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López-Collazo, Garcı́a-Rı́o and
Cubillos-Zapata. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 03 October 2023

DOI 10.3389/fimmu.2023.1277551
PSGL-1: a novel immune
checkpoint driving T-cell
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Introduction: Although higher incidence of cancer represents a major burden

for obstructive sleep apnea (OSA) patients, the molecular pathways driving this

association are not completely understood. Recently, the adhesion receptor P-

selectin glycoprotein-1 (PSGL 1) has been identified as a novel immune

checkpoint, which are recognized major hallmarks in several types of cancer

and have revolutionized cancer therapy.

Methods: The expression of PSGL-1 and its ligands VISTA and SIGLEC-5 was

assessed in the leucocytes of OSA patients and control subjects exploring the

role of intermittent hypoxia (IH) using in vitromodels. In addition, PSGL-1 impact

on T-cells function was evaluated by ex vivo models.

Results: Data showed PSGL-1 expression is upregulated in the T-lymphocytes

from patients with severe OSA, indicating a relevant role of hypoxemia mediated

by intermittent hypoxia. Besides, results suggest an inhibitory role of PSGL-1 on

T-cell proliferation capacity. Finally, the expression of SIGLEC-5 but not VISTA

was increased in monocytes from OSA patients, suggesting a regulatory role of

intermittent hypoxia.

Discussion: In conclusion, PSGL-1 might constitute an additional immune

checkpoint leading to T-cell dysfunction in OSA patients, contributing to the

disruption of immune surveillance, which might provide biological plausibility to

the higher incidence and aggressiveness of several tumors in these patients.

KEYWORDS

PSGL-1, T-cells, immunecheckpoints, sleep apnea, intermittent hypoxia, immune
surveillance, SIGLEC-5, VISTA
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1 Introduction

Obstructive sleep apnea (OSA) is a very prevalent disorder

characterized by recurrent episodes of total or partial obstruction of

the upper airway during sleep. As consequence, OSA patients

exhibit intermittent hypoxemia, increased inspiratory effort and

sleep disruption (1–3). Besides, there is growing evidence that OSA

is associated with a higher incidence of cancer, tumor

aggressiveness and cancer mortality. In fact, the prevalence of

cancers in OSA patients reached 1.53 (95%CI, 1.01–2.31) times

higher than non-OSA individuals (4–12). In this line, several studies

highlight hypoxia as main player in this context. Intermittent

hypoxia is widely recognized as a primary contributor to OSA

effects on tumor development and progression, enhancing cell

proliferation, triggering the release of pro-angiogenic factors, and

modifying the immune surveillance system (13–22). The

overexpression of hypoxia-inducible factor (HIF-1a) due to

intermittent hypoxia (IH) compromises the immune surveillance

system by modulating various immune components, which

supports the development of a tumor-promoting environment

(16, 17). In fact, previous studies carried out in OSA patients

demonstrate that HIF-1a triggers the production of transforming

growth factor b (TGF-b). Interestingly, this factor plays a crucial

role in establishing an immunosuppressive state in the monocytes

and natural killer cells of OSA patients (16). Furthermore, the IH

induces the expression of the immune checkpoint axis PD-1/PD-L1

(Programmed Cell Death Protein 1/Programmed Cell Death Ligand

1), impairing T-cell function (13, 22). In this line, the potential

contribution of additional immune checkpoints to impaired T-cell

function in OSA patients remains to be investigated.

In the recent years, immune checkpoints have emerged as major

hallmarks of different types of tumors and its inhibition have

revolutionized cancer treatment (23). Among the immune

checkpoint family, the adhesion receptor P-selectin glycoprotein-1

(PSGL-1) has been recently identified as a key T cell-intrinsic

inhibitory receptor (24). Particularly, growing evidence demonstrated

that PSGL-1 signaling reduces T cell proliferation (25), activation and

survival (26, 27), increases inhibitory receptor expression and dampens

T cell receptor (TCR) signals and cytokine production to promote T-

cell exhaustion (28). Conversely, PSGL-1 has been typically reported to

facilitate adaptive responses by contributing to effector T cell

recruitment through selectin binding (29). However, less is known

regarding PSGL-1 ligands driving T-cell inhibitory effect (30). In fact,

PSGL-1 binds additional molecules other than selectins, including

chemokines (CCL19 and CCL21), the sialic acid-binding

immunoglobulin-like lectin (SIGLEC)-5 and the V-domain

immunoglobulin suppressor of T-cell activation (VISTA) (31–33).

