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Inhibition of focal adhesion
kinase 2 results in a macrophage
polarization shift to M2 which
attenuates local and systemic
inflammation and reduces
heterotopic ossification after
polysystem extremity trauma

Cassie J. Rowe1,2, Uloma Nwaolu1,2, Daniela Salinas1,2,
Jonathan Hong3, Johanna Nunez3, Jefferson L. Lansford1,
Conor F. McCarthy1, Benjamin K. Potter1, Benjamin H. Levi3

and Thomas A. Davis1*

1Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services
University, Bethesda, MD, United States, 2Henry M. Jackson Foundation for the Advancement of
Military Medicine, Inc., Bethesda, MD, United States, 3Center for Organogenesis Research and
Trauma, University of Texas Southwestern, Dallas, TX, United States
Introduction: Heterotopic ossification (HO) is a complex pathology often

observed in combat injured casualties who have sustained severe, high energy

polytraumatic extremity injuries. Once HO has developed, prophylactic therapies

are limited outside of surgical excision. Tourniquet-induced ischemia injury (IR)

exacerbates trauma-mediated musculoskeletal tissue injury, inflammation,

osteogenic progenitor cell development and HO formation. Others have

shown that focal adhesion kinase-2 (FAK2) plays a key role in regulating early

inflammatory signaling events. Therefore, we hypothesized that targeting FAK2

prophylactically would mitigate extremity trauma induced IR inflammation and

HO formation.

Methods: We tested whether the continuous infusion of a FAK2 inhibitor

(Defactinib, PF-573228; 6.94 µg/kg/min for 14 days) can mitigate ectopic bone

formation (HO) using an established blast-related extremity injury model

involving femoral fracture, quadriceps crush injury, three hours of tourniquet-

induced limb ischemia, and hindlimb amputation through the fracture site. Tissue

inflammation, infiltrating cells, osteogenic progenitor cell content were assessed

at POD-7. Micro-computed tomography imaging was used to quantify mature

HO at POD-56.

Results: In comparison to vehicle control-treated rats, FAK2 administration resulted

in no marked wound healing complications or weight loss. FAK2 treatment

decreased HO by 43%. At POD-7, marked reductions in tissue proinflammatory

gene expression and assayable osteogenic progenitor cells weremeasured, albeit no

significant changes in expression patterns of angiogenic, chondrogenic and
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osteogenic genes. At the same timepoint, injured tissue from FAK-treated rats had

fewer infiltrating cells. Additionally, gene expression analyses of tissue infiltrating cells

resulted in a more measurable shift from an M1 inflammatory to an M2 anti-

inflammatory macrophage phenotype in the FAK2 inhibitor-treated group.

Discussion: Our findings suggest that FAK2 inhibition may be a novel strategy to

dampen trauma-induced inflammation and attenuate HO in patients at high risk

as a consequence of severe musculoskeletal polytrauma.
KEYWORDS

heterotopic ossification, FAK2 inhibition, musculoskeletal trauma, tourniquet induced
ischemia, amputation, inflammation, M1-M2 macrophage transition
Introduction

High energy blast-related trauma from improvised explosive

devices is the leading cause of complicated multiple organ system

injuries and death for servicemembers on the battlefield in recent

military conflicts (1). Combat casualties with severe extremity

wounds sustained in conflict (and once considered lethal) now

survive due to advances in modern personal protective equipment

technologies, far-forward positioning of critical care surgical teams,

decreased medical evacuation times, and cutting-edge

reconstructive surgery (2). While being fortunate to survive, these

patients frequently experience complications in the convalescent

period. A result of acute multi-mechanistic systemic responses to

blast injury not commonly experienced in the civilian community, a

delayed musculoskeletal pathologic condition that occurs with great

frequency following wartime injuries is the formation of ectopic

bone within soft-tissue, referred to as heterotopic ossification (HO)

(3). Heterotopic ossification imposes morbidity resulting from

impaired function and deceased use of affected limb secondary to

joint contractures, tissue replacement and chronic pain (4).

Increasing evidence suggests hyperinflammation and immune

dysregulation play a critical role in the onset and progression of the

pathophysiology of complications induced by blast trauma (5).

Nevertheless, the basis for this connection is not fully understood.

The relationship between the immune system and trauma-induced

HO formation is complex (6–11). However, an excessive

proinflammatory response and hypoxia-mediated oxidative stress

(iNOS, ROS) are considered to be the main mechanisms (10, 12,

13). Cytokine inflammatory pathways, mediated by activated

monocytes-macrophages, are likely critical components of the

microenvironmental cytokine milieu and play key roles in

mediating HO formation following musculoskeletal trauma.

Macrophage polarity plays a crucial role in the early innate

immune response to trauma. During this process, accumulated

macrophages transition from a polarized proinflammatory (M1)

phenotype to an alternatively activated anti-inflammatory state

(M2), a key in vivo cellular mechanism involved in mitigating

inflammation, and promoting tissue repair and wound healing (14,

15)Pathogen-associated molecular patterns (PAMPs), damage-
02
associated molecular patterns (DAMPs), and Th1 cell cytokines

(IL-6, TNFa) activate resident macrophages to extend and augment

inflammation, while Th2 cell cytokines (IL-4 and IL-13) polarize

monocytes/macrophages to M2 macrophages releasing anti-

inflammatory cytokines/chemokines (16, 17). M1/M2 polarization

ratios in tissues have been suggested as potential prognostic factors

to predict clinical outcome (18, 19).

