the University Hospital

Frankfurt of the Goethe University from 2012 to 2016. The

enrollment was done prospectively in accordance with the ethical

committee approval and the Declaration of Helsinki as well as

following the Strengthening the Reporting of Observational Studies

in Epidemiology guidelines (17). All included patients provided the

written informed consent forms themselves or informed consent

was obtained from the nominated legally authorized representative

consented on the behalf of participants as approved by the ethical

committee (312/10). Part of the data that were obtained in the ED

was published before (18). The study included polytraumatized

patients with an injury severity score (ISS) of 16 or higher, aged 18

or above, who were admitted to the ICU and expected to survive

beyond the initial 24 h post-injury. Certain exclusion criteria were

applied, such as known pre-existing immunological disorders,

immunosuppressive and anti-coagulant medication, burns,
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concomitant acute myocardial infarction, or thromboembolic

events. All patients were treated in the ED according to the

Advanced Trauma Life Support standards and the guidelines for

polytrauma management (19).

Demographic and clinical data were collected from electronic

medical records, including age, sex, ISS, abbreviated injury scale

(AIS), length of stay (LOS) in the ICU and hospital LOS. Various

severity scores were calculated daily during hospitalization,

including the Glasgow Coma Scale (GCS), acute physiology and

chronic health evaluation (APACHE) II and sequential organ

failure assessment (SOFA) score.

Blood samples were collected daily on ten consecutive days post-

injury from the patients in pre-chilled ethylenediaminetetraacetic

acid tubes (BD vacutainer, Becton Dickinson Diagnostics, Aalst,

Belgium) and kept on ice. Blood was centrifuged at 2000×g for

15 min at 4°C and the supernatant was stored at -80°C until IL-6 or

IL-10 analyses according to the manufacturer`s instructions (IL-6

and IL-10 Elipair ELISA-Assay Diaclone, Hoelzel Diagnostica,

Cologne, Germany). Blood was withdrawn daily as follows: the

initial blood draw upon arrival in the ED; within 24h (D1), 48h

(D2) and 72h (D3) of admission to the ED as a part of routine care.

Data were obtained from ED to day ten post-injury. For the machine-

learning approach described in Section 2.2, the mean of the results

from D1-D3 were applied for analysis to predict the trauma

associated outcome patterns at an early stage after admission to the

ED. In some instances, it was not possible to obtain samples due to

conflicts with clinical care or removal from the ICU.
2.1.1 Optimization of the study cohort
The polytrauma cohort study was designed to investigate

complications such as SIRS, pneumonia, and sepsis in trauma

patients. The prospectively collected data were based on previous

theory on risk factors for polytrauma such as injury patterns, injury

severity scores, blood markers for organ dysfunction as well as

immune and inflammatory markers. For the proposed classification

model, a subset of all collected data was selected as candidate

predictor variables based on the consideration that data should be

readily available and routinely collected also in the ICU. We

considered 29 variables as candidate predictors and two variables

(procalcitonin and antithrombin activity) were excluded due to

missing values exceeding 70%.
2.1.2 Outcomes
The primary outcome of the predictive model was the classification

of polytrauma patients into different complication patterns: no

complications (n=194), SIRS (n=51), pneumonia (n=39) and sepsis

(n=33). The criteria for diagnosing SIRS, pneumonia, and sepsis were

based on established definitions and guidelines. Briefly, SIRS definition

met the following criteria: heart rate >90 beats per minute; respiratory

rate >20 breaths per minute or arterial carbon dioxide tension <32

mmHg; body temperature >38°C or <36°C; and white blood cell count

>12.000 cells/mm3 or <4.000 cells/mm3, or with >10% immature

(band) forms. SIRS was diagnosed when two or more of these

criteria were fulfilled. The diagnose of pneumonia was defined by

clinical, radiologic, and bacteriologic findings including new
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pulmonary infiltrates on chest X-ray as well as one of the following

criteria: positive blood culture, bronchial alveolar lavage, and/or

sputum culture (20). Sepsis was assessed by applying the 2005

criteria outlined by the International Sepsis Forum diagnosing sepsis

by fulfilling SIRS criteria and having a proven infection (21). Apart

from the inflammatory complication patterns described above, we have

defined a second outcome scenario associated with a long stay in the

ICU or total-hospital stay. In order to identify and compare biomarker

risk patterns corresponding to a long LOS in LCU or hospital, we have

defined a threshold of ICU stay for >14 days and/or LOS for >30 days

as a separate class for polytrauma patients at higher risk.
2.2 Model development

2.2.1 Feature extraction and correlation analysis
The feature extraction and correlation analysis were performed

based on the Spearman’s correlation coefficient with respect to their

importance on the outcome class, and features with positive

correlation and which has significant correlation with class labels

were selected for the classification workflow described in Sec. 2.3.

2.2.2 Filtered k-means clustering
To identify distinct patient risk patterns, present in the first 3

days after injury, the patients outcome risk class for the 317 patients

admitted to the ICU after trauma were subjected to filtered k-means

clustering. The euclidian distance was used as a distance function

with S=15 as seed number.
2.3 Classification

The classification was carried out using Python and pycharm.

Missing data was imputed using k-nearest-neighbor imputation

with the number of neighbors n=3. Hyperparameter of different

classifiers (random forest, naive bayes and ensemble classifiers)

were optimized to minimize the final prediction error.

2.3.1 Synthetic data creation
The original data set contained information on 317 patients, with

194 patients having no complications and 123 patients exhibiting

hyperinflammatory or infectious complication patterns, such as SIRS

(n=51), pneumonia (n=39) and sepsis (n=33). The class imbalance in

the data set for the adverse outcomes (pneumonia and sepsis as

infectious complications or risk for long ICU stay or long total

hospitalization time) was addressed using Synthetic Minority

Oversampling Technique (SMOTE), which generates synthetic

training examples by linear interpolation for the minority class (22).

These synthetic training examples are generated by randomly selecting

one or more of the k-nearest neighbors for each example in the

minority class. SMOTE technique is applied for oversampling in which

each sampled instance of minority class is generated using 3 nearest

neighbors. After the oversampling process, the data is reconstructed,

and various classification techniques can be employed for the

processed data.
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2.3.2 Evaluation of model performance
The model performance evaluation was done by a k-fold cross

validation ranging from 2-fold to 20-fold during the model

development using a train-test split for the patient data. In this

method, 20% of the patients were excluded while training the model

and the excluded patients were then used to test the model. The

model performance was assessed using area under the receiver

operating characteristic (ROC) curve (AUC), F1 score and

predication accuracy. The best performing model from the above

criteria is then used to interpret the biomarker importance with

exploitability methods.