The role of selectins and chemokines on PSGL-1 T-cell inhibitory

function has been discarded in viral infection models (24), thereby this

study focuses on SIGLEC-5 and VISTA. In this context, SIGLEC-5

exerts immune inhibitory roles not only by directly inhibiting T-cell

migration by blocking PSGL-1 – selectins binding, but also by reducing

T cell receptor TCR-induced activation (34). Moreover, VISTA has

been recently identified as a novel promising target in tumor

immunotherapy and as a ligand to PSGL-1 under acidic pH-

conditions, such as those occurring in the tumor microenvironment.
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In this context, we have explored the PSGL-1 pathway

activation in OSA patients without clinical evidence of cancer,

exploring its contribution to the disruption of immune

surveillance prior to tumor initiation. Here, we analyzed PSGL-1

expression in T-cells from patients with OSA and control subjects

(CS), addressing its inhibitory roles on T-cell proliferation and

activation by ex vivo models. Also, we explored the expression of

SIGLEC-5 and VISTA as ligands in monocytes from patients with

OSA and control subjects and investigated the regulatory role of

intermittent hypoxia on the PSGL-1 axis using different in

vitro models.
2 Methods

2.1 Study subjects

This study includes 120 OSA patients and 60 control subjects. A

detailed description of selection criteria is provided in supplement

online. Briefly, OSA diagnosis was determined conducting

respiratory polygraphy (using Embletta GOLD, ResMed). This

process included continuous monitoring of oronasal airflow,

pressure, heart rate, chest and abdominal breathing patterns, and

oxygen saturation (SaO2). Tests were repeated if patients reported

sleeping less than 4 hours or if there was less than 5 hours of

nocturnal recording. Patients were categorized as severe OSA when

their Apnea-Hypopnea Index (AHI) exceeded 15. Additionally,

control subjects (CS), matched for gender and age with OSA

patients, were selected from the census register of the Madrid,

Spain metropolitan area. Respiratory polygraphy confirmed the

absence of OSA in healthy subjects. All participants provided

written informed consent and the study was approved by the

local ethics committees.
2.2 Human cell isolation

Peripheral blood mononuclear cells (PBMCs) were separated

through centrifugation, employing a Ficoll-Paque Plus (Amersham

Bioscience, Uppsala, Sweden) density gradient. Subsequently, 5×106

PBMCs were seeded into each well of 6-well plates. These cells were

then cultured in Roswell Park Memorial Institute (RPMI) 1640

medium supplemented with 100 U/mL penicillin and 100mg/mL

streptomycin, along with 10% fetal bovine serum (35). Finally, the

cells were incubated for 16 hours at 37°C in a 5% CO2 environment.
2.3 Flow cytometry

Following a 16-hour incubation, the cells were collected and

stained for 30 minutes at 4°C in darkness, using the anti-human

antibodies listed in Table S1. Subsequently, they were washed with

PBS (Phosphate Buffered Saline) containing 1% FBS. Lastly, the cells

were acquired using a BD FACS-Celesta flow cytometer (BD-

Biosciences, Eysins, Switzerland), and the data were processed

with FlowJo vX.0.7 software (FlowJo, USA).
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2.4 Intermittent hypoxia in vitro model

In order to generate the intermittent hypoxia (IH) conditions,

we cultured healthy PBMCs in an incubation chamber linked to an

external computer-controlled oxygen/nitrogen controller, using the

BioSpherix OxyCycler C42 system (Redfield, NY, USA). This

system produces cyclical alterations in oxygen levels while

maintaining CO2 levels, regulating the air gas composition within

each chamber (36, 37). In addition, to inhibit Hypoxia Inducible

Factor (HIF-1a), two methods were employed: First, monocytes

were treated with 30 mM PX-478 (MedKoo Biosciences, Morrisville,

NC, USA) for 16 hours (38). Second, cells were transfected using a

specific pre-designed silencer for HIF-1a siRNA (s6539, Ambion

Inc, Austin, TX, USA) or a control plasmid following the standard

protocol for Amaxa™ Human Monocyte Nucleofector Kit (Lonza,

Basel, Switzerland). Briefly, cells were transferred to an

electroporation cuvette and nucleofected, and cultured for 16h

under routine culture conditions or IH conditions. Finally, for the

DMOG assay, cells were treated with 100mM of Dimethyloxallyl

Glycine (DMOG) for 16 hours in routine culture conditions.
2.5 Proliferation ex vivo assays

For the proliferation assays 5×105 PBMCs were labeled with

Carboxy Fluorescein Succinimidyl Ester (CFSE, ThermoFisher,

Darmstadt, Germany) and treated or not with anti-PSGL-1

antibody (Clone KPL-1, Merck Life Science ‘s, Bayswater,

Victoria, Australia). The cells were cultured for 4 days and then

stained with specific human antibodies for CD4 (APC) or CD8

(APC) (Inmunostep, Salamanca, Spain). Cells were acquired by

flow cytometry with the FACS-Calibur flow cytometer (BD-

Biosciences, Eysins, Switzerland) and data were analyzed using

FlowJo vX.0.7 software (FlowJo, USA).
2.6 Statistical analysis

Comparisons between groups were conducted using Mann-

Whitney U test, two-way ANOVA with post-hoc Tukey’s or

Bonferroni tests, or the chi-squared test statistical methods,

depending on the nature and distribution of the variables.

