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Pneumococcal infections continue to pose a significant global health concern,

necessitating the development of effective vaccines. Despite the progress shown

by pneumococcal polysaccharide and conjugate vaccines, their limited coverage

and the emergence of non-vaccine serotypes have highlighted the need for

alternative approaches. Protein-based pneumococcal vaccines, targeting

conserved surface proteins of Streptococcus pneumoniae, have emerged as a

promising strategy. In this review, we provide an overview of the advancements

made in the development of pneumococcal protein vaccines. We discuss the key

protein vaccine candidates, highlight their vaccination results in animal studies,

and explore the challenges and future directions in protein-based

pneumococcal vaccine.
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1 Introduction

Pneumococcal infections, caused by the bacterium Streptococcus pneumoniae (S.

pneumoniae), continue to be a major global health burden, particularly affecting

vulnerable populations such as young children, the elderly, and immunocompromised

individuals (1–4). Pneumococcal diseases encompass a spectrum of illnesses, including

pneumonia, meningitis, sepsis, and otitis media, resulting in substantial morbidity and

mortality worldwide (2, 4). Antibiotics have traditionally been the primary treatment for S.

pneumoniae infections; however, the rise of antibiotic-resistant strains has posed significant

challenges to effective therapy (5). Therefore, vaccines have emerged as a promising

approach to prevent pneumococcal infections (6). Currently, based on a limited number of

serotype-specific capsular polysaccharides, there are two types of pneumococcal vaccines

are available (7). The first type is the 23-valent pneumococcal polysaccharide vaccines

(PPVs) consisted with 23 different capsular polysaccharides. The second type is the

multivalent pneumococcal conjugate vaccines (PCVs), which involve polysaccharides

conjugated to a carrier protein (8, 9). These vaccines aim to elicit immune responses

that protect against pneumococcal infections caused by specific serotypes (10).
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Immunization with these vaccines targeting the polysaccharide

capsule of S. pneumoniae has resulted in significant reductions in

pneumococcal disease burden, particularly in children (10–12).

While PCVs have made remarkable strides in preventing

pneumococcal infections, they do have certain limitations (13).

Firstly, there are over 90 known pneumococcal serotypes, and PCVs

primarily target a limited number of the most common ones. This

leaves a significant proportion of pneumococcal strains

unaddressed, leading to a phenomenon known as serotype

replacement, whereby non-vaccine serotypes emerge and cause

infections (14). Furthermore, the polysaccharide antigens used in

PCVs have poor immunogenicity in very young children and

immunocompromised individuals, limiting the vaccine’s efficacy

in these populations (15).

Protein-based pneumococcal vaccines have emerged as a

promising strategy to address the limitations of polysaccharide-

based vaccines (16). Unlike polysaccharide capsules, which exhibit

significant antigenic variation among different serotypes, certain

surface proteins of S. pneumoniae are more conserved and shared

across serotypes (17). By targeting these conserved proteins,

protein-based vaccines have the capacity to offer broader

protection against a wider range of pneumococcal strains,

including those not covered by PCVs (18). The development of

pneumococcal protein vaccines has been fueled by advancements in

understanding the biology and pathogenesis of S. pneumoniae.

Identification of key virulence factors and surface proteins

involved in host-pathogen interactions has facilitated the selection

of potential vaccine candidates (19). Pneumolysin (PLY),

pneumococcal surface protein A (PspA), pneumococcal surface

protein C (PspC), pneumococcal histidine triad proteins (Pht),

pneumococcal surface antigen A (PsaA), pneumococcal iron

uptake A (PiuA) and pneumococcal iron acquisition A (PiaA) are

among the most extensively studied protein candidates, each with

unique immunogenic properties and mechanisms of immune

protection (Figure 1) (16, 20–22). In this review, we aim to

comprehensively explore the progress made in pneumococcal

protein vaccines, focusing on key protein candidates and future
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in this field, we can envision a future where protein-based

pneumococcal vaccines play a crucial role in reducing the burden

of pneumococcal diseases and protecting vulnerable populations.
2 Protein candidates for
pneumococcal vaccines

2.1 Pneumolysin, PLY

PLY is a vital cholesterol-dependent cytolysin produced by S.

pneumoniae (Table 1) (23). With 471 amino acids (53 kDa) and a

distinct tertiary structure consisting of four domains, PLY binds to

eukaryotic cell membranes’ cholesterol and creates membrane

pores, leading to cellular destruction (20). Domains 1, 2, and 3

are essential for oligomerization and pore formation, while domain

4, located in the C-terminal region, facilitates cholesterol binding

(20). PLY serves as a critical virulence factor in various stages of

pneumococcal disease, including transmission, colonization, and

infection (23). It exerts its effects through multiple mechanisms.