2.3.3 Model interpretation using SHAP values
We have explained our models that are used for classification

using SHAP (SHapley Additive exPlanations) values that offer a

high level of interpretability for our proposed risk analysis model

(23). The SHAP values for each patient feature explain the intensity

and direction of impact on predicting the class labels (11). The

SHAP tree explainer was used to explain the XGBoost prediction,

which uses decision trees for classification, and to visualize the

results in beeswarm plots.
2.4 Statistical analysis

Descriptive statistics and non-parametric tests were used to

analyze the demographic, clinical, and inflammatory data using

Origin (Version 2019b). Descriptive measures included mean,

median, standard error of the mean, and interquartile range for

continuous variables and percentages for categorical variables.

Furthermore, non-parametric tests were used for testing whether

group means, or medians are distributed the same across groups by

ranking each attribute from our data set. The non-parametric

Wilcoxon rank-sum test of the null hypothesis between two

independent samples (patient subgroup showing no complications

with patient subgroups showing complications) was tested in

MATLAB using the function rank-sum. The extension of the

Wilcoxon rank-sum test for more than two groups, the Kruskal-

Wallis ANOVA test was conducted in Origin (Version 2019b). A

significant Kruskal–Wallis test indicates that at least one sample

stochastically dominates one other sample.
3 Results

3.1 Demographics and outcome-related
features for risk assessment

The aim of this study was to utilize feature selection and

correlation analysis to identify the most important features from

clinical patients` data for polytrauma outcome classification. For

optimization of our study cohort, patients discharged prior to day

10 from the ICU and 21 patients who died before discharge were

excluded, which yielded a total of 317 patients used in the current

study. We utilized feature extraction, clustering, and classification
frontiersin.org
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to identify attributes correlating with complication patterns (SIRS,

pneumonia, and sepsis) observed in the patient cohort (Figure 1).

Demographic metrics, injury patterns and other outcome related

characteristics for the 317 trauma patients for the analysis are

shown in Table 1 and Supplementary Figures S1–S4.

Subsequently, the patient cohort (n=317) was divided into four

sub-groups based on commonly occurring complications of trauma

patients. Out of 317 patients, 16.1% developed SIRS, 12.3% had
Frontiers in Immunology 05
pneumonia and 10.5% were septic within 10 days after admission to

the ED, whereas the majority of 61.2% patients showed none of the

previously mentioned complications. The patient sub-group with

sepsis had the longest hospital stay (Table 1). No statistically

significant differences among the sub-groups in regard to age or

sex were detected. The sub-group with sepsis had significantly

higher ISS compared to the no complication and pneumonia sub-

groups (Table 1).
A

B

FIGURE 1

Study design. (A) Summary of the polytrauma patient cohort, including their outcome pattern: group 1 - no complications (n=194), group 2 –

systemic inflammatory response syndrome (SIRS) (n=51), group 3 - pneumonia (n=39), and group 4 - sepsis (n=33). (B) Study design for machine-
learning-based data analysis for risk assessment included: Identification of feature importance, correlation analysis, clustering and classification.
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3.2 SIRS patients showed the weakest
feature correlation among the
investigated complications

The prospectively collected data was subjected to the non-

parametric Wilcoxon rank-sum test for two independent samples

(patient sub-group showing no complications with patient-subgroups

showing complications) and the Kruskal-Wallis ANOVA test for

multiple independent samples with a significance level of p<0.05. The
Frontiers in Immunology 06
results inTable 2 showthat the least statistical significance isobserved for

the SIRS group with 8 out of 29 features that reject the null hypothesis,

followedby thepneumoniagroupwith9outof 29 features (Table 2).The

highest degree of significance is observed for the septic groupwith 19out

of 29 attributes. The Glasgow Coma Scale based on motor

responsiveness, verbal performance and eye opening to an appropriate

stimulus was designed to assess the depth and duration coma and

impaired consciousness after traumatic injuries is showing a high

significance in all complication sub-groups compared to the reference
TABLE 1 Overview of the polytrauma patient cohort and associated injury patterns.

No complica-
tions

(n=194)

SIRS
(n=51)

Pneumonia
(n=39)

Sepsis
(n=33)

p < 0.05

Demographics

Age (y) 45.9 ± 1.3 44.7 ± 2.4 53.5 ± 3.0 45.2 ± 3.2 n.s.

Sex (m/f) 149/45 43/8 33/6 24/9 n.s.

ISS 24.8 ± 0.7 27.6 ± 1.3 26.7 ± 1.7 32.7 ± 1.8 a, b

AIS

Head 2.1 ± 0.1 2.3 ± 0.2 3.4 ± 0.3 1.7 ± 0.3 b, c, d,

Thorax 2.0 ± 1.1 2.3 ± 0.2 1.5 ± 0.3 2.7 ± 0.3 b

Abdomen 0.8 ± 0.1 0.5 ± 0.1 0.7 ± 0.2 1.0 ± 0.3 n.s.

Extremities 1.1 ± 0.1 1.4 ± 0.2 0.8 ± 0.2 1.8 ± 0.2 a, b

Cytokines

IL-6 ED (pg/ml) 153.5 ± 21.4 180.6 ± 50.8 266.3 ± 78.3 343.5 ± 118.4 n.s.

IL-6 D1 (pg/ml) 189.8 ± 21.3 264.7 ± 69.8 269.3 ± 53.5 329.5 ± 83.8 n.s.

IL-6 D2 (pg/ml) 158.3 ± 34.8 112.0 ± 20.8 175.5 ± 47.4 304.3 ± 86.0 n.s.

IL-6 D3 (pg/ml) 69.7 ± 8.8 56.9 ± 8.3 105.0 ± 19.8 146.7 ± 32.0 a, c

IL-10 ED (pg/ml) 90.4 ± 12.6 108.2 ± 26.1 146.2 ± 38.6 138.2 ± 31.7 n.s.

IL-10 D1 (pg/ml) 15.6 ± 2.5 20.1 ± 5.1 34.8 ± 9.1 51.0 ± 15.1 a, c

IL-10 D2 (pg/ml) 10.0 ± 1.9 9.2 ± 3.0 7.0 ± 1.3 18.6 ± 8.5 n.s.

IL-10 D3 (pg/ml) 6.6 ± 1.8 10.7 ± 3.5 6.1 ± 1.2 33.4 ± 18.6 n.s.