The integrin-associated cytoplasmic protein tyrosine kinase, focal

adhesion kinase-2 (FAK2), has been shown to be a key player of early

signaling that orchestrates the initial development of focal adhesions.

FAK2 has been shown to play important roles in the adherence of cells

to the extracellular matrix (ECM) and cellular processes such cell

adhesion, migration, proliferation, cytoskeletal organization,

differentiation, and survival (20–23). FAK activity is regulated

through extracellular integrin-ECM interactions and transmembrane

receptors (G-protein-coupled, cytokine and growth factor receptors)

at the plasma membrane), leading to downstream activation of

phosphatidylinositol 3-kinase (PI3K) and AKT1, MAPK1/ERK2,

MAPK3/ERK1 and MAP kinase signaling cascades (24). Together,

these complex FAK-propagating signaling complexes are known to act

as mechanosensors, responding to extracellular spatiotemporal

environmental molecular and mechanical cues (25–28). Previously,

focal adhesion kinase (FAK) and downstream YAP/TAZ have been

identified as a link between mechanotransduction, hypoxic stress,

inflammation, normal stem cell fate, and wound healing (29–32). A

growing body of evidence suggest FAK overexpression is correlated

with chronic inflammation which often leads to serious secondary

complications and poor healing outcomes. The main immune cell

implicated in in these FAK activation-mediated pathologies are

macrophages. Chronic FAK-mediated proinflammatory molecule

expression is promoted in endothelial cells by IL-1b and TNFa
stimulation (29, 33, 34). Recent studies report that FAK signaling

mediates LPS-induced inflammatory lung injury through increased

transforming growth factor-b-activated kinase-1 (TAK1) and NFkB
pathway activity (35) in macrophages. Moreover, FAK activation

promotes lung fibrosis and myofibroblast formation following

bleomycin lung injury (34). Others have reported that FAK

signaling plays a critical role involved in the proliferation, migration,

and proinflammatory activation of macrophages leading to chronic
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cardiac tissue inflammation in Chagas disease, diabetic

cardiomyopathy, and other vascular diseases (36–38). Additionally,

accumulating evidence demonstrates FAK signaling is overexpressed

and activated in many tumor cells where it is critically involved with

many diverse cell types (immune, stromal and tumor) and cellular/

humoral processes (cytokines, chemokines, growth factors, ECM)

within the tumor microenvironment that promote cell survival,

proliferation, and metastasis resulting in poor prognosis (39, 40).

Increased FAK expression has been reported to increase

angiogenesis and vascular permeability (41), two coupled processes

essential for both normal and ectopic endochondral bone growth-

osteogenesis (42–49). Intracellular FAK2 signaling regulates critical

genes involved in the migration, proliferation, differentiation,

survival, and osteogenesis of multipotent mesenchymal stromal

cells (MSCs) and osteoblasts (23, 25, 46–48, 50, 51). Moreover, our

initial studies have shown that FAK deletion in cells responsible for

HOmitigates traumatic HO formation (52). Given that the resolution

of inflammation is essential for proper wound healing along with

bone and tissue regeneration, we hypothesized that the prophylactic

inhibition of FAK2 with a pharmacologic inhibitor may attenuate

inflammation in addition to ectopic bone formation in a rat poly-

systemic trauma model (9, 10).
Materials and methods

Animals

Adult male (11-12-week old; 350 - 450 g) pathogen free Sprague

Dawley rats (Rattus norvegicus) were obtained from Taconic

Biosciences (Germantown, New York, USA). Animals were housed
Frontiers in Immunology 03
for a minimum of 7 days for acclimatization and quarantine

purposes. All rats were pair-housed in individually ventilated cages

and exposed to a 12-hour light/dark cycle, with free access to food

(standard rodent chow) and water, under veterinary care and

supervision. All experiments and animal care procedures for this

research were approved by the Uniformed Services University

Institutional Animal and Care and Use Committees (IACUC;

Protocol # SUR-21-069). All activities were conducted in

accordance with all applicable regulations, best practices pertaining

to the use of animals in research, and the ARRIVE guidelines (53).
Trauma-induced blast-related extremity
injury and FAK2 inhibitor administration

Rats (n=20) were subjected to the well-established blast-

associated complex lower limb injury model, as previously

described (Figure 1) (9, 54, 55). In brief, rats received sequentially

a head-on whole-body blast overpressure exposure (120 kPa), a

femoral fracture, soft tissue crush injury of the quadriceps, three

hours of prolonged limb ischemia, and hindlimb amputation

through the zone of injury (ZOI). A small incision and a

subcutaneous pocket were formed, by blunt dissection, between

the scapulae for implantation of an Alzet osmotic mini-pump

(model 2ML1, DURECT Corporation, Cupertino, California,

USA) for 7 days of continuous subcutaneous infusion of either

vehicle control (n =10) or FAK2 inhibitor (Defactinib; PF-573228;

