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Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung

injury characterized by the damage of alveolar epithelial cells and pulmonary

capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary

edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is

often accompanied by immune system disturbance, both locally in the lungs and

systemically. As a common heterogeneous disease in critical care medicine,

researchers are often faced with the failure of clinical trials. Latent class analysis

had been used to compensate for poor outcomes and found that targeted

treatment after subgrouping contribute to ARDS therapy. The subphenotype of

ARDS caused by sepsis has garnered attention due to its refractory nature and

detrimental consequences. Sepsis stands as the most predominant

extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS

cases. Studies indicate that sepsis-induced ARDS tends to be more severe than

ARDS caused by other factors, leading to poorer prognosis and higher mortality

rate. This comprehensive review delves into the immunological mechanisms of

sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted

treatments, aiming to providing mechanism understanding and exploring ideas

for accurate treatment of ARDS or sepsis-ARDS.

KEYWORDS

acute respiratory distress syndrome (ARDS), sepsis, heterogeneity, immune system,
precision therapy
1 Introduction

Acute respiratory distress syndrome (ARDS) is a diffuse lung injury caused by

intrapulmonary and extrapulmonary factors in a short period, histologically

characterized by diffuse alveolar damage, including pulmonary edema, hyaline

membrane formation, alveolar hemorrhage and inflammation (1–3). ARDS is a

heterogeneous syndrome, and its heterogeneity is mainly manifested in physiology,

imaging findings, etiology, onset time, biomarker and gene differences, etc. Among the
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subtypes of ARDS, septic ARDS is a noteworthy and complex one.

Sepsis is a major risk factor for ARDS, accounting for 32% of ARDS

etiology (4). The prognosis of patients with sepsis-induced ARDS is

worse than that of patients with sepsis or ARDS alone. This

subgroup of ARDS usually faces a higher mortality rate and a

lower success rate of extubation, which has received more attention

in clinical practice (5, 6).

Sepsis is a systemic inflammatory reaction caused by a

maladjusted response to infection induced by pathogenic

microorganisms (7). The overwhelming inflammatory molecules,

released due to infection in sepsis, not only flow along the systemic

blood circulation, but also form a cascaded and amplified network

with the participation of the nervous, endocrine and immune

system (8). Sepsis is a common disease in intensive care units

(ICU). Research had revealed that sepsis has an incidence of 437/

100,000 on a global scale, with a case fatality rate of 17% (9).

Another two-month prospective observational cohort study in

China mainland showed that 54.8% of ICU patients would

progress from severe sepsis to a comorbidity of sepsis-ARDS, and

the proportion of non-surviving patients in sepsis-ARDS reached

71.0% (10). The cytokine storm caused by sepsis can bring about

either direct damage to the lung epithelium or indirect damage to

the lung endothelium (11, 12). Due to large individual differences, it

is difficult to obtain reliable results in clinical trials of ARDS, and

some treatments are only effective in a small portion of patients (13,

14). Therefore, it is crucial to explore the heterogeneity of ARDS

and the immunological mechanism behind it for the effective

therapy. This review mainly introduces the heterogeneity of

ARDS, the related precision medicine and the immunological

mechanism of sepsis-ARDS, hoping to provide some assistance

and guidance for researchers in the study of the heterogeneity of

ARDS and the treatment of sepsis-induced ARDS.
2 ARDS heterogeneity

The clinical, physiological , biological and imaging

manifestations of ARDS are highly heterogeneous. The etiological

factors of ARDS can be divided into two types: intrapulmonary and

extrapulmonary. The intrapulmonary factors, such as pneumonia

and mechanical ventilation, primarily inflict damage on the alveolar

epithelium, whereas extrapulmonary factors like sepsis and acute

severe pancreatitis initially impair the endothelium and

subsequently result in pulmonary edema (15). The 1994

American-European Consensus Conference(AECC) had suggested

that this heterogeneity would greatly hinder the research on the

treatment of ARDS (16). The Consensus Conference in 1994 laid

the foundation for a better understanding of ARDS, and the Berlin

Definition published in 2012 defined ARDS in more detail and had

classified ARDS patients according to the PaO2/FiO2 level (17).