Outcome

SIRS ED (n, %) 7, 3.6 29, 56.9 10, 25.6 14, 42.4 d, e

SIRS D1 (n, %) 0, 0 20, 39.2 11, 28.2 15, 45.4 e

SIRS D2 (n, %) 0, 0 19, 37.3 7, 17.9 9, 27.3 d, e

SIRS D3 (n, %) 0, 0 17, 33.3 8, 20.5 15, 45.4 b, e

SIRS ED-D10 (n, %) 7, 3.6 51, 100 16, 41.0 33, 100 b, d, e

SIRS total (d) 0.1 ± 0.1 2.8 ± 0.3 2.0 ± 0.5 7.5 ± 1.0 b, d, e

MV (d) 2.9 ± 0.3 6.6 ± 0.6 7.7 ± 0.7 2.9 ± 4.0 e

ICU LOS (d) 6.6 ± 0.5 12.4 ± 1.3 12.6 ± 1.5 7.8 ± 0.7 e

Hospital LOS (d) 16.4 ± 0.8 25.5 ± 2.9 19.6 ± 1.9 36.6 ± 4.2 f, g

In-hospital mortality (n, %) 22, 11.3 4, 7.8 4, 10.3 1, 3.0 n.s.
D, day; d, days; ED, emergency department; f, female; ICU, intensive care unit; ISS, injury severity score; IL, interleukin; LOS, length of stay; y, years; m, male; ml, milliliter; MV, mechanical
ventilation; n, sample size; n.s., not significant; pg, picogram; SIRS, systemic inflammatory response syndrome. Significant differences (p <0.05) between the groups are indicated as follows: a: no
complications vs. sepsis, b: pneumonia vs. sepsis, c: no complications vs. pneumonia, d: SIRS vs. pneumonia, e: no complications vs. all, f: no complications vs. SIRS, g: sepsis vs. all.
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group having no complications (Table 2). Moreover, the partial

thromboplastin time (PTT) that is a measure for the overall clotting

speed of the blood by the intrinsic pathway and common pathway of

coagulation as well as hemoglobin (Hb), the oxygen-binding
Frontiers in Immunology 07
metalloprotein of erythrocytes were found to be significant in all risk

groups (Table 2). Based on the feature importance ranking and the

correlation analysis, themost informative features in classifying a certain

complication pattern are shown in Figure 2 and Supplementary Figure
TABLE 2 Kruskal-Wallis ANOVA test and Wilcoxon rank sum test for discrimination between patient sub-groups with no complications with patient
sub-groups having systemic inflammatory response syndrome (SIRS), pneumonia or sepsis for a significance level of p <0.05.

Attribute Kruskal-
Wallis ANOVA

Wilcoxon rank sum test

SIRS Pneumonia Sepsis

ISS 70.26 0.017 0.435 2.05·10-5

AIS Head 7.16 0.837 2.99·10-4 0.220

AIS Thorax 3.47 0.214 0.141 0.025

AIS Abdomen 5.53 0.478 0.720 0.560

AIS Extremities 3.66 0.148 0.207 0.002

GCS 32.87 4.71·10-4 1.54·10-4 1.81·10-4

APACHE
II score

19.60 0.267 0.001 4.11·10-4

SOFA score 11.27 0.195 0.023 0.022

IL-6 19.90 0.602 0.032 3.26·10-4

IL-10 11.52 0.662 0.164 0.002

AP 2.01 0.571 0.034 0.109

GLDH 5.25 0.977 0.581 0.030

GGT 3.13 0.647 0.013 0.705

GOT 17.07 0.079 0.924 5.04·10-4

GPT 12.52 0.412 0.857 0.003

Leukocytes 5.73 0.031 0.589 0.947

CRP 2.59 0.346 0.762 0.248

Lactate 4.72 0.991 0.211 0.061

PT 27.05 0.010 0.305 4.81·10-6

INR 27.33 0.011 0.267 5.61·10-6

PTT 31.25 0.016 0.001 2.24·10-6

Fibrinogen 1.75 0.476 0.784 0.265

Platelets 7.40 0.261 0.071 0.028

Na+ 5.16 0.110 0.254 0.138

K+ 5.92 0.267 0.868 0.015

Creatinin 7.19 0.541 0.421 0.035

Hematocrit 19.70 0.026 0.121 6.65·10-5

Bilirubin 2.20 0.377 0.319 0.383

Hb 28.07 0.011 0.024 1.98·10-6

Features that
reject the
null hypothesis

13/29 8/29 9/29 19/29
The green table color indicates a rejection of the null hypothesis, whereas the red table coloring indicates that there is not enough evidence to reject the null hypothesis. The c2-values from the
Kruskal-Wallis ANOVA test and p-values from the Wilcoxon rank sum test for the different subgroups are given as table entries. AIS, abbreviated injury scale; AP, alkaline phosphatase;
APACHE, acute physiology and chronic health evaluation; CRP, C-reactive protein; GCS, glasgow coma scale; GLDH, glutamate dehydrogenase; GGT, gamma glutamyl transpeptidase; GOT,
glutamic oxaloacetic transaminase; GPT, glutamic pyruvic transaminase; Hb, hemoglobin; IL, interleukin; INR, international normalized ratio; ISS, injury severity score; K, potassium; Na,
sodium; PT, prothrombin time; PTT, partial thromboplastin time; SOFA, sequential organ failure assessment.
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S5. The highest ranking and therefore most-informative features for

infectious complications are the SOFA score (rank 1) and theGCS (rank

3, Supplementary Figure S5). Besides, the overall injury severity

represented by the ISS (rank 6) has shown that the traumatic injury

pattern is of relevance for the risk assessment with AIS Head (rank 11)

among the top 20 ranking features. The Hb level as a measure for

assessing acute blood loss after trauma were ranked on position 13,

respectively. The transpeptidase and transaminases gamma glutamyl

transpeptidase (GGT, rank5), glutamic oxaloacetic transaminase (GOT,

rank 17) and glutamic pyruvic transaminase (GPT, rank 18) were found

to be of high relevance for identification of adverse outcome patterns in

the investigated patient cohort (Supplementary Figure S5).
3.3 Cluster analysis revealed distinct
biomarker patterns for hyperinflammatory
and infectious complications

To identify the number of patient risk clusters, present during

the 3 days after injury, 317 patients admitted to the ICU after

trauma were subjected to filtered k-means clustering. This analysis

yielded four major cluster groups that were distinguished by distinct

inflammatory profiles for days 0-3 post-injury. These clustering

techniques produced the following patient groups: a favorable

outcome group with “no complications” (cluster 1), a SIRS group

with high inflammatory load (cluster 3) and unfavorable infectious

outcome groups suffering from sepsis or pneumonia (cluster 2 and

4) (Table 3 and Supplementary Table S1).
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In the following, we discuss the unique parameter differences

and additional clinical considerations for each respective patient

cluster and their associated outcome risk. The identified cluster

revealed a very distinct injury pattern among each other (Figure 3).