Correlations were evaluated using Spearman’s rank correlation. To

assess data distribution, the Anderson-Darling and D’Agostino-

Pearson tests were employed. For all analyses, a significance level of

p < 0.05 was applied. Statistical analyses were carried out using Prism

8.0 software (GraphPad, USA) or SPSS (IBM, USA).
3 Results

3.1 Characteristics of the participants

In this study, 120 patients with OSA were prospectively enrolled

and 60 healthy individuals were included as the control group. The
Frontiers in Immunology 03
key characteristics of the study participants are presented in Table 1.

Notably, there were no significant differences between the groups in

relation to sex, age, BMI, or smoking habits, as detailed in Table 1.
3.2 PSGL-1 is overexpressed on T-cells
from patients with OSA

As a first approach, we assessed PSGL-1 expression on T-cells.

Our results show that percentage of cells that expressed high levels of

PSGL-1 (PSGL-1hi, determined as shown in Figure S1A) was higher

in CD4+ and CD8+ T-lymphocytes from OSA patients than in those

from control subjects (Figures 1A, B). Moreover, the percentage of

PSGL-1hi CD4+ T-cells was related to OSA severity parameters such

as the Apnea Hypopnea Index (AHI), Oxygen Desaturation Index

(ODI) and mean nocturnal oxygen saturation (mean SatO2)

(Figures 1C, D, S1B). Besides, the percentage of PSGL-1hi CD8+ T-

cells correlated with mean the mean SatO2 (Figure S1C), although no

significant correlation was found with AHI or ODI (data not shown).

Finally, PSGL-1 mRNA was overexpressed in PBMCs from OSA

patients in comparison with controls subjects and negatively

correlated with the mean SatO2 (Figures S1D–E). Collectively, these

data suggested that PSGL-1 expression is elevated in OSA T-cells and

related with hypoxia severity.
3.3 PSGL-1 expression on T-cells is
induced by intermittent hypoxia
through HIF-1a

Considering that the expression of PSGL-1 is associated to

hypoxemia severity, we explore the role of intermittent hypoxia in

the upregulation of PSGL-1. As a first approach, we observed that

PSGL-1 expression was related to HIF-1a, the master regulator of the

molecular response to hypoxia (Figure S2A), suggesting an implication

of the hypoxia factor in upregulating PSGL-1. Then, we corroborate

that OSA patients showed a higher mRNA expression of HIF-1a than

control subjects (Figure S2B). To further assess this hypoxia role,

PBMCs from healthy volunteers were cultured under normoxia or

intermittent hypoxia conditions. Concomitantly, in order to clarify the

effect of HIF-1a on PSGL-1 expression, we used different approaches

targeting HIF-1a expression and/or activity. Firstly, we used the

specific agent, PX-478 (S-2-amino-3-[4V-N,N,-bis (2-chloroethyl)

amino]-Phenyl Propionic Acid N-oxide Dihydrochloride), which

suppresses constitutive and hypoxia-induced levels of HIF-1a
(Figure S2C). Secondly, HIF-1a expression was silenced using and

specific RNA silencer for HIF-1a (siHIF) (Figure S2D). Finally, HIF-

1a activity was enhanced using DMOG (dimethyloxallyl glycine), a cell

permeable prolyl-4-hydroxylase inhibitor that increases endogenous

HIF-1a levels as a complementary strategy (Figure S2E). Our results

showed that exposure to intermittent hypoxia enhanced PSGL-1

expression in both CD4+ and CD8+ T-cells compared with the cells

cultured under normoxic conditions (Figures 2A–D). Interestingly, the

IH effect was suppressed either when cells were treated with PX-478 or

upon HIF-1a silencing, indicating that HIF-1a mediates hypoxia-

induced PSGL-1 overexpression in T-cells (Figures 2A–D). Indeed,
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PSGL-1 mRNA expression in healthy PBMCs was also enhanced by

IH stimulation and this effect was suppressed when HIF-1a pathway

was inhibited (Figures S2F–G). Also, PSGL-1 mRNA expression

increases when cells are stimulated with DMOG, (Figure S2H).

Taken together, these data suggest that intermittent hypoxia,

through HIF-1a, mediates PSGL-1 overexpression.
3.4 Blocking PSGL-1 axis restores T cell
proliferation in OSA patients

To assess the functional effect of PSGL-1 upregulation on T-cell

function, we first evaluated the ex vivo proliferation capacity of T-cells

from OSA patients and control subjects, blocking or not PSGL-1 axis

with a neutralizing aPSGL-1 antibody. In this context, we observed

that CD4+ T-cell proliferation was significantly impaired in OSA

patients in comparison to control subjects (Figures 3A, S3A). Indeed,

the percentage of proliferating T-cells negatively correlated with sleep

parameters such as AHI and ODI, suggesting that the proliferation

capacity of CD4+ T-cell decreases along OSA severity (Figures 3B, C).