10 mg/kg/day (6.94 µg/kg/min; n =10)). The skin incision was

closed with 5-0 nylon sutures. Pumps were surgically exchanged

under isoflurane sedation at post-operative day (POD)-7 for a total

of 14 continuous days of subcutaneous infusion. In some of these
FIGURE 1

Illustration of the research study design and experimental approach. Adult male Sprague Dawley rats (350-450 g) underwent a sequential polysystem
injury involving whole-body blast overpressure (120 kPa), a complex orthopaedic injury involving a mid-shaft femur fracture and medial quadriceps
crush injury, followed by 180 min of tourniquet induced ischemia, and immediate hindlimb amputation. During the same anesthetic event,
subcutaneous Alzet osmotic drug delivery pumps were implanted in the dorsum behind the scapulae containing either vehicle solution (1:1 DMSO to
PEG300) or Defactinib (PF573228; mean pumping rate: 10 mg/kg/day; 6.94 µg/kg/min for 14 days). Cohorts of rats (n=5 per group for each
timepoint) were euthanized on post-operative day (POD) 7 to assess inflammatory and early endochondral ossification signaling, or on POD-56 for
morphometric analyses of ectopic bone formation. Schematic created with biorender.com web interface.
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studies, a separate cohort of rats (n=6) were used to measure the

concentration of PF-573228 in the serum using a liquid

chromatography/tandem mass spectrometric (LC-MS/MS) system

(Agilent 1200 series, Agilent Technologies, Inc., Santa Clara,

California, USA). Prior to pump implantation, PF-573228 was

dissolved in 50% dimethyl sulfoxide (DMSO) and 50%

polyethylene glycol 300 (PEG 300) (56). Per manufacturer

instructions, loaded pumps were placed in 0.9% NaCl at 37°C

overnight to equilibrate before implantation. Animal health status

was observed daily using IACUC approved pain score chart and

body weights were recorded twice per week. Animals were

euthanized on either POD-7 (n=10) or POD-56 (n=10) for

follow-on morphometric or molecular analyses. Serum and

muscle tissue obtained from age matched naive rats (n=5) served

as the uninjured, healthy control.
mCT imaging and quantification

Formalin fixed limbs collected at POD-56 were shipped to

collaborators at the Center for Organogenesis Research and

Trauma. Limbs were radiographically imaged using a MedisoUSA

nanoScan PET/CT system (Arlington, Virginia, USA). The scanning

parameters were max zoomwith 720 helical projections with an x-ray

power of 70 kV at 980 mA and an exposure time of 300 ms. Digitized

images were reconstructed using the manufacturer’s program,

Nucline nanoScan, with a resulting voxel size of 40 × 40 × 40 mm.

Reconstructions of rat hindlimbs were created and quantified using

Dragonfly ORS (Montreal, Quebec, Canada) software on

representative means at 800 Hounsfield units. Semi-quantification

analyses of ectopic bone formation were performed at the amputation

injury site of the rat hindlimb by a blinded, skilled operator.
Quantification of tissue infiltrating cells
and osteogenic connective tissue
progenitor cells

Following established protocols (45, 57, 58), skeletal muscle

tissue located within the medial ZOI was aseptically collected and

placed in sterile D-PBS with 100 U/mL penicillin (Invitrogen,

Gaithersburg, MD). In brief, we removed fascia and fat from the

tissue, minced it finely, and digested it in a solution of DMEM F-12

(Gibco, Billings, Montana, USA), Collagenase Types I and II, and

Neutral Protease (Worthington, Lakewood, New Jersey, USA), for

two hours. Cell suspensions were passed through a series of cell

strainers (100, 70, 40 µm) to remove debris. Next, residual red blood

cells were removed using ACK lysis buffer (Sigma-Aldrich, St.

Louis, MO), washed with D-PBS, and centrifuged. Cell pellets

were resuspended in osteogenic medium consisting of DMEM-

F12, supplemented with 10% FBS, 100 nM of dexamethasone, 200

mM of ascorbic acid, 10 mM of glycerol 2-phosphate, and 100 U/mL

penicillin (MilliporeSigma, Burlington, Massachusetts, USA). Cell

yields and viability were determined using trypan blue dye

exclusion. Cells (1-4 x 104 per well; 6-well culture plate) were

then plated in osteogenic medium for 10 days, with medium
Frontiers in Immunology 04
changes every 2 days. Culture wells were gently washed twice

with D-PBS to remove non-adherent cells, air dried, fixed using

100% methanol and then stained with crystal violet. Entire plates

were imaged using a fully-motorized Leica DMI6000B microscope

(Leica, Wetzlar, Germany). Adjacent brightfield images from each

well were stitched together using LAS X software (Leica, Wetzlar,

Germany). Distinct CTP-Os (aggregates of > 50 cells) were

manually counted as previously described (45, 59).
Quantitative reverse transcription PCR
gene analysis