Patients that belonged to cluster 1 (n=101) were mainly associated

to the sub-group showing no complications. Therefore, the AIS related

to different body parts, the disease severity scores APACHE II and

SOFA, and the cytokines IL-6 and IL-10 are significantly lower than the

average of the overall patient cohort (Table 3). The 99 patients clustered

in cluster 2, where the majority of septic patients was observed, showed

a low AIS of the head (0.31 points) and a high AIS of the thorax (3.18

points) with significantly elevated level of IL-6 (257.93 pg/ml), GPT

(101.23 U/l) and GOT (169.71 U/l) compared to the centroid of the full

data set (Table 3). In comparison to the patients in cluster 2 with high

thorax and low head injury, 58 patients in cluster 3 had high AIS for

head (3.67 points) and thorax (3.17 points) injury and showedmainly a

pro-inflammatory complication pattern (SIRS) accompanied with

higher cytokine levels (IL-6 concentration of 229.61 pg/ml and IL-10

concentration of 56.52 pg/ml) and disease severity scores (APACHE II

of 16.38 points and SOFA of 5.73) above average (Table 3). 59 patients

in cluster 4 have significantly higher head injury scores (AIS Head with

4.25 points) whereas the other body regions were mostly without

traumatic injuries and showed pneumonia as a main complication class

(Table 3). The patients with an isolated traumatic brain injury in cluster

4 had lower cytokine levels (IL-6 concentration of 127.98 pg/ml and IL-

10 concentration of 37.37 pg/ml) and lower levels of biomarkers related

to the liver function (GLDH, GGT, GOT, GPT) that were comparable

with cluster 1 (mainly patients with no complications) (Table 3).
FIGURE 2

Heat maps of the feature correlation of the clinical attributes with respect to the different complication classes (no complication, systemic
inflammatory response syndrome (SIRS), pneumonia and sepsis). Correlation strength is color-coded (red to white: positive correlations; white to
blue: negative correlations). AIS, abbreviated injury scale; AP, alkaline phosphatase; APACHE, acute physiology and chronic health evaluation; CRP,
C-reactive protein; GCS, glasgow coma scale; GLDH, glutamate dehydrogenase; GGT, gamma glutamyl transpeptidase; GOT, glutamic oxaloacetic
transaminase; GPT, glutamic pyruvic transaminase; Hb, hemoglobin; IL, interleukin; INR, international normalized ratio; ISS, injury severity score; K,
potassium; Na, sodium; PT, prothrombin time; PTT, partial thromboplastin time; SOFA, sequential organ failure assessment.
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3.4 Ensemble classifiers predicted adverse
outcomes with high accuracy

Classification analysis was conducted on the patient cohort

illustrated in Figure 1 with the demographics and outcomes given in

Table 1. The patient subgroup with SIRS was neglected in the

classification due to their relatively low impact on adverse outcome

patterns (Figure 2) and the weakest correlation observed in the
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Wilcoxon rank sum test compared to the sub-group that showed no

complications (Table 2). The patient sub-group with pneumonia

and sepsis are combined in an “infectious complication” group

since more than 72% of the patients with sepsis also developed

pneumonia during their hospitalization. For the classification of

polytrauma patients in risk groups (no complications, infectious

complication) several classifiers (naive bayes, random forest and

ensemble classifiers) were optimized to achieve a high F1 score and
TABLE 3 Overview of polytrauma patient cohort and associated injury patterns.

Attribute Full data
(n=317)

Cluster 1
(n=101)

Cluster 2
(n=99)

Cluster 3
(n=58)

Cluster 4
(n=59)

p<0.05

ISS (–) 26.35 20.97 28.05 36 23.27 b

AIS Head (–) 2.27 2.23 0.31 3.67 4.25 e

AIS Thorax (–) 2.01 1.34 3.18 3.17 0.09 n.s.

AIS Abdomen (–) 0.76 0.51 1.52 0.71 0 e

AIS Extremities (–) 1.15 0.96 1.53 1.46 0.52 n.s.

GCS (–) 8.45 14.32 7.68 3.56 4.54 b

APACHE II score (–) 13.12 7.06 15.91 16.38 15.58 n.s.

SOFA score (–) 4.11 1.66 5.56 5.73 4.24 b

IL-6 (pg/ml) 165.81 60.98 257.93 229.61 127.98 a

IL-10 (pg/ml) 43.26 24.78 57.86 56.52 37.37 n.s.

AP (U/l) 47.97 52.98 43.16 44.70 50.68 n.s.

GLDH (U/l) 18.01 8.32 29.83 22.95 9.91 a

GGT (U/l) 38.68 45.46 36.23 27.20 42.47 b

GOT (U/l) 97.11 53.25 169.71 97.08 50.40 f

GPT (U/l) 63.98 40.33 101.23 75.03 31.09 f

Leukocytes (U/nl) 10.24 10.00 9.74 10.47 11.24 f

CRP (mg/dl) 3.21 3.36 2.52 3.52 3.78 f

Lactate (mg/dl) 19.29 16.73 21.68 19.85 19.13 a

PT (%) 84.53 91.42 79.55 79.57 85.96 n.s.

