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Introduction: Metabolic reprogramming potentiates host protection against

antibiotic-sensitive or -resistant bacteria. However, it remains unclear whether

a single reprogramming metabolite is effective enough to combat both

antibiotic-sensitive and -resistant bacteria. This knowledge is key for

implementing an antibiotic-free approach.

Methods: The reprogramming metabolome approach was adopted to

characterize the metabolic state of zebrafish infected with tetracycline-

sensitive and -resistant Edwardsiella tarda and to identify overlapping

depressed metabolite in dying zebrafish as a reprogramming metabolite.

Results: Aspartate was identify overlapping depressed metabolite in dying

zebrafish as a reprogramming metabolite. Exogenous aspartate protects

zebrafish against infection caused by tetracycline-sensitive and -resistant E.

tarda. Mechanistically, exogenous aspartate promotes nitric oxide (NO)

biosynthesis. NO is a well-documented factor of promoting innate immunity

against bacteria, but whether it can play a role in eliminating both tetracycline-

sensitive and -resistant E. tarda is unknown. Thus, in this study, aspartate was

replaced with sodium nitroprusside to provide NO, which led to similar aspartate-

induced protection against tetracycline-sensitive and -resistant E. tarda.

Discussion: These findings support the conclusion that aspartate plays an

important protective role through NO against both types of E. tarda.

Importantly, we found that tetracycline-sensitive and -resistant E. tarda are

sensitive to NO. Therefore, aspartate is an effective reprogramming metabolite

that allows implementation of an antibiotic-free approach against bacterial

pathogens.

KEYWORDS
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1 Introduction

Edwardsiella tarda is a Gram-negative bacterium that causes

infection in aquatic animals and humans, posing a threat to

aquaculture industry and public health (1, 2). Antibiotics are

effective against bacteria, but the extensive use of these drugs

leads to the development of antibiotic resistance due to the

consequent selective pressure. Bacterial strains that are resistant

to antibiotics are difficult to treat and the increasing emergence of

these strains limits sustainable development of aquaculture. Given

that overuse of antibiotics triggers the development of antibiotic-

resistant bacteria (3), antibiotic-free approaches are especially

recommended to eliminate bacterial pathogens (4).

Reprogramming metabolomics is a new useful approach for

controlling bacterial infection by using low doses of antibiotics or

no antibiotics at all (5–11). This method requires the use of

comparative metabolomics to identify crucial biomarkers, which

are then used to induce metabolome-reprogramming for elevating

bacterial sensitivity to antibiotics or improving host protection

against infection (12–16). This leads to subsequent host

protection against infections caused by antibiotic-sensitive or –

resistant Vibrio alginolyticus and Edwardsiella tarda (17–21).

However, the question of whether a single reprogramming

metabolite can be used to combat both antibiotic-sensitive and –

resistant bacteria has not been well defined. Importantly, antibiotic-

free therapy is required to effectively combat both sensitive and

resistant bacteria. This success will help in the development of

antibiotic-free methods to eliminate bacterial pathogens.

Among antibiotic classes used in aquaculture, tetracyclines,

including tetracycline and oxytetracycline, are the first-line agents

used for treatment. As a result, there have been increasing

incidences of tetracycline-resistant E. tarda. Lo et al., showed that

21.3% (20/94) of isolates were resistant to oxytetracycline (22).

Further, Yu et al., isolated E. tarda CK41 from Japanese flounder

diagnosed with edwardsiellosis, which is highly resistant to multiple

antibiotics, including tetracycline (23). Lee and Wendy showed that

out of 300 E. tarda and Aeromonas hydrophila strains, 58% were

tetracycline-resistant (24). However, the reprogramming

metabolomics approach has not yet been utilized to combat

tetracycline-resistant bacteria. Importantly, for successful

implementation of an antibiotic-free approach, reprogramming of

a single metabolite must be effective for both antibiotic-sensitive

and -resistant bacteria, but this has not yet been reported in the

literature. Therefore, we sought to use tetracycline-resistant and

-sensitive E. tardamay as representative bacterial strains to identify

one reprogramming metabolite to eliminate both strains.