Skeletal muscle (100 mg) and remaining infiltrating cells (1-

4×106) isolated within the ZOI surrounding the amputation site

collected on POD-7 were flash frozen using liquid nitrogen, and

stored at -80°C prior to RNA extraction. As previously optimized, a

two-step RT-qPCR protocol was utilized to isolate RNA and

transcribe cDNA (9, 55, 60) using the RNeasy Mini kit (Qiagen,

Germantown, Maryland, USA) and the iScript Advanced cDNA

synthesis kits (Bio-Rad, Hercules, California, USA). qPCR products

were amplified using the SsoAdvanced ™ Universal SYBR Green

Supermix, (Bio-Rad, Hercules, California, USA) according to the

manufacturer’s instruction. The amplification was performed in 384-

well plates using a QuantStudio real-time PCR system (QuantStudio

7 Pro, Applied Biosystems, Waltham, Massachusetts, USA). The data

were acquired through ThermoFisher Connect software; the obtained

mean Ct values were exported for statistical analysis. Muscle tissue

collected from the medial quadriceps surrounding the ZOI was

profiled for 120 gene targets consisting of chondrogenic,

angiogenic, osteogenic, inflammatory, immune cell signaling, and

early transcriptional activators for the assessment of early HO in

injured muscle (Supplementary Table 1). Infiltrating cells harvested

frommuscle tissue were profiled for a panel of 40 gene for cell surface

markers expressed on immune cells (Supplementary Table 2). Each

gene array contained optimal housekeeping genes and assay controls

(Bio-Rad, Hercules, California, USA).
Serum IL-6 and IL-13 measurements

The systemic concentration of Th1 interleukin-6 (IL-6), and

Th2 interleukin-13 (IL-13) in serum specimens collected from

POD-7 animals were analyzed using commercial protein arrays

(Meso Scale Diagnostics, Rockville, Maryland, USA) according to

the manufacturer’s instructions. Data acquisition was performed

using a Meso Sector S600 (Meso Scale Diagnostics, Rockville,

Maryland, USA) and quantitative results were generated using

Methodical Mind software (version MMPR 1.0.27; Meso Scale

Diagnostics, Rockville, Maryland, USA).
Data analysis and statistics

All data was curated using GraphPad Prism (version 9.5.1, San

Diego, California, USA). Data analysis was performed using either
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SPSS (version 28.0.1.0 (142); SPSS Inc., Chicago, Illinois, USA) or

Graph Pad Prism. Outliers, as necessary, were removed using the

Rout method (Q=1%). Data are presented as mean ± SEM.

Statistically significant comparisons were denoted as follows: * for

p<0.05, ** for p<0.01, *** for p<0.001, or **** for p<0.0001, with

brackets identifying the source of significance.

Micro-CT
A two-tailed unpaired t-test with a 95% confidence level was

conducted using GraphPad Prism to compute the differences in

total ectopic bone volume at the ZOI of the injured limb between

the vehicle and PF-573228-treated animals.

Connective tissue progenitor assay
Each assessment, including the number of isolated cells,

frequency of CTP-Os, and number of CTP-Os per gram of muscle,

was evaluated with GraphPad Prism using a two-tailed unpaired t-

test with a 95% confidence level. The t-test was conducted to

determine statistical differences between cells or colonies derived

from muscle tissue surrounding the ZOI in either vehicle or PF-

573228-treated animals. Treatment effect size was calculated using

Glass’s delta (GD) formula when variances between groups were

significantly different (61–63). Ranking of effect size: small effect = 0.2

medium effect = 0.5, large effect > 0.8. A GD lower cutoff threshold of

0.75 was chosen to indicate significant effect size.

Gene expression
Relative expression (2-DCt) was calculated for naïve and injured

samples using the optimal normalization strategy (55). A cycle

threshold (Ct) level tagged as “undetermined” by the Cloud Connect

software (Thermo Fisher Scientific) for any particular gene was

considered not expressed. However, to explore changes in genes not

expressed in naïve conditions but expressed following injury or vice

versa, a Ct value of 40 was imputed for calculation purposes (64). All
Frontiers in Immunology 05
statistical analyses were conducted on DCt values. To assess for

significant differences in relative gene expression between muscle

tissue samples obtained from naïve or injured (vehicle- and PF-

573228-treated) animals, we compared the DCt values using a one-

way ANOVA on SPSS software (version 28.0.1.0 (142); SPSS Inc.,

Chicago, IL, USA), witha=0.05. A Tukey-Kramer post-hoc analysis test

was utilized to determine the source of the significance.

Serum cytokine and clinical
chemistry measurements

A one-way ANOVA with Welch statistic, on GraphPad Prism,

was used to assess significant differences between serum levels of

individual analytes collected from naïve controls or injured animals

on post-operative day 7. Dunnett’s T3 multiple comparisons test

was used to determine the source of significance with a=0.05.
Results

FAK2 inhibitor attenuates ectopic
bone formation

A continuous subcutaneous infusion of the FAK2 inhibitor

Defactinib (PF-573228) at 10 mg/kg/day (6.94 µg/kg/min) resulted

in a marked reduction (43%) in the amount of new bone formation

at 8-weeks post trauma (Figure 2) when compared to the vehicle

control group (22.03 ± 16.95 mm3 vs 38.88 ± 7.85 mm3 ectopic

bone; p=0.0785). The independent samples t-test analysis revealed

no significant difference in HO volume between vehicle-treated (M

= 38.88, SD = 16.95, CI = 29.13-48.63) and FAK2-treated (M =

22.03, SD = 7.85, 95% CI 0.9-43.08)), t = 2.017, p = 0.0785. The

effect size, as measured by GD = 1.05, indicating a large effect.