PLY has the capacity to activate the classical complement pathway,

trigger inflammation, induce apoptosis or necroptosis, and directly

cause cell toxicity (23, 24). Furthermore, PLY can interact with the

mannose receptor C type 1, resulting in the downregulation of

inflammation and promoting bacterial survival in the airways (35).

Significantly, PLY exhibits a high degree of conservation in its

amino acid sequence across different pneumococcal serotypes,

making it an attractive target for vaccine development (36). By

targeting PLY, vaccines can potentially elicit immune responses that

neutralize its cytolytic activity, prevent cellular damage, and limit

the spread of pneumococcal infections.

It has been well-established that immunizing mice with purified

PLY provides protection against highly virulent pneumococci

challenges (37). It has reported that murine monoclonal

antibodies targeting PLY have demonstrated a reduction in

bacterial burden in the lungs and protection against invasive
FIGURE 1

The key protein vaccine candidates of S. pneumoniae, routes of vaccination, and elicited immune responses against challenge from S. pneumoniae.
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pneumococcal disease (38). Humans naturally develop an antibody

response to PLY due to exposure to S. pneumoniae. The belief that

human antibodies to PLY may be protective is supported by

evidence showing that anti-PLY antibodies can delay

pneumococcal carriage in high-risk infants and provide

protection against pneumococcal infections in healthy individuals

(39, 40). Although initial experiments with PLY immunization

showed promise as it offered protection against multiple S.

pneumoniae serotypes, PLY still retained its hemolytic activity in

host cells (41). To address this issue, various derivatives of

detoxified PLY mutants have been developed, such as

recombinant pneumolysoid with the cytolytic functionality

removed. This derivative has displayed reactivity to IgGs targeting

critical PLY epitopes and has proven successful as an immunogen

for specific serotypes in mice and rhesus macaques (38, 42, 43).

Further, a self-biomineralized calcium phosphate (CaP)-

pneumolysoid nanoparticle vaccine induces bone marrow-derived

dendritic cells (BMDCs) and splenocytes production of cytokine,

and elicits efficient humoral and cellular immune responses to

protect mice from both pneumonia and sepsis infection (44).

Additionally, chemically detoxified PLY derivatives have been

explored, inducing an IgG response against PLY without causing

tissue damage, as observed in histopathology examinations of host

tissues. These derivatives have shown efficacy in protecting against

intranasal challenges involving three distinct serotypes (45).

Additionally, the protective effects induced by a PLY or

pneumolysoid vaccine could potentially be enhanced through the

incorporation of other antigens that elicit protection. One such

antigen is PspA, which induces high levels of antibodies against

each protein and confers protection to mice against invasive

challenges, some of which have advanced to phase II trials (21,

46). In addition, immunization mice with pneumolysoid fused with

pneumococcal SP0148 has shown to elicit high level of antibody in

the serum and effective protection against pneumococcal challenge

(47). Moreover, PLY has shown promise as a carrier protein in PCV

formulations, especially when combined with CPS. Immunization

studies in mice using pneumolysoid conjugated to type 19F CPS

have demonstrated a robust and boostable antibody response
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immunization approach resulted in a high level of protection for

infant mice when they were challenged with S. pneumoniae (48).

Similar positive outcomes have been observed for conjugates of

native PLY with type 18C CPS (49). Comparisons between

tetravalent pneumolysoid-CPS conjugate vaccines and tetanus

toxoid-CPS conjugate vaccines have revealed that pneumolysoid

performs at least as well as tetanus toxoid as a carrier protein, and in

some cases, such as with type 23F, it has shown superiority (50).