Herein, we used gas chromatography-mass spectrometry (GC-

MS) based metabolomics to characterize differential metabolic

profiles of zebrafish infected with a tetracycline-resistant strain

(LTB4-RTET) and -sensitive strain (LTB4-S). All data were

compared to uninfected control animals. In this way, we sought

to identify an overlapping biomarker between LTB4-RTET and

LTB4-S that could potentially be exploited as a reprogramming

metabolite to improve host protection against both antibiotic-

sensitive and –resistant E. tarda. Following data analysis, we
Frontiers in Immunology 02
identified aspartate as a crucial biomarker and subsequently used

it to reverse the infective phenotype in zebrafish, thereby

increasing survival.
2 Materials and methods

2.1 Ethics statement

The study was approved by the Institutional Animal Care and

Use Committee of Sun Yat-sen University, Guangzhou, China.
2.2 Animals and bacterial strains

Zebrafish (Danio rerio), approximately 3 months old (body

length, 3 ± 0.2 cm, body weight, 0.2 ± 0.05 g), were purchased from

Guangdong Zebrafish Breeding Farm (Guangzhou, China).

Zebrafish were acclimated for 2 weeks in 540 L water tanks with

Closed Recirculating Aquaculture Systems. In the meantime, fish

were fed twice a day, and water tanks were cleaned by siphoning the

food debris and feces once every two days. Before experiments, all

fish were tested to ensure they were not infected with E. tarda. E.

tarda LTB4-S and LTB4-RTET were preserved in our laboratory.

After a single colony was cultured for 24 h at 30°C, with shaking at

200 rpm in fresh 50 mL TSB medium, the bacterial suspensions

were diluted 1:100 in fresh TSB medium cultured and grown to an

optical density at 600 nm (OD600) of 1.0 at 30°C.
2.3 Supplementation of exogenous
metabolites and bacterial challenge

Exogenous metabolites were supplemented as previously

described (25). Zebrafish were challenged with 1 × 105 CFU/fish.

Then each zebrafish were intraperitoneally injected with 5 mL of a

12 mg/mL suspension of aspartate (60 mg total dose) or 0.75 ~ 6 mg
sodium nitroprusside dissolved in saline for 3 days, once a day.

Control fish were injected with 5 mL saline solution. After 30 h,

humoral fluid was collected for GC-MS analysis and spleen samples

were collected for qRT-PCR, nitric oxide synthase (NOS) activity,

and NO content detection.
2.4 Measurement of bacterial content in
zebrafish by quantitative polymerase
chain reaction

Next, qPCR was adopted to quantitate E. tarda in zebrafish as

described previously (26). In brief, bacteria (103, 104, 105, 106, 107,

and 108 CFU) were used to extract bacterial genomes. PCRs with

primers for the gyrB gene were used to assess bacterial load along a

standard curve. The same numbers of LTB4-S and LTB4-RTET (5 ×

103 CFU) were intraperitoneally injected into zebrafish. The

zebrafish that survived for 6–144 h were collected. The HiPure
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Tissue DNA Mini Kit (Magen Biotechnology, Guangzhou, China)

was then used to extract genomic DNA and bacterial DNA was

subsequently measured by qPCR. The amount of bacterial DNA

was then calculated based on the aforementioned standard curve.
2.5 Measurement of minimum inhibitory
concentration and growth curve.

MICs of LTB4-S and LTB4-RTET were measured by antimicrobial

susceptibility testing as described in Clinical & Laboratory Standards

Institute guidelines (27). The bacterial growth curve was determined

according to conventional procedures.
2.6 Sample preparation for GC-MS analysis

Samples were prepared as previously described (28). In brief,

LTB4-S and LTB4-RTET were cultured in LB medium and collected

by centrifuged to infect zebrafish using 1 × 105 CFU/fish. Dying

zebrafish were collected, rinsed and wiped. These zebrafish were cut

into six pieces, weighted, and added appropriate volume of saline

(100 mL/100 mg) for humoral. After centrifugation, 50 mL
supernatant was collected for metabolite extraction using precooled

methanol. Following centrifugation, supernatant was collected and

then dried by vacuum centrifuge device for GC-MS analysis.
2.7 Analysis of metabolomic data