INR (–) 1.16 1.09 1.22 1.21 1.16 a

PTT (s) 31.31 27.49 33.76 34.01 31.13 b

Fibrinogen (mg/dl) 309.87 307.52 330.20 308.32 281.32 f

Platelets (cells/nl) 168.19 185.12 151.84 157.57 176.61 a

Na+ (mmol/l) 143.19 139.55 145.03 142.65 146.87 c

K+ (mmol/l) 4.07 4.01 4.18 4.04 4.06 a

Creatinine (mg/dl) 0.92 0.83 1.02 0.91 0.92 a

Hematocrit (%) 31.02 34.56 28.36 29.25 31.17 a

Bilirubin (mg/dl) 0.66 0.66 0.69 0.62 0.67 d

Hb (g/dl) 10.41 11.69 9.49 9.85 10.29 a
The cluster numbers allocate to the following complication patterns: 1 – no complications, 2 – sepsis, 3 – systemic inflammatory response syndrome (SIRS), and 4 – pneumonia. AIS, abbreviated
injury scale; AP, alkaline phosphatase; APACHE, acute physiology and chronic health evaluation; CRP, C-reactive protein; dl, deciliter; g, gram; GCS, glasgow coma scale; GLDH, glutamate
dehydrogenase; GGT, gamma glutamyl transpeptidase; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic transaminase; Hb, hemoglobin; IL, interleukin; INR, international
normalized ratio; ISS, injury severity score; K, potassium; l, liter; mg, milligram; ml, milliliter; mmol, millimoles; Na, sodium; nl, nanoliter; n.s., not significant; pg, picogram; PT, prothrombin
time; PTT, partial thromboplastin time; SOFA, sequential organ failure assessment; U, units. Significant differences (p <0.05) between the groups are indicated as follows: a: cluster 1 vs. cluster 2,
b: cluster 1 vs. cluster 3, c: cluster 1 vs. cluster 4, d: cluster 2 vs. cluster 3, e: cluster 2 vs. cluster 4, f: cluster 3 vs. cluster 4.
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best receiver operating characteristics (ROC) (Supplementary

Tables S2, S3).

The best classification performance was achieved with the ensemble

classifier XGBoost, a boosting algorithm designed to turn week

classifiers such as decision trees as base classifiers into an ensemble of

strong classifiers. XGBoost performs well even for imbalanced class
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problems. The biomarker predictor ranking was analyzed by gradient

boosting and features governing these results are explained using SHAP

values (Figure 4). Based on boosting ensemble classification XGBoost,

18 from 20 patients (90%) in the test set were correctly classified as low-

risk group (no complications). For the high-risk groups associated with

development of pneumonia and sepsis, 8 from 10 patients in the test set

(80%) were correctly identified (Figure 5).

The classification results were explained by SHAP values, which

calculate the importance of a feature by comparing the model

predictions with and without the selection of certain features.

Based on the explainability analysis with SHAP values, the

clinical and immunological trauma features that had the largest

importance on the model performance were identified. The top

clinical feature for both investigated risk scenarios (infectious

complications and long ICU stay) were SOFA score, GCS,

Lactate, GGT and Hb in a slightly varying order (Figure 4).

Furthermore, the immunological features of total leukocyte

counts and IL-6 concentration were found to be top ranking in

both scenarios, whereas the anti-inflammatory cytokine IL-10 had a

higher feature importance in the infectious complication patterns

than in the length of stay risk prediction.

Figure 5 is showing the resulting decision tree after ten learning

cycles (M = 10) with a learning rate of 0.001. According to the

feature ranking, the disease severity scores SOFA score and GCS,

the injury-related scores such as ISS and AIS, the anti-inflammatory

biomarker IL-10, the liver function parameters (GGT and GOT) as

well as bleeding and coagulation-related parameters (Hb) were

branches of the decision tree (Figure 5).

In comparison to the infectious classification scenario, the

prediction accuracy for the length of stay risk classification (ICU
FIGURE 3

Visualization of outcome-related patient clusters with respect to
clinical scores: the total injury severity represented by the injury
severity score (ISS) and the disease severity scores acute physiology
and chronic health evaluation (APACHE) II and sequential organ
failure assessment (SOFA). Data points represent the individual
patients, and the colored ellipsoids represent the cluster areas.
SIRS, systemic inflammatory response syndrome.
A B

FIGURE 4

SHAP values for the 20 most relevant features in the XGBoost model for the investigated class labels (A) for infection risk, and (B) risk for long stay
(ICU and total hospital stay) ranked by mean absolute values. x-axis: SHAP values and y-axis: features ranked by importance. AIS (–), abbreviated
injury scale; AP (U/l), alkaline phosphatase; APACHE, acute physiology and chronic health evaluation; CRP (mg/dl), C-reactive protein; GCS, glasgow
coma scale; GGT (U/l), gamma glutamyl transpeptidase; GOT (U/l), glutamic oxaloacetic transaminase; GPT (U/l), glutamic pyruvic transaminase;
Hb (g/dl), hemoglobin; IL(pg/ml), interleukin; INR, international normalized ratio; ISS, injury severity score; PT (%), prothrombin time; SOFA, sequential
organ failure assessment.
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stay for >14 days and/or LOS for >30 days) slightly decreased to

67% for the low-risk group and 87% for the high-risk

group (Figure 6).
4 Discussion

The objective of this study was to use various machine learning

algorithms and explainability based on SHAP values based on

clinical features collected in the early hospitalization phase to

identify clinical and inflammatory biomarker in a polytrauma

study cohort with various injury patterns. The focus was on

adverse outcome patterns such as SIRS and infectious

complications like pneumonia and sepsis, analyzing feature

patterns within three days post-injury. Through filtered k-means
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clustering, four distinct clusters with different injury and feature

patterns were identified. These clusters exhibited variations in

clinical features and inflammatory profiles upon admission and

during the initial three days post-injury.

Regarding the risk classification of patient sub-groups, the

results showed that ensemble-based methods outperformed naive

Bayes or random forest classifiers in terms of accuracy. The best

classification performance was achieved with XGBoost, a boosting

algorithm designed to turn week classifiers such as decision trees as

base classifiers into an ensemble of strong classifiers. XGBoost is an

ensemble approach which is efficient in predicting the plausible

classes accurately since sometimes only base classifier alone cannot

classify the class labels and the predictions can be biased. Gradient

boosting helps in overcoming this effect by building sequence of

base classifiers such that each successor aims in reducing the error
A

B C

FIGURE 5

Results for the classification of infectious outcomes in polytrauma patients. (A) Decision tree, (B) Confusion matrix, and (C) Receiver operating
characteristic (ROC) curve for risk classification with the following outcome groups as classes: group 1 (with no complications) and group 2 with
infectious complications (pneumonia and/or sepsis). The leaves of (A) correspond to the final nodes of the decision tree where the data does not
split any further and points to the predicted risk classes of the respective patient cohort: no complications (purple) and infectious complications
(yellow). The prediction accuracy between the true class (columns) and the predicted class (rows) is given in % as true positive or false negative rate.
The confusion matrix for the classification problem was achieved by the ensemble learning algorithm XGBoost. AIS, abbreviated injury scale;
APACHE, acute physiology and chronic health evaluation; CRP (mg/dl), C-reactive protein; Extrem., extremities; Glasgow, glasgow coma scale;
GGT (U/l), gamma glutamyl transpeptidase; Hb (g/dl), hemoglobin; IL (pg/ml), interleukin; INR, international normalized ratio; SOFA, sequential organ
failure assessment.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1281674
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fachet et al. 10.3389/fimmu.2023.1281674
of the predecessor employing a gradient descent approach. Extreme

gradient boosting is a type of gradient boosting approach which

uses second order optimization function to optimize the errors in

the predictions (24). The exact form of the pseudo-loss is under

control of the algorithm so that the weak classifier can focus also on

the groups which are hardest to distinguish from the correct group.