Interestingly, when OSA CD4+ T-cells were treated with aPSGL-1
antibody this effect was reverted (Figure 3A), indicating that T-cell

proliferation impairment in OSA patients may be mediated by PSGL-

1. Interestingly, we observed that the percentage of proliferating

CD4+T-cells is inversely related to the percentage of CD4+ T-cells

that expressed high levels of PSGL-1 (PSGL-1hi) in OSA patients

(Figure 3D). Besides, CD8+ T-cell proliferation was also impaired in

OSA patients in comparison to control subjects (Figures 3E, S3B) and

the percentage of proliferating CD8+ T-cells negatively correlated

with AHI and ODI (Figures 3F, G). In addition, CD8+ T-cell

proliferation was restored after aPSGL-1 antibody treatment

(Figure 3E) and proliferating CD8+T-cells negatively correlated

with percentage of PSGL-1hi CD8+ T-cells (Figure 3H). Altogether,
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these data indicate that PSGL-1 dampens T-cell proliferation in OSA

patients. Moreover, we also found that the percentage of T-cells that

expressed high levels of PSGL-1 (PSGL-1hi) negatively correlated with

plasma levels of immune mediators such as IFN-g or TNF-a (Figures

S4A–B). Finally, PSGL-1hi T-cells were related to the exhaustion

marker PD-1 (Figure S4C), supporting the PSGL-1 role on T-cell

function impairment in OSA patients. Altogether these data indicate

that PSGL-1 could drive T-cell dysfunction in OSA patients.
3.5 Intermittent hypoxia induces T-cell
proliferation impairment through
PSGL-1 upregulation

To further check whether T-cell proliferation impairment was

mediated by intermittent hypoxia and subsequent PSGL-1

overexpression; we performed an in vitro proliferation assay using

T-cells from healthy volunteers. Strikingly, exposure to intermittent

hypoxia dampens the proliferation of healthy CD4+ T-cells and

PSGL-1 axis blockade suppressed this effect (Figure 4A). Moreover,

IH also decreases CD8+ T-cell proliferation. However, although

PSGL-1 axis blockade induce a tendency to proliferation recovery, it

did not reach statistical significance (Figure 4B). Collectively, these

results suggest that IH, through PSGL-1 overexpression contribute

to dampen T-cell proliferation in OSA patients.
3.6 SIGLEC-5 is overexpressed on
monocytes from patients with OSA

We then assessed the expression on monocytes of SIGLEC-5

and VISTA as potential PSGL-1 ligands driving T-cell impairment.
TABLE 1 General characteristics of study subject’s.

Non-apneic healthy subjects
(n=60)

Severe OSA
patients
(n=120)

p-value

Male sex, n (%) 46 (76.7) 93 (77.5) 0.900

Age, years 57 (50-63) 60 (52-69) 0.084

Body mass index, kg·m-2 32 (26.4-37) 31.67 (28.4-36.2) 0.296

Smoking habit,n (%) 0.433

Current smoker 6 (10) 14 (11.7)

Former smoker 10 (16.7) 14 (11.7)

Never smoker 44 (73.3) 92 (76.6)

Epworth Sleepiness Scale 2 (0-4) 8.5 (5-12) <0.001

AHI, events/h 3.4 (1.2.6) 50 (38.5-64.1) <0.001

ODI, events/h 3 (0-5) 46.8 (37.7-61.7) <0.001

Mean nocturnal SaO2, % 96.1 (94.2-98.4) 90.4 (88.6-91.7) <0.001

Low nocturnal SaO2, % 88.3 (81.4-92.5) 75 (65.3-79) <0.001
fro
Data are expressed as number (percentage) or median (interquartile range). Comparisons between groups were performed by Mann-Whitney U-test or chi-squared test. AHI, apnea-hypopnea
index; ODI, oxygen desaturation index; SaO2, oxyhemoglobin saturation.
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Our data indicate an overexpression of SIGLEC-5 but not VISTA in

monocytes from OSA patients in comparison to control subjects

(Figures 5A, S5A, B). In this line, the expression of VISTA did not

correlate with OSA severity parameters (data not shown), while the

percentage of monocytes that expressed high levels of SIGLEC-5

(SIGLEC-5hi,determined as shown in Supplementary Figure 5A)

positively correlated to AHI and ODI parameters, indicating that

SIGLEC-5 increases along OSA severity (Figures 5B, C).

Accordingly, SIGLEC-5 mRNA expression was higher in

monocytes from OSA patients and negatively correlated with the

mean SatO2 (Figures S5C–D). Collectively, these data suggested that

SIGLEC-5 expression is elevated in OSA monocytes and related

with hypoxia severity.
3.7 SIGLEC-5 overexpression is induced by
intermittent hypoxia

Given that SIGLEC-5 is upregulated in OSA monocytes, we

then explored intermittent hypoxia role in this context.