Analysis was performed according to known methods (29). In

brief, XCalibur software was used to analyze the mass fragmentation

spectrum. The National Institute of Standards and Technology (NIST)

library and NIST MS search 2.0 program were adopted to match the
Frontiers in Immunology 03
data to identify compounds. Software IBM SPSS Statistics 19 was used

to analyze significant difference of the standardized data, when the

differences were defined at P value < 0.05. SIMCA-P + 12.0 software

were used to perform principal-component analysis (PCA) and S-plot

analysis. iPath3.0 (https://pathways.embl.de/) was used to carry out

interactive Pathways (iPath) analysis.
2.8 Quantitative reverse transcription PCR

Next, qRT-PCR was performed according to previously

published methods (30). Gene-specific primers that were used

here are shown in Table 1. The b-actin gene served as the

internal control.
2.9 Measurement of NOS
activity/NO content

A series of experiments were performed according to kit

instructions (Nanjing Jiancheng Bioengineering Institute, Nanjing,

China). The spleens from ten zebrafish were pooled into one

biological sample and three biological replicates were measured

per group.
3 Results

3.1 Phenotypes of LTB4-RTET and LTB4-S
and their survival in zebrafish

LTB4-RTET and LTB4-S were obtained through sequential

propagation of LTB4 in medium with and without tetracycline,
TABLE 1 Primers used for qRT-PCR.

Genes Primer Sequence (5’-3’)

b-actin
Forward ACCCAGACATCAGGGAGTG

Reverse CATCCCAGTTGGTCACAATAC

ass1
Forward GGCATTCTGGAGAACCCCAA

Reverse CAGAAAATCTCCAGCGGGGT

as1
Forward TTGCTGGGAATCCCTTCGAC

Reverse TGCCATCTTGCTAAGGTGTGT

arg2
Forward GCCATTCTCAGCAGTGTCCT

Reverse AATCCGGGAACTTTGGGCAT

nos2a
Forward TGCAATCACTGTGTTCCCTCA

Reverse AGCACATCAAAGCGACCGTA

nos2b
Forward GTGCTGGAGGAGTTTCCCTC

Reverse GAGGTCAGGAGAGGAGCTGA

gyrB
Forward GACGGCGGGACCCATTT

Reverse CGGCACCTTCACGGACA
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respectively. This led to the revelation that LTB4-RTET has a 20-fold

higher MIC for tetracycline compared to that of LTB4-S, which

showed no change in the MIC during propagation (Figure 1A).

Growth curves showed that LTB4-RTET proliferated more slowly

than LTB4-S (Figure 1B). When zebrafish were infected with LTB4-

S or LTB4-RTET, the two strains differentially persisted in the

zebrafish. Specifically, more LTB4-S were detected in the fish

during the 6–48 h time points compared to LTB4-RTET. Further,

these bacteria were measured again at the 72, 120, and 144 h time

points and we identified reduced numbers of LTB4-RTET compared

to LTB4-S at the latter (Figure 1C). Similar survival rates were

determined for LTB4-RTET and LTB4-S infected zebrafish

(Figure 1D). Therefore, we concluded that both LTB4-RTET and

LTB4-S infection causes differential growth rates and resistance

phenotypes, but similar survival rates.
3.2 Metabolic profiles in dying zebrafish
infected with LTB4-RTET and LTB4-S.

Host metabolic state is correlated with susceptibility or

resistance to bacterial pathogens (29, 31). Thus, the metabolic

profiles of zebrafish infected with LTB4-RTET and LTB4-S were

compared and uninfected control fish. To do this, a GC-MS-based

metabolomics approach was utilized to characterize the metabolic

profiles of dying animals in the two experimental groups and in the

control group. Ten biological samples with two technical replicates

were adopted for each group, yielding a total of 60 data sets. A total

of 230 aligned individual peaks were obtained from each sample,

where 77 metabolites were determined (Figure 2A). The correlation

coefficient for technical replicates varied between 0.994 and 0.999

(Figure 2B), suggesting good repeatability of the data. Metabolic

profiles of these 77 metabolites are displayed as a heatmap for each
Frontiers in Immunology 04
group, which shows that for each group, LTB4-S and LTB4-RTET

infected and uninfected zebrafish clustered independently

(Figure 2C). According to the KEGG annotation, the identified

metabolites were classified as 37% amino acids, 32% carbohydrate,

13% nucleotide, 10% lipid, and 8% as other (Figure 2D). These data

suggest that this metabolic platform provides reliable data for

further analysis.
3.3 Differential metabolic profiles in
zebrafish infected with LTB4-RTET and
LTB4-S