These findings highlight the potential of such antigens to elicit a

substantial immune response against CPS, as well as an immune

response against virulence proteins, thereby offering comprehensive

protection against pneumococcal disease in humans. Extensive

animal studies and ongoing clinical trials have positioned PLY as

a promising candidate for incorporation into multicomponent

protein vaccines. The diverse range of detrimental effects exerted

by PLY on the host highlights its significant potential as a valuable

vaccine target.
2.2 Pneumococcal surface protein A, PspA

PspA, one of the extensively studied choline-binding proteins,

belongs to the major class of S. pneumoniae surface proteins (Table 1)

(51, 52). It is widely expressed by all capsular serotypes of S.

pneumoniae and serves as a crucial virulence factor that influences

bacterium-host interactions by interfering with the fixation of

complement C3 (52–54). PspA consists of three major domains: an

a-helical domain at the N-terminus, a proline-rich domain in the

central portion, and a choline-binding domain at the C-terminus

(55). Its a-helical domain exhibits high variability between serotypes

and strains. The sequence diversity of PspA has led to its classification

into three families and six clades. Family 1 encompasses clades 1 and

2, family 2 comprises clades 3, 4, and 5, while family 3 includes clade

6 (55). Notably, a significant majority of pneumococcal isolates

(ranging from 94 to 99%) belong to PspA families 1 and 2 (56),

further highlighting its relevance in the global distribution of

pneumococci (57). PspA plays pivotal roles in inhibiting
TABLE 1 Localization and function of Streptococcus pneumoniae selected virulence proteins.

Protein Localization Function selected refer-
ences

PLY Cytoplasm/Cell
membrane

Activates the classical complement pathway, triggers inflammation, induces apoptosis or necroptosis, and
directly causes cell toxicity

(23, 24)

PspA Surface protein Inhibits complement component C3, reduces phagocytosis of pneumococci, binds to lactoferrin (25, 26)

PspC Surface protein Inhibits complement component C3 and factor H, binds to secretory IgA, binds to host cell laminin
receptor

(27, 28)

Pht Surface protein Inhibits complement component C3, binds zinc ion (29, 30)

PsaA Surface protein Binds to manganese and zinc ion, resists oxidative stress, reduces bacterial adhesion, (31, 32)

PiuA Surface protein Transports ferrichrome iron (33, 34)

PiaA Surface protein Transports heme iron (33, 34)
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complement component C3 deposition on the pneumococcal surface

(25), reducing phagocytosis of pneumococci (58, 59), and providing

substantial protection against bactericidal peptides of lactoferrin (26).

Given its functional significance, PspA has been explored for over

three decades as an immunogen and a potential vaccine candidate

(22, 60, 61).

Immunization with recombinant family 1 PspA has

demonstrated its immunogenicity in humans, with antibodies

generated by PspA offering passive protection to mice against a

pneumococcal challenge from serotypes 3, 6A, or 6B (62).

Subcutaneous immunization with PspA has proven effective in

protecting mice from fatal infections (63), while intranasal

immunization with PspA has shown efficacy in protection against

nasopharyngeal carriage in an adult mouse carriage model (64, 65).

Furthermore, mucosal vaccination with PspA has successfully

elicited both mucosal and systemic immune responses (66, 67).

Initially, there were concerns that a vaccine targeting PspA might

not provide adequate coverage due to its high variability (68).

However, recent research has brought attention to the proline-

rich domain of PspA, which has been found to be considerably

more conserved (60). This discovery suggests that the proline-rich

domain could be utilized to target uncommon strains beyond those

belonging to family 1 or family 2, potentially enhancing the

vaccine’s efficacy and widening its scope of protection (22, 68).

Additionally, mice immunization with fusion proteins containing

family 1 and family 2 PspA fragments could increase complement

deposition and provide protection against pneumococcal infection

with strains bearing PspA fragments from both families (69).

Furthermore, a fusion protein vaccine combined PspA containing

families 1 and 2 with other protein can potentially protect against a

wide range of S. pneumoniae strains (70). Moreover, a PspA-based

trivalent pneumococcal vaccine was formulated and the

immunogenicity and protection efficacy were evaluated in

macaques, which demonstrated the trivalent vaccine could target

all families and clades of PspA and elicited high IgG titers and

provided protection against pneumococcal intratracheal challenge

(71). PspA has completed a phase I trial (NCT01033409). Further,

PspA-based fusion protein vaccine or conjugate vaccine

formulations with CPS induce high immune responses and

protect mice against invasive challenge (21, 46, 72).