The XGBoost ensemble classifier achieved 90% accuracy in

classifying patients without complications and 80% accuracy in

identifying patients with infectious complications (pneumonia and

sepsis). The higher rate of misclassified cases in the pneumonia and

sepsis group may be attributed to complex comorbidities and

medication history of these patients. Due to the relatively small

sample size of patients with sepsis (n=33) and pneumonia (n=39),

future validation studies in larger cohorts and a rigorous study

designs are needed to enhance classification accuracy further.

Even though disease severity scores are not the key elements of

treatment, they are however, an essential part of improvement in

clinical decisions and in identifying patients with unexpected

outcomes, such as the investigated subjective score variables

APACHE II and SOFA that are collected daily in our study

(25).Consistent with the previous results of Tranca et al. (2016),

the ensemble classifier predicts that most patients with a SOFA cut-

off score below 3.45 points did not develop sepsis (26). Moreover, in

line with Tranca et al. (2016) (26), it was confirmed that patients

with APACHE II score below 10 points did not develop sepsis and
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indicate a discrimination between the pneumonia subgroup from

patients without complications. Based on the AIS head, a cut-off

score of AIS head=1.5 in combination with other predictive features

were found to separate low-risk from the high-risk patient

sub-group.

Consistent with previous studies, this prospective machine

learning study also highlighted the importance of measuring pro-

and anti-inflammatory cytokines (e.g. IL-6 and IL-10) for risk

classification in trauma patients (27, 28). The immunological

features of total leukocyte counts and IL-6 concentration were

found to be top ranking in both scenarios (infectious

complications and long ICU stay), whereas the anti-inflammatory

cytokine IL-10 had a higher feature importance in the infectious

complication patterns than in the length of stay risk prediction.

Together, elevated IL-6 levels (>95 pg/ml) and decreased IL-10

levels (<21 pg/ml) in combination with other features were

predictive of infectious risk classification. This study

demonstrated the potential for early risk stratification of severely

injured trauma patients into sub-groups at risk for specific clinical

trajectories. This approach may aid in tailored research and clinical

therapies for polytrauma patients, aligning with the findings of Liu

et al. (2020) (7). By utilizing the explainability analysis based on

SHAP values, it was elucidated how clinical and immunological

biomarkers that were routinely collected during ICU admission

impact the decision-making process of black-box machine learning
A

B C

FIGURE 6

Results for the classification of the length of stay of polytrauma patients in the ICU or the total hospital stay. (A) Decision tree, (B) Confusion matrix, and
(C) Receiver opertainig characteristic (ROC) curve for risk classification with the following outcome groups as classes: group 1 (with low risk) and group
2 with high risk for a long LOS. The leaves of (A) correspond to the final nodes of the decision tree where the data does not split any further and points
to the predicted risk classes of the respective patient cohort: low risk (blue) and high risk (red). The prediction accuracy between the true class (columns)
and the predicted class (rows) is given in % as true positive or false negative rate. The confusion matrix for the classification problem was achieved by
the ensemble learning algorithm XGBoost. AP (U/l), alkaline phosphatase; APACHE, acute physiology and chronic health evaluation; Glasgow, glasgow
coma scale; GOT (U/l), glutamic oxaloacetic transaminase; GPT (U/l), glutamic pyruvic transaminase; Hb (g/dl), hemoglobin; IL (pg/ml), interleukin;
INR, international normalized ratio; ISS, injury severity score; SOFA, sequential organ failure assessment.
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models. Thus, the present study validated the clinical predictors for

infectious complications and the LOS in the hospital.

Some additional features including the importance of GGT as a

feature for clustering remain intriguing. Fisher et al. have shown

that GGT as a useful and simple biomarker at admission is among

the independent indicators and predictors of in-hospital mortality

in older hip fracture patients (29). In the realm of clinical models,

the role of GGT is intricate, and subject to various factors and

contextual nuances. GGT, an enzyme distributed in the liver, biliary

tract, and diverse tissues, can undergo elevation in response to a

spectrum of medical conditions, encompassing liver damage,

alcohol consumption, and cholestatic liver disease (30, 31). Its

levels can also be influenced by medications and concurrent

health issues. To discern why GGT assumes a noteworthy role in

this study, several key considerations come into play. It is essential

to note that individuals with a documented history of chronic

diseases were deliberately excluded from this study. However, the

impact of GGT in this model may hinge on the timing of

measurements. The model employs the mean GGT value from

the first three days post-admission. Nonetheless, the fluctuating

nature of GGT levels over time should be acknowledged, as elevated

levels can signify distinct conditions at different stages of illness.

Moreover, undisclosed pre-existing medical conditions and

concurrent health issues among patients could significantly

impact GGT levels and their clinical relevance, potentially

confounding the results. Understanding the interrelationships

between GGT, GOT, GPT, bilirubin levels, and other markers of

liver function is pivotal. These relationships could offer a more

comprehensive understanding of liver health and potential causes of

their elevation, since notably, these markers rank among the top 20

most relevant features for classification in our model.

Our study contains several limitations. The sepsis sub-group

meets the SIRS criteria, with the added specificity of including

individuals with bloodstream infections. It’s important to note that

the sepsis sub-group also encompasses patients with pneumonia

who developed sepsis, whereas the pneumonia group does not

involve sepsis, and the SIRS group excludes both pneumonia and

sepsis cases. It must be acknowledged that a re-classification of

patients according to the more recent sepsis-3 definition will be of

higher clinical relevance (32). A retrospective re-classification of

patients from the present study according to sepsis-3 criteria was

performed, however, there are serious limitations in the patient

records, which only provided a single daily recording of the worst

SOFA score for ten consecutive days post-hospital admission. Thus,

the retrospective re-classification according to sepsis-3 criteria

referred only to SOFA score changes of ≥2 points within 24 hours.