To explore LTB4-RTET- and LTB4-S-induced metabolic

features, a two-sided Mann–Whitney U test was used to identify

differential abundance of metabolites in the two groups compared

to control animals. We identified a total of 65 metabolites showing

differential abundance (Figure 3A). Specifically, LTB4-S- and LTB4-

RTET-infected fish had 57 and 52 differentially expressed

metabolites, respectively. A Z-score calculation was used to

display deviations between a value and the mean (Figure 3B).

Among the 57 differentially expressed metabolites in LTB4-S-

infected fish, 37 were upregulated while 20 were downregulated.

Similarly, in LTB4-RTET- infected zebrafish, out of the 52

differentially abundant metabolites, 37 were also upregulated

while 15 were downregulated. The top five downregulated

metabolites in both groups overlapped, with ranking from the

lowest to highest abundance of these five metabolites being:

aspartate < histidine < aminobutyric acid < cellobiose < uric acid

(Figure 3B). In total, we identified 44 overlapping metabolites

between the two infection models as well as 13 (5 up- and 8

downregulated) and 8 (6 up- and 2 downregulated) unique

changes in LTB4-S and LTB4-RTET infected fish, respectively.
B

C D

A

FIGURE 1

Resistance and growth phenotypes of LTB4-S and LTB4-RTET. (A) Minimum inhibitory concentration of LTB4-S and LTB4-RTET to tetracycline.
(B) LTB4-S and LTB4-RTET growth curve. (C) Dynamic changes in bacterial number in zebrafish infected with LTB4-S and LTB4-RTET. (D) Survival of
zebrafish infected with LTB4-S and LTB4-RTET.
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Among the 44 overlapping metabolites, 41 displayed the same

change with 31 upregulations and 10 downregulations

(Figure 3C). An increased number of upregulated metabolites

were identified compared to downregulated metabolites in

carbohydrate, amino acid, lipid and nucleotide groups of both

infections (Figure 3D). These data suggest that a similar

metabolic shift is characterized between infections caused by

LTB4-S and LTB4-RTET.
3.4 Metabolic pathway enrichment in
zebrafish infected with LTB4-RTET and
LTB4-S

Having data on metabolic pathway alterations provides

information that aids our understanding of key changes in the

metabolic state. Thus, differential metabolite expression was analyzed,
Frontiers in Immunology 05
leading to data showing the enrichment of 13 metabolic pathways.

Among them, phenylalanine, tyrosine, and tryptophan; D-glutamine

and D-glutamate metabolism; valine, leucine, and isoleucine

biosynthesis; alanine, aspartate, and glutamate metabolism; beta-

alanine metabolism, and arginine and proline metabolism were

ranked as the top six enriched metabolic pathways (Figure 4A). With

the exception of histidine metabolism, where the abundance of all

metabolites (aspartate, histidine, and glutamic acid) was reduced, the

other metabolic pathways exhibited both increased and decreased

metabolite expression. We hypothesized that the downregulated

metabolites were associated with the dying animals. Therefore, we

became interested in identifying a key depressed metabolite that

overlapped between LTB4-S and LTB4-RTET-infected animals as a

potential reprogramming metabolite. A total of five metabolites

overlapped among metabolites in these enriched metabolic pathways,

including aspartate, histidine, pyroglutamic acid, lysine, and

citrulline (Figure 4B).
B

C

D

A

FIGURE 2

Metabolic profiles of LTB4-S and LTB4-R. (A) Samples of total ion current chromatogram separately from control uninfected animals and LTB4-S
and LTB4-RTET-infected animals. (B) Evaluation for reproducibility of the metabolomic profiling platform. Pearson correlation coefficient of
metabolite abundance between technical replicates varies between 0.994 and 0.999. (C) Heat map showing unsupervised hierarchical clustering by
using metabolites (row). Blue, downregulated; yellow, upregulated (see color scale). (D) Categories of all metabolites by searching against KEGG.
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3.5 Biomarker identification in zebrafish
infected with LTB4-RTET and LTB4-S