The conjugation of PspA with Vi CPS (Salmonella typhi CPS)

has shown enhanced anti-PspA responses and elicited a T-cell

dependent response to Vi (72). Additionally, immunization with

a PspA fusion protein in combination with CpG oligonucleotides

and aluminum hydroxide gel provided significant protection

against pneumococcal challenge in mice (73). Moreover,

intranasal immunization with a PspA-based vaccine, fused with a

protein anchor to display PspA on the surface of bacterium-like

particles or pneumolysin, efficiently induced both IgG in the serum

and IgA in mucosal washes, ultimately providing complete

protection against pneumococcal challenge in mice (74, 75).

Despite the challenge posed by the variability in PspA, it remains

a robust candidate with decades of research backing its potential as

a valuable vaccine component.
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2.3 Pneumococcal surface protein
C (PspC)

PspC, also known as CbpA, SpsA, or Hic, is another choline-

binding protein that was initially identified due to its homology

with PspA (Table 1) (76). Similar to PspA, PspC features an N-

terminal a-helical domain, a central proline-rich domain, and a

choline-binding domain (77). However, a significant difference

between the two proteins lies in the complexity of the a-helical
domain of PspC, which exists in several distinct alleles with different

combinations of functions (78). PspC exhibits binding capabilities

to secretory IgA, complement component C3, and complement

factor H, contributing to its potential roles in colonization,

adherence, and invasion (27, 28). Notably, PspC can inhibit C3

deposition on the bacterial surface and mediate the translocation of

pneumococci from the nasopharynx to sterile sites such as the lungs

or bloodstream (28, 76). Due to its highly immunogenic nature,

anti-PspC antibodies play a significant role in antibody immunity

against S. pneumoniae (79). Numerous studies have demonstrated

that PspC vaccines can induce robust immune responses and

provide protection against carriage or invasive challenges in mice

(80, 81).

PspC has exhibited promising potential as a vaccine candidate,

capable of providing protection as the sole immunogen against

pneumococcal infection and carriage (22, 80, 82). Nasal

immunization with PspC has been shown to prime the immune

system of mice, leading to faster immune responses and a reduction

in pneumococcal colonization (83). Subcutaneous immunization

with PspC has elicited cross-reactive antibodies with PspA,

resulting in mice being protected against pneumococcal sepsis

challenges (84). Moreover, intranasal immunization with PspC

induced high level of anti-PspC antibodies, and the anti-PspC

antiserum from intranasally immunized mice significantly

inhibited the adhesion of S. pneumoniae to A549 cells (82).

Although a study reported that immunization with PspC through

nasal or subcutaneous route did not confer protection against

specific pneumococcal challenges (85), PspC has shown to

produce additive and longer-lasting immune responses and

broaden the range of serotypes covered when combined with

other pneumococcal immunogens (46, 86). These combination

strategies aim to target multiple virulence factors of S.

pneumoniae, thereby providing a more comprehensive and

prolonged immune response against pneumococcal infections

(86). Notably, one such combination involved fusing PspC with

L460D-pneumolysoid as a fusion protein, which demonstrated

broader immunogenicity compared to PspC alone. This fusion

protein displayed protection against pneumococcal infections and

the possibility of providing additional protection against other

meningeal pathogens (87). Additionally, recent studies have

identified the NEEK motif of PspC, which has the ability to bind

to laminin receptors on the blood-brain barrier, suggesting its

potential importance in eliciting protection against fatal

pneumococcal infections, particularly in cases of meningitis

(22, 88).
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Studies investigating PspC-based vaccines in animal models