Interestingly, we found that SIGLEC-5 expression was related to

HIF-1a mRNA expression (Figure S5E). In this context, we

explored the potential role of hypoxemia in the SIGLEC-5

upregulation, using the intermittent hypoxia in vitro model in

combination with the HIF-1a inhibitor PX-478 or the specific

RNA silencer (siRNA) for HIF-1a (siHIF). Our data indicate that
Frontiers in Immunology 05
monocytes cultured under intermittent hypoxia exhibit higher

levels of SIGLEC-5 when compared to cells cultured under

normoxia condition (Figures 5D, E). Interestingly, this effect was

blocked when cells were treated with PX-478 or transfected with the

HIF-1a siRNA (Figures 5D, E). Moreover, this effect was also

observed at the mRNA level (Figures S5F–G). Finally, DMOG

treatment also enhanced SIGLEC-5 expression both at the protein

and mRNA level (Figures 5F, S5H). Collectively, these results

suggest that intermittent hypoxia, through HIF-1a, could mediate

SIGLEC-5 upregulation in OSA monocytes.
4 Discussion

The higher risk of cancer represents a major burden for sleep

apnea patients. In this study, we have explored the PSGL-1 expression

as an immune checkpoint and its capacity to reduce T-cell function.

In addition, we analyzed the intermittent hypoxia effect on the PSGL-

1 expression and function using hypoxemia clinical parameters and

ex vivo and in vitro strategies. Ultimately, in order to have a complete

picture of the PSGL-1 function, we analyzed known potential ligands

in monocytes, however, only SIGLEC-5 was overexpressed in OSA

monocytes and associated with hypoxemia conditions. Overall, this

study suggests that OSA patients exhibited an impaired T cell

response through PSGL-1, providing a reasonable explanation to

understand the impairment of immune surveillance in these patients.
B

C D

A

FIGURE 1

PSGL-1 expression in T-lymphocytes from patients with obstructive sleep apnea. (A) Percentage of CD4+ T-lymphocytes that expressed high levels
of PSGL-1 (PSGL-1hi) determined by flow cytometry in control subjects (CS, n=60) and OSA patients (OSA, n=120). (B) Percentage of CD8+ T-
lymphocytes that expressed high levels of PSGL-1 (PSGL-1hi) determined by flow cytometry in control subjects (CS, n=60) and OSA patients (OSA,
n=120). Comparisons between groups were performed by Mann-Whitney U-test, p-values are shown. (C, D) Correlation between the percentage of
PSGL-1hi CD4+ T-lymphocytes and (C) apnea-hypopnea index [AHI] (n=120) and (D) oxygen desaturation index [ODI] (n=120). Spearman’s
correlation coefficients (r) and p-values are shown.
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4.1 Impact of the intermittent hypoxia in
PSGL-1 pathway

The hypoxemia is one of the main intermediate mechanisms of

OSA. In this regard, a recent study reported that PSGL-1 expression

increased susceptibility in patients with acute respiratory distress

syndrome, demonstrating the PSGL-1 promoter activity was

strongly regulated by HIF-1a and HIF-2a (39). Remarkably,

hypoxia develops in most solid tumors because of the rapid

growth of the tumor that outstrips the oxygen supply, and is one

of the main hallmarks of tumor microenvironment (40). In this line,

we speculate that the effect of hypoxia may directly or indirectly

impact tumor growth in OSA patients. Nevertheless, additional

studies are needed to understand the implications of PSGL-1 axis in

the context of OSA-related tumor initiation. On the other side, Sun

et al., suggest that additional inflammatory and epigenetic factors

may regulate PSGL-1 expression (39). Moreover, previous studies

indicate an upregulation of PSGL-1 in acute inflammation (41). In
Frontiers in Immunology 06
line, we previously demonstrated a systemic inflammation in OSA

patients resulting from the inflammasome activation (42, 43), also,

others authors reported the low-grade-chronic inflammatory state

in these patients (44–49). On the other hand, there are two studies

in OSA patients focusing on potential role of circulating PSGL-1, as

a driver of leucocyte infiltration facilitating the development of

atherosclerosis; however, assessing PSGL-1 circulating levels

provided discrepant results (50, 51). Particularly, Horvath et al.,

reported no differences on circulating PSGL-1 levels, while

Winiarska et al., concluded that circulating PSGL-1 levels were

significantly increased in OSA patients and correlated with AHI. In

this line, our study provides new insight by assessing PSGL-1

expression on leucocyte membrane, where it exerts its biological

function (28). More importantly, the present study focused on

recently described PSGL-1 immune checkpoint function,

addressing its potential contribution as a negative regulator of T-

cell function in OSA patients, possibly eliciting cancer development

and progression.
B

C

D

A

FIGURE 2

Intermittent hypoxia effect on PSGL-1 expression. (A, B) Fold change of the percentage of CD4+ (A) or CD8+ (B) T-lymphocytes that expressed high
levels of PSGL-1 (PSGL-1hi, normalized to the control normoxia condition, CD4+: 35.64% ± 5.01%; CD8+: 48.40% ± 4.85%) determined by flow
cytometry in healthy volunteer’s cells (n=9) treated or not with a specific inhibitor for HIF-1a (PX-478, 30mM) cultured under normoxia (N) or
intermittent hypoxia (IH) conditions for 16 hours. (C, D) Fold change of the percentage of CD4+ (C) or CD8+ (D) T-lymphocytes that expressed high
levels of PSGL-1 (PSGL-1hi, normalized to the control normoxia condition, CD4+: 23.30% ± 2.81%; CD8+: 32.51% ± 4.80%) determined by flow
cytometry in healthy volunteers’ cells (n=9) transfected with a control silencing RNA (siCtrl) or with a silencing RNA targeting HIF-1a (siHIF), cultured
under normoxia (N) or intermittent hypoxia (IH) conditions for 16 hours. Comparisons between groups were performed by Two-way ANOVA with
Tukey’s correction for multiple comparison tests. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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FIGURE 3