Pattern recognition is an efficient method to identify

biomarkers in metabolomics analyses. Thus, orthogonal partial

least square discriminant analysis (OPLS-DA) was employed to

recognize the sample patterns of differential metabolomes. Here, t

[1] was separated control and LTB4-RTET animals from the LTB4-S

group, while t[2] differentiated control animals from the LTB4-
Frontiers in Immunology 06
RTET group and deviation of LTB4-S (Figure 5A). An S-plot was

used to identify discriminating variables with cutoff values of ≤0.05

and ≥0.5 for the absolute value of covariance p and correlation p

(corr), respectively, as biomarkers. The data showed that t[1]

identified downregulated aspartate, glucose, tyrosine, glycine,

cholesterol, mannose-6-phosphate, and upregulated ethanolamine,

alanine, glutamine, cadaverine, phosphoric acid as biomarkers. In

contrast, t[2] determined downregulated aspartate, inosine,

pyroglutamic acid, and upregulated stearic acid, octanoic acid,
B

C

D

A

FIGURE 3

Metabolic profiles of differential metabolites. (A) Heat maps showing differentially expressed metabolites (row). Blue, downregulated; yellow,
upregulated (see color scale). (B) Z-score plot showing the deviations of differential metabolites. (C) Venn diagram for the overlapping and unique
metabolites with differential abundances between the two strains. Downward facing arrow, decreased metabolites; Upward facing arrow, increased
metabolites. (D) Categories of metabolites with differential expression in the two strains.
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palmitic acid, stearic acid, myo-inositol, myo-inositol 1 phosphate,

ethanolamine, ornithinem, oleid acid as biomarkers (Figure 5B).

Among them, downregulated aspartate was found to overlap

(Figure 5C), thereby highlighting aspartate as the most promising

biomarker related to zebrafish death in the two infection models.
3.6 Aspartate protects zebrafish against
infection caused by LTB4-S and LTB4-RTET

The above finding that the downregulated aspartate is related to

zebrafish death suggested that the upregulation of aspartate may
Frontiers in Immunology 07
protect zebrafish against both LTB4-S and LTB4-RTET infections.

To test this idea, aspartate was complemented in zebrafish which

were then infected with LTB4-S and LTB4-RTET. Aspartate

improved zebrafish survival from 10% and 16.7% to 50% and

36.7%, respectively (Figures 6A, B). Meanwhile, bacterial load was

also used as an important index to evaluate the role of aspartate.

Similar to the observed changes in survival, exogenous aspartate

promoted the elimination of LTB4-S and LTB4-RTET. Specifically,

exogenous aspartate reduced LTB4-S and LTB4-RTET by at least 2-

and 4-fold after 24 h, respectively (Figures 6C, D). Therefore,

aspartate is effective at protecting zebrafish from LTB4-S and

LTB4-RTET infection.
B

A

FIGURE 4

Metabolic pathway enrichment. (A) Enrichment of metabolic pathway by the metabolites with differential abundances. (B) Integrative analysis of the
metabolites in enriched pathways. Yellow, upregulated metabolites; Blue, downregulated metabolites.
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B

C

A

FIGURE 5

Identification of biomarkers. (A) PCA of uninfected control animals, LTB4-S, and LTB4-RTET. The technical replicates of samples are showed by dots
in the plot. (B) S-plot is generated from OPLS-DA. Uninfected control animals and LTB4-RTET are differentiated from LTB4-S by using predictive
component t[1] and correlation p(corr)[1]. Uninfected control animals and the deviations of LTB4-S are separated from LTB4-RTET by using predictive
component t[2] and correlation p(corr)[2]. Ttriangle, metabolites; marked in red, candidate biomarkers. (C) Scatter diagram of crucial biomarkers in
data (B). **, P, 0.01.
B

C D

A

FIGURE 6

Role of aspartate in a zebrafish model. (A, B) Survival of zebrafish infected with and without aspartate and then infected with LTB4-S (A) or LTB4-RTET