have shown promising results, highlighting their immunogenicity

and protective efficacy (22). However, the development of PspC-

based vaccines still faces certain challenges that need to be

addressed. Ongoing research is focused on optimizing vaccine

formulations, identifying the most immunogenic PspC variants,

and determining the ideal combination strategies with other

antigens. By addressing these challenges, PspC-based vaccines

hold great potential for providing effective protection against

pneumococcal infections.
2.4 Pneumococcal histidine triad
proteins, Pht

Pht proteins constitute a group of surface proteins identified in

S. pneumoniae, comprising four members: PhtA, PhtB, PhtD, and

PhtE (89). The discovery of the Pht family was based on the

presence of hydrophobic leader sequences, suggesting their

localization as cell surface proteins after transport across the

cytoplasmic membrane (Table 1) (90). These proteins contain a

distinctive polyhistidine motif, HXXHXH, which is repeated five

times (PhtA, PhtB, and PhtD) or six times (PhtE) within their

amino acid sequences (89). Ranging in size from 91.5 to 114.6 kDa,

these four proteins exhibit a close relationship at the amino acid

sequence level, with identities ranging from 32% to 87%. The N-

terminal regions demonstrate the highest similarity among the four

proteins, exhibiting 87% identity (89, 90). Pht proteins play a crucial

role in the pathogenesis of S. pneumoniae infections and are

considered multifunctional virulence factors (91). Although their

precise functions are not fully understood, they are known to be

involved in metal-ion binding, particularly zinc, which is vital for

bacterial survival and growth (29). Additionally, Pht has been

shown to interact with various host proteins, modulating the host

immune response. For instance, Pht has been reported to inhibit the

deposition of complement component C3 on the pneumococcal

surface through the recruitment of factor H (30). Given their

immunogenic properties, Pht has garnered interest as a potential

vaccine candidate for non-serotype-dependent prevention of

pneumococcal infections.

There is a high degree of protein sequence conservation among

various Pht proteins across different serotypes of S. pneumoniae

(92). Numerous studies have demonstrated the immunogenicity

and protective efficacy of all Pht proteins in multiple mouse models

of invasive disease, sepsis, and nasopharyngeal colonization when

challenged with diverse S. pneumoniae strains (93–95).

Immunizations with different portions of PhtA, including the N-

terminal or C-terminal regions, as well as full-length PhtA,

generated high levels of antibody titers (90). Full-length PhtA

induced antibodies that protected mice against sepsis challenge

with serotype 6A or serotype 6B (90). Immunization with either the

N-terminal or C-terminal portion of PhtA also conferred protection

against serotype 6B challenge, while only the N-terminal half of

PhtA induced a protective response against serotype 6A challenge

(90). Similarly, immunization with full-length PhtB also elicited

high levels of antibody titers and protected mice against challenge
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with serotype 6B (90). Additionally, immunization with

recombinant PhtB provided protection against serotype 3

intranasal pneumococcal challenge (96). Furthermore,

immunization of mice with PhtD resulted in the highest levels of

antibody titers among all Pht-based vaccines and protected mice

against challenge with serotype 3 and 4. Intranasal immunization

with PhtD induced robust serum antibody and CD4 Th1-biased

immune memory, providing protection against pneumococcal

colonization (97). Recent studies using PhtD and C-terminal

fragment of PhtD with alum or outer-membrane vesicles as

adjuvants elicited significantly high levels of antibodies and

conferred protection against pneumococcal challenge (93, 98, 99).

In addition, anti-PhtD antibodies were shown to protect against S.

pneumoniae through complement- and macrophage-dependent

opsonophagocytosis (100). Among the Pht proteins, PhtD is

considered the most suitable candidate due to its superior efficacy

in a nasopharyngeal colonization model and its high level of

conservation among pneumococcal strains (92). PhtD has

undergone phase I trials (NCT01767402 and NCT01444001) and

failed in an otitis media clinical trial (101, 102). Additionally, Pht-

based vaccines have been tested in combination with other protein

antigens, such as PspA and PLY, to explore synergistic effects and

broaden the spectrum of serotype coverage (43, 103). PhtD

conjugated with PLY elicited significant protection that have

made it up to phase II trials (Clinical Trial Number,

NCT01262872 and NCT00896064). Despite these promising

results, challenges remain in the development of Pht-based

vaccines. Further studies are needed to identify the most

immunogenic epitopes within Pht proteins and to optimize

vaccine formulations that induce protective immune responses

against multiple pneumococcal strains.
2.5 Pneumococcal surface antigen A, PsaA

PsaA is an important protein found on the surface of S.

pneumoniae, which plays a crucial role in the pathogenesis of

pneumococcal infections (104). This surface-exposed lipoprotein

has an approximate molecular weight of 37 kDa and is involved in

vital functions, including oxidative stress resistance, bacterial

adhesion, and acquisition of essential metal ions, particularly

manganese and zinc, imperative for pneumococcal growth and

viability (Table 1) (31, 32, 105, 106). By scavenging these metal

ions from the host environment, PsaA aids the bacterium in evading

the host immune response and establishing infections (107).