PSGL-1 effect on T-cell proliferation. (A) CD4+ T-lymphocytes proliferation capacity estimated by flow cytometry using carboxyfluorescein
succinimidyl ester (CFSE) staining in cells from control subjects (CS, n=20) or patients with OSA (OSA, n=60) which were cultured for 4 days with or
without a neutralizing a-PSGL-1 antibody. (B–D) Correlation between the percentage of proliferating (CFSElow) CD4+ T-lymphocytes and (B) apnea-
hypopnea index [AHI] (n=60), (C) oxygen desaturation index [ODI] (n=60), and (D) percentage of CD4+ T-lymphocytes that expressed high levels of
PSGL-1 (PSGL-1hi) determined by flow cytometry. (E) CD8+ T-lymphocytes proliferation capacity estimated by flow cytometry using CFSE staining in
cells from control subjects (CS, n=20) or patients with OSA (OSA, n=60) which were cultured for 4 days with or without a neutralizing a-PSGL-1
antibody. (F–H) Correlation between the percentage of proliferating (CFSElow) CD8+ T-lymphocytes and (F) apnea-hypopnea index [AHI] (n=60),
(G) oxygen desaturation index [ODI] (n=60), and (H) percentage of CD8+ T-lymphocytes that expressed high levels of PSGL-1 (PSGL-1hi) determined
by flow cytometry. Comparisons between groups were performed by Two-way ANOVA with Bonferroni’s correction for multiple comparison tests.
Spearman’s correlation coefficients (r) and p-values are shown. *P<0.05, **P<0.01.
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4.2 Connections to T-cell dysfunction

Previous studies performed in animal models have shown that

genetic deletion of PSGL-1 enhanced CD4+ and CD8+ T-cell

responses by preventing development of exhausted T-cells, while

increasing T-cell effector function and decreasing inhibitory

receptor expression (24, 25, 52, 53). Moreover, many efforts have

focused in unravelling the signaling pathway driving T-cell
Frontiers in Immunology 08
exhaustion upon PSGL-1 engagement. So far, PSGL-1 ligation on

exhausted T-cells resulted in diminished ERK (extracellular signal-

regulated kinases) and AKT (Protein kinase B) signaling (24), and

constrains its metabolic activity, thereby, limiting anti-tumor

response (54). In addition, PSGL-1 has been shown to suppress

the expression of TCF1 (T cell factor 1), a transcription factor with a

key role in the self-renewal, expansion, and development of effector

function in T-cells. Simultaneously, PSGL-1 also enhances the
BA

FIGURE 4

Intermittent hypoxia effect on T-cell proliferation. Fold change of (A) CD4+ and (B) CD8+ T-lymphocytes proliferation capacity (normalized to the
control normoxia condition, CD4+: 47.13% ± 7.66%; CD8+: 64.46% ± 8.48%) estimated by flow cytometry using carboxyfluorescein succinimidyl
ester (CFSE) staining in cells from healthy volunteers (n=9) which were cultured for 4 days with or without a neutralizing a-PSGL-1 antibody under
normoxia (N) or intermittent hypoxia conditions (IH). Comparisons between groups were performed by Two-way ANOVA with Tukey’s correction for
multiple comparison tests.*P<0.05, **P<0.01, ns, non-significant.
A B C

D E F

FIGURE 5

SIGLEC-5 is overexpressed in patients with obstructive sleep apnea. (A) Percentage of monocytes (CD14+) that expressed high levels of SIGLEC-5
(SIGLEC-5hi) determined by flow cytometry in control subjects (CS, n=60) and OSA patients (OSA, n=115). Comparison between groups was
performed by Mann-Whitney U-test, p-value is shown. (B, C) Correlation between the percentage of SIGLEC-5hi monocytes and (B) apnea-
hypopnea index [AHI] (n=115) and (C) oxygen desaturation index [ODI] (n=115). Spearman’s correlation coefficients (r) and p-values are shown.
(D) Fold change of the percentage of monocytes that expressed high levels of SIGLEC-5 (SIGLEC-5hi, normalized to the control normoxia condition,
41.93% ± 7.92%) determined by flow cytometry in healthy volunteer’s cells (n=11) treated or not with a specific inhibitor for HIF-1a (PX-478, 30mM)
cultured under normoxia (N) or intermittent hypoxia (IH) conditions for 16 hours. (E) Fold change of the percentage of monocytes that expressed
high levels of SIGLEC-5 (SIGLEC-5hi, normalized to the control normoxia condition, 32.38% ± 4.35%) determined by flow cytometry in healthy
volunteers’ cells (n=7) transfected with a control silencing RNA (siCtrl) or with a silencing RNA targeting HIF-1a (siHIF), cultured under normoxia (N)
or intermittent hypoxia (IH) conditions for 16 hours. Comparisons between groups were performed by Two-way ANOVA with Tukey’s correction for
multiple comparison tests. (F) Fold change of the percentage of monocytes that expressed high levels of SIGLEC-5 (SIGLEC-5hi, normalized to the
control normoxia condition, 41.93% ± 7.92%) determined by flow cytometry in healthy volunteers’ cells treated or not with 100mM of dimethyloxallyl
glycine (DMOG) for 16 hours in routine culture conditions (n=7) *P<0.05.
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expression of TOX (thymocyte selection-associated high mobility