Reconstructions from µCT analysis showed a clear development

of new bone tissue proximal to the amputation site and within the
BA

FIGURE 2

FAK2 inhibition mitigates trauma-induced heterotopic ossification (HO) formation. Micro-computed tomography scans were performed on vehicle- and
PF573228-treated rats following sequential polysystem injury at week 8. (A) Total new bone was determined using Dragonfly software to identify the
difference between new bone (green) and naïve bone (grey). (B) Quantitative measure of ectopic bone volume. Unpaired t-test analyses revealed a trend
(p=0.0785) towards a reduced formation of ectopic bone at the amputation site in the PF573228-treated injured rats (n=5; 10 mg/kg/day; 6.94 µg/kg/
min for 14 days) compared to the vehicle-treated injured rats (n=5). Data presented as mean values ± SEM. # indicates a large effect size (GD = 1.05).
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surrounding soft-tissue. Histological evaluation confirmed the

findings from the radiographic analysis (data not shown). LC-MS/

MS determinations measurements showed a continuous intravenous

dose of PF-573228 at 10 mg/kg/day (6.94 µg/kg/min) resulted in a

serum concentration of 0.25 ± 0.17 ug/mL on day-3 (n=3). To

investigate the effectiveness of short-term FAK2 inhibitor treatment

without major adverse consequences, we monitored health status and

body weight during the first 4 weeks of treatment. Compared to the

vehicle-treated group, the PF-573228-treated group had slightly

decreased weight gain, but there were no apparent differences in

pain scores. Similar serum clinical chemistry measurements were

detected between the two groups (Supplementary Figure 1) on POD-

7. However, a significantly marked decrease of AST (p=0.028) was

detected in the PF-573228-treated group compared to the vehicle.

Compared to historical findings using this trauma model, no

evidence of surgical site infections and/or adverse gross wound

healing complications-wound breakdown resulting in delayed

wound healing were noted in either group.
FAK2 inhibition suppresses trauma-
mediated inflammatory, chondro-angio-
osteogenic signaling that promotes
osteogenic progenitor cells growth and
HO formation in traumatized muscle

Inflammation is a major driver of heterotopic endochondral

ossification process following tissue trauma. We therefore
Frontiers in Immunology 06
hypothesized, FAK2 inhibition may be a useful therapeutic to

dampen the local early immune response induced by acute

musculoskeletal trauma. To this end we investigated, at the peak of

the tissue inflammatory response (POD-7), the level of inflammatory

cell infiltration, presence of assayable connective tissue osteogenic

progenitor cells (CTP-Os), and expression of levels of inflammatory,

chondrogenic, angiogenic and osteogenic genes within muscle tissue

obtained from the site of injury. The frequency and total number of

isolated nucleated cells per gram of injured muscle tissue (Figures 3A,

B) in the PF-573228-treated group (8.27×106 ± 2.76×106, n=5) was

modestly reduced (p = 0.614) in comparison to the vehicle control

group (11.21×106 ± 4.7×106; n =4). FAK2 inhibition treatment

reduced the number assayable CTP-O colony forming progenitor

cells (Figure 3C) by 86% when compared to vehicle control treatment

The independent samples t-test analysis revealed a significant

difference in number of tissue resident CTP-Os per gram of tissue

between vehicle-treated (M = 1194, SD = 985, 95% CI = 636-4867)

and FAK2-treated (M = 166, SD = 238, 95% CI = 24-850)), t = 2.290,

p = .05). The effect size GD = 1.04, indicating a large effect.

To further characterize the impact of FAK2 inhibition in our HO

trauma model, we assessed transcript expression level of genes that

regulate the early development of endochondral bone formation. As

shown in Figures 4A-C, blast/extremity injury resulted in significant

increases in expression levels of cell surface markers specific for

immune cells (Cd4, Cd14, Faslg, Foxp3, Slc11a1, and Trem1),

inflammatory signaling molecules and cytokines (Il1b, Il1r1, Il6,

and Lcn2), and several chemokines (Cxcl5, Cxcl10, Cxcl2, and

Ccl12). This significant reduction in inflammatory transcripts
B CA

FIGURE 3

FAK2 inhibition attenuates injured muscle tissue cellular infiltration and osteogenic connective tissue progenitor colony-forming cell activity (CTP-
O). Following blast-related polytraumatic extremity injury and 6 days of vehicle or FAK2 inhibitor treatment (PF573228, 10 mg/kg/day, 6.94 µg/kg/
min), muscle tissue surrounding the amputation site was harvested on POD-7. Viable nucleated cells were isolated using collagenase digestion,
counted and plated in osteogenic culture media. (A) Number of nucleated cells isolated per gram of muscle. (B) Number of assayable CTP-Os per 1
x 106 plated cells. (C) Quantification of number of CTP-Os per gram of tissue by crystal violet staining after 10 days of in vitro culture in osteogenic
media. Visible macroscopic colonies containing > 50 cells were enumerated. Data represents mean values ± SEM. * indicates p <0.05.
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following PF573228 treatment corresponds with the measured

reduction in the number of muscle infiltrating cells isolated at

POD-7. Additionally, we found that FAK2 inhibition had a modest

suppressive effect on a number of osteogenic genes (Atf3, Jun, Socs3,

and Traf6) while upregulating the expression of a few chondrogenic
Frontiers in Immunology 07
genes including Acan, Comp, and Sox9 (Supplementary Figures 2A,

B). Overall, short-term FAK2 inhibition had no impact on the

expression of a number of angiogenic, toll-like receptors, adhesion/

matrix proteins, or apoptotic-related gene transcripts (Supplementary

Figures 2C-H).
B

C

A

FIGURE 4

Levels of inflammatory mediators in muscle tissue collected from the amputation site at POD-7 from rats treated with FAK2 inhibitor (PF573228;10
mg/kg/day; 10 mg/kg/day, 6.94 µg/kg/min)), vehicle control, or healthy muscle in age-matched controls. Panel (A) cell surface markers specific to
immune cells; Panel (B) inflammatory signaling molecules and cytokines; Panel (C) chemokines. Relative expression (2-DCt) was calculated using an
optimal normalization strategy. One-way ANOVAs for each gene were conducted on DCt values to determine treatment effects. Tukey-Kramer post-
hoc analyses were utilized to determine the source of the significance. Data represents mean relative expression values ± SEM. * indicates p < 0.05,
**indicates p < 0.01 and *** indicates p < 0.001.
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Increased M2 macrophage tissue
infiltration is associated with attenuated
inflammation and HO formation