Notably, PsaA exhibits a high degree of conservation across

various serotypes of S. pneumoniae, making it an attractive target

for vaccination strategies aimed at providing broad protection

against multiple strains (108).

Utilized as an immunogen, PsaA has been shown to induce a

strong immune response, making it an important target for eliciting

protective immune responses through vaccination (37). Parenteral

immunization of mice with PsaA using adjuvants has yielded

substantial protect ion against chal lenge from type 3

pneumococcal strain WU2 (109). Similarly, oral or intranasal

administration of PsaA has led to elevated titers of IgG anti-PsaA
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antibodies in serum and IgA antibodies in mucosal sites. These

responses have correlated with a notable reduction in

nasopharyngeal colonization following intranasal exposure to S.

pneumoniae (110). However, in other study immunization with

PsaA elicited antibody response, which cannot effectively protect

mice from challenge with S. pneumoniae (111). This prompted the

exploration of combinatory approaches, wherein PsaA was fused

with other protein antigens to amplify immune responses and

synergistic effects. Immunization with PsaA fused with PspA, for

instance, triggered heightened antibody levels against both PsaA

and PspA. This conferred reduced S. pneumoniae levels in the

bloodstream and lungs, ultimately shielding against fatal challenges

with the pathogen (112). Moreover, the fusion of PsaA with B

lymphocyte stimulator has exhibited potent immune stimulation,

marked by heightened serum antibodies specific to PsaA and

elevated cytokine levels (113). Additionally, immunization with

PasA effectively provides protection when combined with

adjuvants in animal challenge (114). Notably, PsaA has also

found utility as a carrier protein in glycoconjugate vaccines,

displaying protective efficacy in animal models (115). These

finding underscore that PsaA represents an appealing candidate

for incorporation into pneumococcal vaccines, offering the

potential to enhance protection against an extensive array of

pneumococcal infections and reduce the burden of disease

worldwide. PsaA included vaccine formulations with other

proteins have completed or be active in clinical trials

(NCT00873431, NCT03803202, and NCT04525599).
2.6 Iron transport lipoproteins,
PiuA and PiaA

Pneumococcal iron uptake A (PiuA) and pneumococcal iron

acquisition A (PiaA) are two important iron transport lipoproteins

found in S. pneumoniae, which are part of the ATP-binding cassette

(ABC) transporter system, a common mechanism used by bacteria

to transport essential nutrients across the cell membrane (Table 1)

(33, 116). These proteins play a critical role in the uptake of iron

from the host environment and its subsequent utilization within the

bacterial cell (117, 118). PiuA and PiaA play roles in iron

acquisition, with PiuA responsible for transporting ferrichrome

iron and PiaA involved in heme iron transport (33, 34). Given

their essential role in iron uptake, PiuA and PiaA have been

explored as potential targets for the development of antibacterial

strategies. Disruption of these proteins or interference with their

iron-binding capabilities could potentially impair bacterial survival

and growth (118).

Additionally, PiuA and PiaA have undergone investigation as

potential vaccine candidates due to their surface exposure, high

conservation and immunogenic properties (116, 119, 120).

Immunizing mice with recombinant PiuA and PiaA has led to the

generation of robust antibody titers, resulting in enhanced

complement-independent and -dependent opsonophagocytosis

(121). This immune response has been shown to confer

protection against systemic challenges posed by S. pneumoniae
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(119). Moreover, mucosal immunization of mice with PiuA and

PiaA has demonstrated the induction of specific antibody responses

in both serum and respiratory secretions. This antibody-mediated

immune reaction proved effective in safeguarding mice against

intranasal challenges from S. pneumoniae (120). In addition,

serum antibody to PiuA and PiaA from patients with

pneumococcal septicaemia was significantly higher in

convalescent-phase than acute-phase, and cross-reacted in

different serotypes (116). Further evidence of the immunogenicity

of PiuA and PiaA comes from the detection of anti-PiuA and anti-

PiaA antibodies in healthy seven-month-old infants, indicating that

these proteins can elicit an immune response from a very early age

(116). However, there are no clinical trials involving PiuA or PiaA.
2.7 Whole-cell vaccines

Whole-cell vaccines are type of vaccines that use the entire cell

of the bacterium S. pneumoniae and present all protein antigens

without the need for individual protein purification to stimulate the

immune system. Whole-cell vaccines can be developed from killed

or live-attenuated whole-cell or by using genetically modified

strains of pneumococcus to ensure safety while retaining

immunogenicity. These vaccines approach aim to induce both

humoral and cellular protective immune response against

multiple antigens of the bacterial cell in animal models.