Despite this challenge, all 33 septic patients in the presented sub-

group do meet the sepsis-3 criteria based on the records. This data

should not be overinterpreted, although Kim et al. have reported that

some validity on the assessment of the prognostic accuracy of the

initial SOFA score at the time of sepsis recognition which was lower

than the 24-h maximal SOFA score in ED patients with septic shock

(33). Their insights, while valuable, emphasize the need for
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continuous monitoring of SOFA scores over an extended period.

Our study, on the other hand, contends that assessing the worst

SOFA score within 24 hours may capture a critical moment in a

patient’s condition, offering practicality in historical data analyses.

While the retrospective nature of such approaching definitely poses

limitations, the assessment of the worst SOFA score within 24 hours

during the hospital stay may provide some clinically relevant

information. Yet, clearly, prospective studies with continuous

SOFA scoring during the progression of sepsis are crucial for a

more comprehensive understanding, and we acknowledge the need

for further validation through such studies.

In addition, the distinction between the sepsis group,

characterized by systemic infection, and the pneumonia group,

where bacteriological diagnosis primarily resides in the lungs,

underscores the complexity of infections in trauma patients. A

pivotal question emerges regarding the utility of antibiotic

treatment initiation on a specific day as a surrogate for infection.

The lack of valid and reliable records on antibiotic regimens in the

assessed patient cohort complicates such assessment. Sepsis, a

complex condition, may not always necessitate bacteriological

confirmation, as demonstrated in the present study where a

bacteriological diagnosis was consistently found. Its definition has

evolved to reflect a dysregulated host response to infection,

irrespective of the infectious agent’s nature—bacteria, viruses,

fungi, or even non-infectious triggers. While bacteriological

confirmation holds value, sepsis diagnosis relies significantly on

clinical presentation and established criteria encompassing signs

such as body temperature fluctuations, increased heart rate, and

abnormal white blood cell counts (32). The notion of using the

initiation of antibiotic treatment on a certain day as a surrogate for

infection poses challenges. Prophylactic antibiotic use is crucial in

certain trauma scenarios, such as traumatic brain injuries (TBI),

penetrating injuries, open fractures, and high-risk orthopedic

procedures (34). However, initiating antibiotics early, though

important in suspected infections, does not inherently confirm

the presence of an infection, and must be critically discussed in

terms of their role in the development of post-traumatic infections

and microbial selection (34). Empirical antibiotic initiation in

critically ill patients is often a necessity, with subsequent

treatment decisions guided by culture results and clinical

response. Clinical judgment, complemented by other diagnostic

modalities such as blood cultures, imaging studies, and biomarkers,

should collectively guide the diagnosis and management of sepsis

and associated infections in trauma patients. In addition, trauma

patients, particularly those with brain injuries, may face an elevated

risk of developing ventilator-associated pneumonia (VAP) (35),

confirming the data from the present study revealing higher AIS

head values in patients with pneumonia compared to other groups.

Thus, multiple factors including compromised immune function,

prolonged mechanical ventilation, impaired airway protection

mechanisms but also the injury patterns demand a careful

management including antibiotics regimes to prevent

complications such as VAP in trauma patients.
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The model development process and findings in the present

study could be employed to predict the clinical course and identify

high-risk individuals for inflammatory or infectious complications

among severely injured trauma patients. The presented ensemble

methods identified key features in polytraumatized patients, that

allowed to predict patient`s outcomes. Thus, implementing such

models may enhance clinical decision-making by enabling

personalized treatment strategies based on individual risk profiles

in future.
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SUPPLEMENTARY TABLE 1

Misclustered instances from filtered clustering based on k-means algorithm.
Abbreviation: SIRS, systemic inflammatory response syndrome.Supplementary

information for classification analysis

SUPPLEMENTARY TABLE 2

Accuracy of different classifiers for infectious complications.

SUPPLEMENTARY TABLE 3

Accuracy of different classifiers for risk of long intensive care unit (ICU) and

length of stay (LOS) prediction.

SUPPLEMENTARY FIGURE 1

Box plots of outcome associated parameters related to the complication risk.
Lower and upper box boundaries correspond to 25th and 75th percentiles,

respectively. The line inside represents the box median. The lower and upper
error lines (whiskers) correspond to the 10th and 90th percentiles,

respectively. The asterisk next to the 10th and 90th percentiles indicate

statistical significance between the complication group and the patient
group having no complications. Points above and below the whiskers

indicate outliers outside the 10th and 90th percentiles. Abbreviations:
APACHE, acute physiology and chronic health evaluation; SIRS, systemic

inflammatory response syndrome; SOFA, sequential organ failure assessment.

SUPPLEMENTARY FIGURE 2

Box plots of cytokines and predictive markers related to the complication risk.
Lower and upper box boundaries correspond to 25th and 75th percentiles,

respectively. The line inside represents the box median. The lower and upper
error lines (whiskers) correspond to the 10th and 90th percentiles, respectively.

The asterisk next to the 10th and 90th percentiles indicate statistical significance
between the complication group and the patient group having no

complications. Points above and below the whiskers indicate outliers outside

the 10th and 90th percentiles. Abbreviations: IL, interleukin; PCT, procalcitonin;
SIRS, systemic inflammatory response syndrome.

SUPPLEMENTARY FIGURE 3

Box plots of serum markers for liver function related to the complication risk.
Lower and upper box boundaries correspond to 25th and 75th percentiles,

respectively. The line inside represents the box median. The lower and upper

error lines (whiskers) correspond to the 10th and 90th percentiles,
respectively. The asterisk next to the 10th 29 and 90th percentiles indicate

statistical significance between the complication group and the patient group
having no complications. Points above and below the whiskers indicate

outliers outside the 10th and 90th percentiles. Abbreviations: AP, alkaline
phosphatase; CRP, C-reactive protein; GLDH, glutamate dehydrogenase;
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GGT, gamma glutamyl transpeptidase; GOT, glutamic oxaloacetic
transaminase; GPT, glutamic pyruvic transaminase.

SUPPLEMENTARY FIGURE 4

Box plots of serum markers for coagulation factors related to the

complication risk. Lower and upper box boundaries correspond to 25th and
75th percentiles, respectively. The line inside represents the box median. The

lower and upper error lines (whiskers) correspond to the 10th and 90th
percentiles, respectively. The asterisk next to the 10th and 90th percentiles

indicate statistical significance between the complication group and the

patient group having no complications. Points above and below the
whiskers indicate outliers outside the 10th and 90th percentiles.