To test whether FAK2 signaling also regulates macrophage

transition in vivo, we explored the association of M1 and M2

macrophage cell composition by transcriptomic markers in

cellular infiltrates collected from injured-regenerative muscle

tissue from vehicle control-treated rats (Figure 5). Infiltrating cells

collected from FAK2 inhibitor and vehicle-treated rats on POD-7

had very similar expression levels of pan-macrophage markers

(Csf1r, Cd1, Cd47, CD68, Itgam, Itgax). Cells from vehicle

control-treated rats had relatively higher expression levels of

proinflammatory M1 molecular signature markers (Nos2, Mpo,

Cxcl2, Cxcl5, Csf2, Csf3, Il1a, Clec7a, Cd80, Cd64) of traditional-

classic activated macrophage phenotype. However, muscle

infiltrating cells obtained from FAK2 inhibitor-treated rats

showed relatively similar or higher expression levels of anti-

inflammatory M2 markers (Arg1, CD163, Mrc1, Ccl2, Tgfb1)

consistent with alternatively activated macrophage functional

phenotype. The gene expression levels of three activation markers

(Cd40, Elane, Il10) in both cell populations was similar and have

been depicted as transitional repolarization M1-M2 signatures.

Taken together, these results based on mRNA expression analysis,

indicate that infiltrating cells differentiate and polarize more

towards an M2 phenotype, with decreased M1 and increased M2

macrophage phenotype cytokine expression, in response to FAK2

inhibition. Notably, serum IL-6 and IL-13 levels (Figure 6), which

are involved with M1 programming (IL-6) and M2 polarization (IL-

13), were decreased and increased, respectively, in the FAK2

inhibitor treatment group when compared to levels in the vehicle

control group.
Discussion

Combat-related wounds are normally associated with a

persistent local and systemic inflammatory response that often

result in delayed wound closure and healing (65, 66). Previous

research has indicated that prolonged, elevated inflammation at the

site of musculoskeletal trauma is one of the key contributors to

impaired wound healing and development of heterotopic

ossification (HO) (7, 8, 44, 45, 57, 59, 67–70). As an important

regulator of cytokine and integrin-mediated signaling, FAK2 is

involved in various cellular processes including cell adhesion,

motility, proliferation, osteogenesis and bone homeostasis,

through its kinase activity and scaffolding functions under steady

and pathologic states (22, 23, 71–74). Tourniquet-induced

ischemia-related injury (IR) exacerbates trauma-mediated

musculoskeletal tissue injury, inflammation, osteogenic progenitor

cell development and HO formation. Others have shown that FAK2

plays a key role in regulating early inflammatory signaling events.

Therefore, we hypothesized that targeting FAK2 prophylactically

may mitigate extremity trauma induced inflammation and HO

formation using a validated extremity trauma model.
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In this study, we found that early administration of PF-573228,

an ATP analog that acts to inhibit FAK kinase activity, following

polysystem extremity trauma involving blast blunted inflammation,

osteogenic gene signaling, and the recruitment and growth of

osteogenic progenitor cells at the site of injury resulting in

reduced HO formation. We also provide gene signature evidence

that macrophages with the M1 phenotype accumulate in the in the

injured skeletal muscle. In vivo FAK2 signaling inhibition, promotes

the differentiation and polarization switch of infiltrating

macrophages into a M2 phenotype program, possibly

contributing to earlier inflammation resolution, tissue repair, and

wound healing (75). These results emphasize the interaction FAK2

signaling plays in regulating distinct cellular and molecular

mechanisms post-traumatic injury. Therefore, inhibiting FAK2

signaling in vivo systemically or with topical application of

pharmacological inhibitors might offer a new target attractive

strategy for limiting inflammation and inhibiting HO.

Earlier studies demonstrate FAK adhesion-dependent signaling

is critical for new bone formation, as it promotes osteoblast

progenitor proliferation, differentiation, and mechanotransduction

through enhancement of Akt, mTOR and WNT signaling (22, 23,

74, 76, 77). MSCs engineered to over-express FAK exhibit a marked

increase in their osteogenic potential in vitro. FAK promotes the

expression of osteoblast phenotypic markers as well as in vitro

osteogenesis in human mesenchymal stromal cells (hMSCs).