group box factor), a pivotal controller of T-cell irreversible

exhaustion (54). Furthermore, PSGL-1 has been reported to act

upstream of PD-1 (another immune checkpoint), requiring direct

interaction with TCR to directly restrain its signaling, thus

attenuating T-cell activation (54). Interestingly, PD-1/PD-L1

pathway has also been shown to be implicated in T-cell decreased

proliferation in OSA subjects (13). In agreement, our results showed

that although the blockage of PSGL-1 pathway significantly

recovers T-cell function, is a partial recovery not reaching the

control subject proliferation levels. This indicates that other

pathways, such as PD-1/PD-L1 may be implicated in T-cell

dysfunction in OSA patients. In agreement, recent study showed

that PD-1 immune checkpoint blockade and PSGL-1 inhibition

synergize to reinvigorate exhausted T cells (55). Indeed, in animal

models PSGL-1 blockade reduced anti-PD-1 resistant melanoma

tumor growth, one of the most common types of tumor among

OSA patients (12, 54, 56). Altogether, this evidence suggests that the

impairment of T- lymphocyte function in OSA patients involve the

activity of both immune checkpoints, PSGL-1 and PD-1/PD-L1.
4.3 PSGL-1 ligands: VISTA

In this context, a key outstanding question is the ligand driving

PSGL-1 mediated T-cell dysfunction. Therefore, we have focused on

PSGL-1 ligand candidates SIGLEC-5 and VISTA, as previous studies

have reported (32, 33). Interestingly, VISTA is a well-established

immune regulatory receptor independently of PSGL-1 (57–59).

Indeed, VISTA promotes the suppressive function of myeloid-

derived suppressor cells in the tumor microenvironment

dampening T-cell response (60). In this line, the role of VISTA on

myeloid cells is complex and remains to be completely understood.

For instance, while overexpression of VISTA on monocytes induced

elevated levels of cytokine expression (61), VISTA deficient myeloid

cells showed an enhanced inflammatory phenotype (62). Also,

VISTA-deficient myeloid cells showed a marked dysregulation in

the surface expression of chemokine receptors, and their responses to

inflammatory chemokines is profoundly impaired. Altogether this

evidence underscores a central function of VISTA controlling both

innate and adaptive immunity (63). Besides, Deng et al., reported that

VISTA is preferentially upregulated under hypoxic conditions,

through direct binding of HIF-1a to VISTA gene promoter (60),

which prompted us to speculate that this molecule could play a

central role engaging PSGL-1 in OSA patients. Intriguingly, we did

not find an upregulation of VISTA in OSA monocytes. In this line, a

previous study reported a downregulation of VISTA in the microglia

from patients with sepsis and in chronic multiple sclerosis lesions

(64). Moreover, evidence showed that VISTA was downregulated

under certain inflammatory conditions (e.g., stimulation by LPS,

CFA, and poly-IC) (57, 64). Given that OSA patients exhibit a

proinflammatory state, it is plausible that inflammation and

hypoxia are counteracting each other, resulting in no differences in

VISTA expression. Besides, current studies have shown that PSGL-1-
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VISTA interaction occurs in a pH-dependent manner (pH < 6.2) in