Killed whole-cell vaccines (WCVs) are typically composed of

inactivated or killed S. pneumoniae cells. These vaccines can include

a variety of strains or serotypes of the bacteria, allowing them to

cover a broader spectrum of pneumococcal infections. A WCV was

developed by deleting the autolysin gene (lytA) in S. pneumoniae

strain RX1 and killed using ethanol. The vaccine was administered

via intranasal route to elicit effective prevention of nasopharyngeal

colonization with serotype 6B in mice and confer protection against

illness and death in rats with serotype 3 strain (122). In addition, a

RM200 WCV was constructed by replacing entire lytA gene with a

kanamycin resistance gene in strain RX1E with a detoxified PLY

mutation (123). The RM200 WCV was inactivated using beta-

propiolactone and exhibited strong protective effects against

nasopharyngeal colonization by serotype 6B strain and activated

IL-17A priming (123, 124).

Live attenuated WCVs contain weakened or attenuated strains

of S. pneumoniae. These strains are modified so that they can still

replicate within the body but are less virulent, causing only mild or

no disease symptoms. A live attenuatedWCV was achieved through

the attenuation of S. pneumoniae D39, wherein the pep27 gene was

removed (125). Mice immunized intranasally with the WCV

exhibited high level of IgG and serotype-independent protection

against lethal intranasal challenge (125). Additionally, to enhance

the safety of this WCV, comD gene was also removed to constructed

a WCV of Dpep27DcomD . Immunization of mice with

Dpep27DcomD significantly increased the survival time after

heterologous challenge and diminished colonization levels of

independent of serotype, which indicated that the WCV of

Dpep27DcomD appears to be a highly feasible and safe vaccine
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1278346
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1278346
against pneumococcal infections (126). These vaccines are currently

in clinical trial phase 1/2 (NCT02097472).
3 Discussion

The progress in pneumococcal protein vaccines represents a

significant advancement in the field of vaccine development against

S. pneumoniae infections. Protein-based vaccines offer several

advantages over traditional capsular polysaccharide-based

vaccines, including the potential for broader serotype coverage

and the ability to target conserved surface proteins that play

critical roles in pneumococcal pathogenesis. Numerous protein

candidates have been investigated for their potential as vaccine

antigens, including PLY, PspA, PspC, Pht, PsaA, PiuA and PiaA.

These proteins have shown promising immunogenicity and

protective efficacy in animal studies, with some candidates

demonstrating the ability to induce immune responses that

inhibit bacterial adherence, colonization, and invasion.

Furthermore, several proteins have been evaluated in early clinical

trials, providing insights into their safety and immunogenicity in

humans. The diversity of protein antigens under investigation

highlights the multifaceted nature of pneumococcal pathogenesis

and the need for a comprehensive vaccine approach. Combining

multiple protein antigens in vaccine formulations, either as

multicomponent vaccines or through the use of carrier proteins,

holds the potential to broaden serotype coverage and enhance the

protective immune response. However, challenges remain in the

development of pneumococcal protein vaccines. The high degree of

antigenic variability among pneumococcal strains necessitates the

identification of conserved epitopes and the design of vaccines that

provide broad protection against diverse serotypes. Optimization of

vaccine formulations, including the selection of appropriate

adjuvants and delivery systems, is crucial to ensure optimal

immune responses and long-term efficacy. Furthermore, the

evaluation of protein-based vaccines in larger-scale clinical trials

is necessary to assess their efficacy in preventing pneumococcal

infections and reducing disease burden. Continued surveillance and
Frontiers in Immunology 07
monitoring of pneumococcal strains are essential to detect any

potential serotype replacement or emergence of new strains that

may impact vaccine effectiveness.
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