Abbreviations: INR, international normalized ratio; PTT, partial
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thromboplastin time. Supplementary information for statistical tests and
correlation analysis

SUPPLEMENTARY FIGURE 5

Feature importance ranking based on the F1 score with respect to the two

investigated risk scenarios: (A) Risk for infectious complications, and (B) risk for a
long stay in the intensive care unit (ICU) or total length of stay (LOS) in hospital.

Abbreviations: Abbreviations: AIS, abbreviated injury scale; APACHE, acute
physiology and chronic health evaluation; GGT, gamma glutamyl

transpeptidase; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic

transaminase; SOFA, sequential organ failure assessment. GGT -Gamma glutamyl
transpeptidase, GOT-Glutamic oxaloacetic transaminase, GPT-Glutamic pyruvic

transaminase. Supplementary information for clustering analysis
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26. Trancă S, Petrisor C, Hagău N, Ciuce C. Can APACHE II, SOFA, ISS, and RTS
severity scores be used to predict septic complications in multiple trauma patients? J
Crit Care Med (2016) 2(3):124–30. doi: 10.1515/jccm-2016-0019

27. Jastrow KM, Gonzalez EA, McGuire MF, Suliburk JW, Kozar RA, Iyengar S, et al.
Early cytokine production risk stratifies trauma patients for multiple organ failure. J
Am Coll Surg (2009) 209(3):320–31. doi: 10.1016/j.jamcollsurg.2009.05.002

28. Raymond SL, Hawkins RB, Wang Z, Mira JC, Stortz JA, Han F, et al. Prospective
validation of a transcriptomic metric in severe trauma. Ann Surg (2020) 271(5):802–10.
doi: 10.1097/SLA.0000000000003204

29. Fisher A, Fisher L, Srikusalanukul W, Smith PN. Usefulness of simple biomarkers at
admission as independent indicators and predictors of in-hospital mortality in older hip
fracture patients. Injury (2018) 49(4):829–40. doi: 10.1016/j.injury.2018.03.005

30. Banciu T, Weidenfeld H, Marcoane E, Berinde L. Serum gamma-
glutamyltranspeptidase assay in the detection of alcohol consumers and in the early
and stadial diagnosis of alcoholic liver disease. Med Interne (1983) 21(1):23–9.

31. Liu J, Yu C, Yang Q, Yuan X, Yang F, Li P, et al. The clinical implication of
gamma-glutamyl transpeptidase in COVID-19. Liver Res (2021) 5(4):209–16. doi:
10.1016/j.livres.2021.09.001

32. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS,
et al. Developing a new definition and assessing new clinical criteria for septic shock: for
the third international consensus definitions for sepsis and septic shock (Sepsis-3).
JAMA (2016) 315(8):775–87. doi: 10.1001/jama.2016.0289

33. Kim TH, Jeong D, Park JE, Hwang SY, Suh GJ, Choi SH, et al. Prognostic accuracy of
initial and 24-h maximum SOFA scores of septic shock patients in the emergency
department. Heliyon (2023) 9(9):e19480. doi: 10.1016/j.heliyon.2023.e19480

34. Schindler CR, Woschek M, Franz JN, Störmann P, Henrich D, Marzi I. Influence
of antibiotic management on microbial selection and infectious complications after
trauma. Front Med (2021) 8:678382. doi: 10.3389/fmed.2021.678382

35. Caceres E, Olivella JC, Yanez M, Viñan E, Estupiñan L, Boada N, et al. Risk factors
and outcomes of lower respiratory tract infections after traumatic brain injury: a retrospective
observational study. Front Med (2023) 10:1077371. doi: 10.3389/fmed.2023.1077371
frontiersin.org

https://iris.who.int/handle/10665/276462
https://doi.org/10.1186/s13054-019-2347-3
https://doi.org/10.1097/TA.0000000000001882
https://doi.org/10.1007/s00068-023-02353-2
https://doi.org/10.1007/s00068-023-02353-2
https://doi.org/10.1007/978-3-319-89390-7_5
https://doi.org/10.1007/s00068-019-01235-w
https://doi.org/10.1007/s00068-019-01235-w
https://doi.org/10.3389/fmed.2020.00046
https://doi.org/10.1007/s00068-018-0962-3
https://doi.org/10.1016/S0140-6736(14)60687-5
https://doi.org/10.1038/s41591-020-0951-z
https://doi.org/10.1038/s41746-021-00456-x
https://doi.org/10.1007/s00467-023-06197-1
https://doi.org/10.3390/antibiotics12050925
https://doi.org/10.1109/EMBC46164.2021.9629559
https://doi.org/10.3389/fmed.2021.664966
https://doi.org/10.1371/journal.pone.0213836
https://doi.org/10.1136/bmj.39335.541782.AD
https://doi.org/10.1007/s00068-019-01284-1
https://doi.org/10.1007/s00104-013-2476-1
https://doi.org/10.1007/s00063-005-1045-x
https://doi.org/10.1097/01.CCM.0000168253.91200.83
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.4103/0972-5229.130573
https://doi.org/10.1515/jccm-2016-0019
https://doi.org/10.1016/j.jamcollsurg.2009.05.002
https://doi.org/10.1097/SLA.0000000000003204
https://doi.org/10.1016/j.injury.2018.03.005
https://doi.org/10.1016/j.livres.2021.09.001
https://doi.org/10.1001/jama.2016.0289
https://doi.org/10.1016/j.heliyon.2023.e19480
https://doi.org/10.3389/fmed.2021.678382
https://doi.org/10.3389/fmed.2023.1077371
https://doi.org/10.3389/fimmu.2023.1281674
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Utilizing predictive machine-learning modelling unveils feature-based risk assessment system for hyperinflammatory patterns and infectious outcomes in polytrauma
	1 Introduction
	2 Materials and methods
	2.1 Data collection and sampling
	2.1.1 Optimization of the study cohort
	2.1.2 Outcomes

	2.2 Model development
	2.2.1 Feature extraction and correlation analysis
	2.2.2 Filtered k-means clustering

	2.3 Classification
	2.3.1 Synthetic data creation
	2.3.2 Evaluation of model performance
	2.3.3 Model interpretation using SHAP values

	2.4 Statistical analysis

	3 Results
	3.1 Demographics and outcome-related features for risk assessment
	3.2 SIRS patients showed the weakest feature correlation among the investigated complications
	3.3 Cluster analysis revealed distinct biomarker patterns for hyperinflammatory and infectious complications
	3.4 Ensemble classifiers predicted adverse outcomes with high accuracy

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