vitro, so that binding in vivo has yet to be confirmed. Moreover,

VISTA seems to utilize pH sensitivity to suppress T-cell function

primarily in acidic and inflamed environments like tumors, rather

than in lymphoid organs or the bloodstream (33). In this line, the

OSA patients included in this study had no evidence of cancer at the

time of recruitment, also, VISTA analysis was performed in

circulating monocytes where the pH do not reach the acidic

conditions as happen in tumor microenvironment (TME), so, we

speculate that probably VISTA could not engage PSGL-1 under this

conditions. Nevertheless, VISTA may probably function as an

additional ligand for PSGL-1 under acidic TME conditions,

enhancing PSGL-1 overexpression effect in OSA patients with

stablished tumors. However, further evidence is needed to uncover

the precise role of VISTA in this context.
4.4 PSGL-1 ligands: SIGLEC-5

Furthermore, SIGLEC-5 is upregulated in several types of

tumors, including glioma and colorectal cancer and has been

proposed as a prognosis marker to predict patient outcome (65,

66). Indeed, SIGLEC-5 has been reported to exert an anti-

inflammatory role by directly blocking PSGL-1 interaction with

selectins, hindering leukocyte infiltration (32). Additionally,

SIGLEC-5 suppresses T cell activation by abrogating antigen

receptor induced activation of NFAT (nuclear factor of activated

T cells) and AP-1 (activating protein-1), independently of PSGL-1

(34). In turn, SIGLEC-5 also suppresses the inflammatory response

of innate immune cells, such as monocytes (67–69). As a

consequence, the interaction between PSGL-1 and SIGLEC-5 may

not only impair T-cell function but also impact the innate subset,

inducing a broad immunosuppressive state, thus facilitating tumor

progression. Moreover, it has been shown that Siglec-expressing

cells are specifically recruited to the TME (70), were they could

fulfill specific functions in the tumor progression (71, 72). Herein,

we showed that SIGLEC-5 is upregulated in OSA monocytes, also,

its expression significantly increased along the hypoxemia severity.

Indeed, we corroborated by in vitro assays the relevant role of the

hypoxemia in this context. In agreement, previous evidence

suggested that blocking SIGLEC-5 could serve as a new immune

checkpoint blockade strategy to enhance anti-tumor T cell

functions (34). Thus, we have performed a SIGLEC-5 ex vivo

assay to explore the antigen presentation role; however, our data

not show a significant effect on the lymphocyte proliferation using a

functional blocking anti-SIGLEC-5 (data not shown). Furthermore,

there is scarce literature assessing SIGLEC-5 interaction with PSGL-

1 and its role as an immune checkpoint; probably because SIGLEC-

5 is not present in mice, and much of what is known regarding

PSGL-1 role in T-cell dysfunction is based on mouse models rather.

Therefore, further investigations are needed either to understand

SIGLEC-5 and VISTA PSGL-1 engaging; or to unravel other yet-to-

be-identified ligands, which could potentially contribute to PSGL-1

mediated T-cell exhaustion.
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4.5 Limitations

Our study has several limitations, which we acknowledge. First,

the diagnosis of OSA in patients was based on validated respiratory

polygraphy, and while we believe their clinical characterization is
Frontiers in Immunology 10
sufficient, this method does not enable us to evaluate the role of

sleep fragmentation in the upregulation of PSGL-1. Second, while

our data demonstrate that IH modulate PSGL-1 and SIGLEC-5

expression, it is predictable that other pathways contribute to

modulate PSGL-1 expression. Third, although our study

demonstrates an upregulation of SIGLEC-5 it does not provide

information about its potential engaging PSGL-1 and/or

modulating T-cell function. Fourth, on our in vitro model the

intermittent hypoxia cycles are longer than those suffered by OSA

patients. Fifth, our study includes patients without any evidence of

cancer, so we cannot conclude PSGL-1 effect on tumor development

or progression. Sixth, this study does not provide any information

on the effect of OSA treatment on PSGL-1 expression or its effect on

the development or progression of cancer.
4.6 Conclusions

In conclusion, this study demonstrates that PSGL-1 expression

is upregulated in the lymphocytes from patients with severe OSA,

indicating a relevant role of the hypoxemia by HIF-1a mediation.

Furthermore, our data showed that PSGL-1 could constitute an

additional immune checkpoint leading to T-cell dysfunction in

OSA patients, thereby potentially contributing to the higher cancer

incidence and aggressiveness. Finally, our data show an

upregulation of SIGLEC-5 in OSA monocytes, suggesting it

potential contribution to the PSGL-1 axis and highlighting the

need of further studies assessing PSGL-1 engaging (Figure 6).
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Glossary

OSA Obstructive sleep apnea

HIF-1a hypoxia-inducible factor-1 alpha

IH intermittent hypoxia

TGF-b transforming growth factor b

PD-1/
PD-L1

programmed Cell Death Protein 1/programmed Cell Death Ligand 1

PSGL-1 P-selectin glycoprotein-1

TCR T cell receptor

CCL19 Chemokine (C-C motif) ligand 19

SIGLEC-
5

sialic acid- binding immunoglobulin-like lectin 5

VISTA V-domain immunoglobulin suppressor of T- cell activation

CS controls subjects

AHI apnea-hypopnea index

ODI oxygen desaturation index

SaO2 oxygen saturation

PBMCs peripheral blood mononuclear cells

CFSE carboxyfluorescein succinimidyl ester

PX-478 S-2-amino-3-[4V-N,N,-bis(2-chloroethyl) amino]-phenyl propionic
acid N-oxide dihydrochloride

DMOG dimethyloxallyl glycine

IFN interferon

TNF tumor necrosis factor

LPS lipopolysaccharide

ERK extracellular signal-regulated kinases

AKT protein kinase B

TCF1 T cell factor 1

TOX thymocyte selection-associated high mobility group box factor

CFA complete Freund’s adjuvant

poly-IC Polyinosinic-polycytidylic acid

TME tumor microenvironment

NFAT nuclear factor of activated T cells

AP-1 activating protein-1.
F
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