(B). (C, D) Bacterial load in the internal organs of zebrafish injected with and without aspartate and then infected with LTB4-S (C) or LTB4-RTET (D).
*p < 0.05, **p < 0.01.
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3.7 Aspartate promotes nitric oxide
expression to eliminate LTB4-S and
LTB4-RTET

Aspartate has multiple metabolic pathways. To identify the

affected pathway in LTB4-S and LTB4-RTET-infected zebrafish,

iPath was employed to analyze differential abundances of
Frontiers in Immunology 09
metabolites (Figure 7A). LTB4-S and LTB4-RTET infections had

their own specific differential pathways, but overlapping pathways

were also identified. We were interested in the overlapping

metabolic pathways that were involved in aspartate regulation.

Our data showed that aspartate is involved in four overlapping

metabolic pathways, where the metabolic flux from aspartate to the

urea cycle is fully affected (Figure 7A). Aspartate is a source for the
B C

D

E F G H

A

FIGURE 7

Role of NO in the aspartate potentiation. (A) iPath analysis for global metabolic changes. (B) Urea cycle and NO biosynthesis. (C, D) qRT-PCR for NO
generation genes expression in control, LTB4-S, and LTB4-RTET (C) or plus aspartate (D). (E) NO level in control, LTB4-S, and LTB4-RTET animal
groups. (F) NOS activity in control, LTB4-S, and LTB4-RTET animal groups. (G) NO level in control, LTB4-S, and LTB4-RTET animal groups in the
presence of aspartate. (H) NOS activity in control, LTB4-S, and LTB4-RTET animal groups in the presence of aspartate. *, P , 0.05; **, P , 0.01.
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urea cycle, where NO is synthesized from an L-arginine by NOS

(Figure 7B). Next, we performed qRT-PCR to measure expression

of genes encoding the cycle in surviving and dying LTB4-S- and

LTB4-RTET-infected zebrafish. Decreased and increased expression

of ass1, as1, nos2a, and nos2b was measured in dying and surviving

animals, respectively, compared to control animals. Interestingly,

arg2 expression remained unchanged in the LTB4-S infection

model. Notably, expression of the four genes was higher in

animals infected with LTB4-S compared to LTB4-RTET

(Figure 7C). When aspartate was complemented, higher

expression of the four genes was measured (Figure 7D). Further,

the activity of NOS and NO was lower in the dying animals but

higher in the surviving animals compared to the control group

(close to significant difference in NOS of the dying fish caused by

LTB4-RTET) (Figures 7E, F). However, aspartate complement

promoted NOS activity and NO level even if zebrafish were

challenged by LTB4-S and LTB4-RTET (Figures 7G, H). Taken

together, these data confirm that aspartate promotes

NO production.
3.8 Sodium nitroprusside promotes
zebrafish to eliminate LTB4-S and
LTB4-RTET

To demonstrate that NO plays a role in the elimination of

LTB4-S and LTB4-RTET, NO donor sodium nitroprusside was
Frontiers in Immunology 10
used to test protection against infection caused by LTB4-S and

LTB4-RTET. NO was elevated during treatment with 3–6 mg
sodium nitroprusside (Figures 8A, B). Sodium nitroprusside

increased zebrafish survival in both infection models in a dose-

dependent manner leading to survival rates of 55.5% and 48%,

respectively, following treatment with 6 mg sodium nitroprusside

(Figures 8C, D). In addition, we found that sodium nitroprusside

consistently caused a reduction in bacterial load in both

experimental groups. Specifically, sodium nitroprusside

reduced LTB4-S and LTB4-RTET by at least 2- and 3-fold after

24 h, respectively (Figures 8E, F). These results indicate that NO

plays an important role in protecting zebrafish from LTB4-S and

LTB4-RTET infection.
4 Discussion

Antibiotic-free therapy against bacterial infection is recommended

as this strategy avoids antibiotic-related shortcomings (32, 33). Among

the antibiotic-free therapy, reprogramming of the metabolome/

metabolic state is an effective approach to restore host protection

from microbes. In the present study, we used this approach to explore

the potential of using a single reprogramming metabolite to combat

both antibiotic-sensitive and -resistant E. tarda. In this way, we have

identified aspartate as the ideal reprogrammingmetabolite and we have

shown that it is downregulated in both LTB4-S- and LTB4-RTET-

infected dying zebrafish. Moreover, exogenous aspartate protects
B

C

D

E F

A

FIGURE 8

Role of sodium nitroprusside in the aspartate potentiation. (A, B) NO level of zebrafish in the indicated sodium nitroprusside plus LTB4-S (A) or LTB4-RTET