Interestingly, Kim et al. (73) showed in transgenic FAK−/− mice,

osteogenic progenitors were able to migrate to the site of skeletal

trauma, however a significant delay in osteoblast differentiation and

matrix formation was measured. Further, Qi et al. (23) report that

FAK-deficient osteoprogenitor cells have lessened proliferation and

significantly reduced mammalian/mechanistic target of rapamycin

complex 1 (mTORC1) signaling. Moreover, we previously

demonstrated the robust efficacy of rapamycin in inhibiting blast

trauma-induced HO (45). In this study, we show that inhibition of

FAK2 during skeletal muscle regeneration results in reduced

inflammation (IL-6), inflammatory cell accumulation, and

expression of Runx2 and Osterix which are considered master

transcription factors in regulating osteogenic differentiation of

MSCs and regulation of bone matrix genes (72, 78). Mitogen-

activated protein kinase (MAPK) and/or extracellular signal-

regulated kinase (ERK) pathway activation of Runx2 triggers a

cascade of the downstream osteoblast-related genes to promote the

differentiation of osteoblasts for bone matrix synthesis and

mineralization (79). Taken together, our findings are consistent

with studies that report the loss or inhibition of FAK2 impairs

osteoprogenitor cell differentiation (46, 73). More specifically,

revealing that attenuated inflammation mediated FAK2 signaling

may suppress the activation, proliferation, and/or in vivo migration

of endogenous MSCs and osteogenic progenitor cells resulting in

reduced ectopic bone formation following trauma. With regard to

the muscle gene expression, blast/extremity injury resulted in

significant increases in expression levels of cell surface markers

specific for immune cells and inflammatory signaling molecules

(interleukins, chemokines) as compared to naive muscle. In

contrast, in the FAK2-treated muscle, there was a modest
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suppressive effect (reduction) in transcript levels of the same

markers; even though these levels were elevated above naive levels

these elevations were non- significant. The loss of significant

elevations in gene expression of inflammatory mediators and cell

surface markers is an important finding.
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Macrophages play key roles in the inflammation, proliferation,

and remodeling phases of wound healing. Throughout the wound

healing process, converging inflammatory stimuli in the cellular

microenvironment have been shown to facilitate the transition of

local macrophages from a pro-inflammatory (M1-like phenotype)
FIGURE 5

Level of pan-macrophage, classic proinflammatory M1 and alternative activated anti-inflammatory M2 gene markers expressed in cellular infiltrates
collected from injured muscle tissue at POD-7 from rats treated with the FAK2 inhibitor (PF-573228,10 mg/kg/day, 6.94 µg/kg/min), vehicle control
and in healthy muscle from age-matched controls. Relative expression (2-DCt) was calculated using an optimal normalization strategy. One-way
ANOVAs for each gene were conducted on DCt values to determine treatment effects. Tukey-Kramer post-hoc analyses were utilized to determine
the source of the significance. Data represents mean relative expression values ± SEM. * indicates p < 0.05, **indicates p < 0.01 ands *** indicates
p < 0.001.
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to anti-inflammatory (M2-like phenotype) state (14, 15). Robust

inflammatory cell infiltration, macrophage activation as well as

inflammatory and osteogenic cytokine/chemokine release

contribute the microenvironmental niche that contributes to HO

formation (80). Macrophages present in virtually all tissues are

functionally regulated by their surrounding micro-environment

stimuli (81).

Recently, evidence has indicated that the proinflammatory (M1)

macrophage contributes to the hypoxia microenvironment and an

excessive inflammatory, angio-chondro-osteogenic cytokine milieu

which drives the differentiation of multipotent progenitors (MPPs)

found in injured skeletal muscle into bone (80, 82). On POD-7, we

detected elevated levels of pro-inflammatory cytokines along with

cellular dysregulation consistent with increased reactive oxygen

spec ies (ROS) leve l s . Our findings demonstra te the

proinflammatory M1 macrophage is the prominent inflammatory

cell in traumatized muscle at the point when early angio-chondro-

osteogenic signaling and progenitor cell activity is being established.

In comparison, FAK2 inhibitor treatment (PF-573228) resulted in

reduced cellular infiltration. Comparative gene expression studies

and osteogenic progenitor cell assays of collected infiltrating cell

populations, revealed infiltrating cells collected after FAK2

inhibition expressed less proinflammatory and angio-chondro-

osteogenic genes with lesser prevalence of osteogenic colony-

cells, respectively.

The signaling events underlying the crosstalk between M1-M2

macrophage phenotypic states, other immune cells, and MPPs

within the osteogenic niche in the absence of FAK2 inhibition or

before and after systemic macrophage depletion are unclear. M2
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macrophages express IL-10, arginase I, and chemokines (TGFb, IL-
13), which play crucial roles in the resolution of inflammation,

wound healing, and tissue remodeling (14, 15). M2, but not M1,

macrophages have been reported to have anti-calcifying activity in

vascular smooth muscle cell (VSMC) calcification (83),whereas

others have reported in models of healing and sepsis the

importance of wound macrophage transition from the

predominantly pro-inflammatory phenotype present early post-

injury to the anti-inflammatory phenotype to accelerate wound

healing (84). On the other hand, Abshire et al. (85) report that loss

of FAK expression results in reduced polarization, chemotaxis to

CSF-1 (G-CSF) and recruitment to sites of inflammation (85).

Likewise, Owen and colleagues (86) show bone marrow-derived

macrophages from FAK−/− mice exhibit reduced chemotaxis

toward CSF-1. A wide array of cell types produce CSF-1, a

cytokine/growth factor, which possesses both autocrine and

paracrine roles. It promotes the migration, proliferation,

functionality, and survival of macrophages, while fostering M2

macrophage polarization (87). Our results bring new indications

for the role of macrophages and their activation status in the

initiation and development of HO. Future studies evaluating

impact of FAK2 silence using knockout rats in this model may

provide additional important information and strengthen

our hypotheses.