(B). (C, D) Survival of zebrafish infected with LTB4-S (C) or LTB4-RTET (D) and with and without the indicated sodium nitroprusside. (E, F) Bacterial load in
internal organs of zebrafish infected with LTB4-S (E) or LTB4-RTET (F) and with and without sodium nitroprusside. *p < 0.05, **p < 0.01.
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zebrafish to eliminate LTB4-S and LTB4-RTET, thereby improving

survival. Mechanistically, exogenous aspartate-mediated metabolic flux

promotes NO biosynthesis to induce its protective effect, which is

further validated by NO donor sodium nitroprusside that also

promotes the elimination of both LTB4-S and LTB4-RTET in

zebrafish to increase the survival rate of these infected animals as

exogenous aspartate does. These results suggest that aspartate-

mediated NO may be an effective approach for combating both

antibiotic-sensitive and -resistant E. tarda, providing a previously

unknown antibiotic-free therapeutic modality to eliminate E. tarda

with both antibiotic sensitivities.

Reprogramming of the metabolome/metabolic state has

previously been adopted to promote antibiotic killing efficacy

(34–37), as well as to protect hosts against bacterial infection (20,

38–40). In the latter, reprogramming metabolites are identified

from the comparison between control and surviving infected

animals (41, 42). In a change from this, the present study

explores whether reprogramming metabolites may be identified

from the comparison between control and dying animals in E. tarda

infection models. Our robust proof of concept study indicates that

biomarkers identified from dying animals can be used as

reprogramming metabolites. These data will be helpful in utilizing

dying instead of surviving animals to identify reprogramming

metabolites for low-antibiotic and antibiotic-free strategies against

bacterial pathogens, which is especially important for animals with

high economic value.

Thus, we have identified aspartate as the most promising

biomarker, and demonstrated its downregulation in zebrafish

infected with LTB4-S or LTB4-RTET compared to control fish.

Exogenous aspartate was also shown to be an ideal

reprogramming metabolite to combat both LTB4-S and LTB4-

RTET infection. Based on aspartate metabolism, it is logical to

hypothesize that high doses of aspartate promote NO generation,

given aspartate acts as a source for its biosynthesis. On the other

hand, NO is a key gas messenger in the pathogenesis of

inflammation, where it links innate and adaptive immunity (43,

44). NO-mediated elimination of bacterial pathogens has previously

been documented (45, 46), but there are no specific reports of NO-

mediated elimination to E. tarda. Therefore, the present study

focused on answering two questions: does exogenous aspartate

promotes NO biosynthesis and does NO combat antibiotic-

sensitive and -resistant E. tarda? Our results show that high doses

of aspartate elevate NO biosynthesis and that sodium nitroprusside-

induced elevation of NO also protects zebrafish against LTB4-S and

LTB4-RTET infection. Therefore, downregulation of NO due to

bacterial infection is a cause of zebrafish failure to eliminate

LTB4-S and LTB4-RTET pathogens. Therefore, indirect

complementation of NO by aspartate metabolic reprogramming

or directly by sodium nitroprusside restores protection against

LTB4-S and LTB4-RTET infection.
Frontiers in Immunology 11
5 Conclusion

Herein, we show that aspartate is depressed in dying zebrafish

infected with LTB4-S and LTB4-RTET and we have validated its role as

a reprogramming metabolite. Exogenous aspartate restores zebrafish

protection against LTB4-S and LTB4-RTET infection by increasing NO

synthesis. These results suggest that reprogramming metabolites can be

identified from both surviving and dying animals. Promoting NO

production is an important method for promoting aspartate-mediated

elimination of pathogenic bacteria. Because metabolites have multiple

metabolic pathways to produce different effect products, only by

identifying the metabolic pathways that play a role can we reveal

underlying mechanisms and develop reversal strategies.
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