Previous studies assessing wound healing and various

pathologies demonstrated the mechanisms regulating macrophage

polarization are diverse and complex. The mechanisms also involve

the concurrent regulation of various cytokines, chemokines, and

signaling pathways, to include PI3K/Akt, TLR4/NF-kB, mTOR,
FIGURE 6

The effect of FAK2 inhibitor (PF-573228; 10 mg/kg/day, 6.94 µg/kg/min) on systemic proinflammatory IL-6 and anti-inflammatory IL-13 secretion
levels at POD-7. Results from non-injured naïve rats, vehicle control-treated rats, and FAK2 inhibitor-treated rats are expressed as mean
value ± SEM, n = 25. * indicates p<0.05 and ** indicates p<0.01.
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JAK/STAT, TGF-b/Smads, JNK/c-My, PPARg and others (88)

Zhang et al. (89) demonstrated that the promotion of

macrophage polarization from M1 to M2 is facilitated by MCP-

induced protein 1 through the suppression of the JNK/c-Myc

signaling pathway. While our studies suggest a possible

involvement of FAK2 in macrophage polarization regulation.

Nonetheless, the function of FAK2 expression in regulating

critical transcription pathways that control macrophage function

and activity, has not yet been established in our wound healing

model of acute musculoskeletal trauma. In summary, our

transcriptomic studies have highlighted the necessity to further

characterize the full spectrum of phenotypic changes of recruited-

resident macrophage populations as these activated macrophages

most likely fall into various states of polarization between M1

and M2.

This study has a number of limitations. First, PF-573228 inhibits

FAK activity as well as the activity of other related kinases. Second,

PYK2, a close paralogue to FAK has been shown to functionally

compensate for loss of FAK (90, 91), albeit 50- to 250-fold less

selective for FAK than PYKA (92). In oncological and chronic disease

applications dual FAK/PYKA inhibition has been shown to be more

efficacious (93). Hence, future therapeutic studies targeting both

kinases are warranted. Third, while many of our results reached

statistical significance, due to the increased biological variability

encountered in a complex injury model, variance in results was

often high, affecting the ability to detect statistical significance. Larger

sample sizes for future studies should therefore be considered.

Alternatively, we extended the HO analysis to calculation of mean

effect size which was large, albeit the power of the experiment and

sample size (number of animals per group) using a two-sample

unpaired t-test was not able to detect this effect. The 95% Confidence

Intervals support our conclusions that the mean sizes are large. While

the measured differences between treatment groups may not be

statistically significant (strong enough to reject the Null

hypothesis), we suggest the strength of these results are highly

clinically relevant for clinical patient care applications. Fourth,

further work is required to characterize the impact of FAK2

inhibition in promoting the M1-M2 transition and identifying the

biological variation of endogenous and tissue infiltrating cells. A

comprehensive assessment using immunohistochemistry, single-cell

RNA sequencing and multiparameter flow cytometry may provide

additional critical insight. This approach could reveal the presence

and activation status of regulatory/reparative cell subsets, detection of

rare cell types in complex tissues, and highlight opportunities for

further treatment refinement. Fifth, we did not investigate potential

sex differences in this study; all the animals utilized were males.

Notably, acute inflammatory responses differ between male and

female rats, as well as in humans. Prior reports have shown that

males are more susceptible to traumatic injury (94, 95). However, the

utilization of only male rats in this study is justified, considering that

fewer than 3% of severely combat-injured service members in recent

conflicts were female (96). Last but not least, it is critical to transition

and expand this knowledge to large animal model investigations.

Prolonged inflammation is a known critical driver of trauma-

induced ectopic bone formation. In this study, we show continuous

administration of the FAK2 inhibitor PF-573228 for 14-days post
Frontiers in Immunology 11
injury dampened tissue inflammation, suppressed osteogenic

signaling and development, and promoted M1-M2 macrophage

polarization thought to relieve inflammation and promote

accelerated tissue repair resulting in reduced progenitor cell

activity and subsequent HO formation.
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SUPPLEMENTARY FIGURE 1

Treatment with PF-573228 results in no change in serum chemistry analytes
at POD-7. Quantification of rat serum chemistry of naïve, or blast-extremity

injury animals treated with vehicle solution or continuous infusion of
PF573228 FAK inhibitor for 7 days. Statistical significance was calculated

using a one-way ANOVA with Turkey post-hoc was used to test for
statistical significance. Data are represented as mean values ± SEM. *

indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, ****

indicates p < 0.0001).

SUPPLEMENTARY FIGURE 2

Relative expression levels of early signaling genes involved in the

development of heterotopic ossification including (A) osteogenesis (B)
chondrogenesis (C) angiogenesis (D) adhesion and integrins (E) matrix

metalloproteinases and tissue inhibitors of metalloproteinases (F) toll-like

receptors (G) transcriptional activators and cytoplasmic protein kinases and
(H) apoptosis. For this experiment, muscle tissue was collected from the

amputation site at POD-7 from rats treated with FAK2 inhibitor (PF-573228;10
mg/kg/day; 10 mg/kg/day, 6.94 µg/kg/min)), vehicle controls, or in healthy

muscle from age-matched controls. Relative expression (2-DCt) was
calculated using an optimal normalization strategy. One-way ANOVAs for

each gene were conducted on DCt values to determine treatment effects.

Tukey-Kramer post-hoc analyses were utilized to determine the source of
the significance. Data represents mean relative expression values ± SEM. *

indicates p < 0.05, **indicates p < 0.01, *** indicates p < 0.001 and ****
indicates p < 0.0001.
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