With the proposal of the Berlin definition, some researchers

conducted autopsies on 712 patients with ARDS according to the

Berlin definition, which clarified the high sensitivity and low

specificity of the Berlin definition, and researchers confirmed the

pathological heterogeneity of ARDS as well (18). Recently, the new

definition of ARDS has been proposed based on the original Berlin
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definition, which has been fine-tuned and modified. For example,

the pulse oxygen saturation SpO2/FiO2 is allowed to replace PaO2/

FiO2 in the classification criteria (3). These definitions reflect an

evolving understanding of the heterogeneity of ARDS as a complex

syndrome that needs to be treated differently, on a case-by-case

basis, as compared with the previous defining as a whole. The

specific changes in the new definition relative to the Berlin

definition are shown in Table 1.

Many clinical trials that treated patients with ARDS as a unified

group have failed (19). And latent class analysis of failed clinical

trials briefly came into focus (20–22). Due to the failure of a large

number of clinical trials, more individuals are paying attention to

the subgrouping of ARDS to obtain the meaningful experimental

results (Table 2). With this subgrouping, one hopes to harvest

different and beneficial clinical trial results in the near future.
2.1 Physiologically subgrouping

ARDS is a multi-etiology disease, and different etiologies will

bring physiological variability. The grouping of ARDS from a

physiological perspective will be a key point to figure out its

heterogeneity. According to the Berlin definition in 2012, ARDS
TABLE 1 Berlin definition and new global definition of ARDS (3, 17).

Berlin
definition

New global definition

Disease onset Existing clinical
injury or
exacerbation of
new or existing
respiratory
symptoms
occurred within
one week

The onset of COVID-19 cases may be
prolonged. HFNO was included to
capture those with a slow course of
disease.

Pulmonary
imaging
findings

X-ray or CT scans
show a bilateral
dense shadow of
the lung that
cannot be
explained by
effusion, lobar
pneumonia,
atelectasis, or
nodules

In addition to bilateral opacities on chest
radiography and CT, the absence of
ventilation identified by ultrasound can
be also used as the criterion.

Oxygenation
index

Mild: 200
mmHg<PaO2/FiO2

≤ 300 mmHg with
PEEP/
CPAP≥5cmH2O
Moderate: 100
mmHg< PaO2/
FiO2 ≤ 200 mmHg
with
PEEP≥5cmH2O
Severe: PaO2/FiO2

≤ 100 mmHg with
PEEP≥5cmH2O

In addition to PaO2/FiO2, SpO2/FiO2
can also be used for severity assessment
when SpO2 ≤ 97%. A new category of
non-intubated ARDS was created for
patients with HFNO≥30L/min who met
the criteria for ARDS, and PaO2/FiO2
and PEEP were no longer mandated as
limited-condition criteria.
PAWP, Pulmonary artery wedge pressure; PEEP, positive end-expiratory pressure; CPAP,
continuous positive airway pressure; FiO2, Fraction of inspired oxygen; PaO2, Partial pressure
of arterial oxygen; HFNO, High flow nasal oxygen; SpO2, Pulse oximetric oxygen saturation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1277161
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1277161
was divided into mild, moderate and severe types based on PaO2/

FiO2 ratio (17). Patients with severe ARDS (PaO2/FiO2 ≤

150mmHg) were selected for randomized controlled trials of

prone ventilation and neuromuscular blockers as a research

object. Both trials shown that these two treatments can

significantly improve 90-day survival (23, 24). The definition of

severe ARDS here differs from the Berlin definition, in which PaO2/

FiO2 ≤ 100mmHg, possibly because the two randomized trials were

designed before the declaration of Berlin definition. In a multicenter

prospective study, patients with increased lung dead-space tended

to have a higher risk of mortality (31). The dead-space fraction is an

independent risk factor for ARDS patients (31). Perhaps in future

clinical trials, the lung dead-space fraction will be included in the

grouping criteria.
2.2 Imaging findings variety

In the progression of ARDS, the shadow range and lesion range

in the imaging results of patients are varied, which brings a certain

degree of hindrance to the diagnosis and treatment. Pulmonary

ARDS is usually characterized by extensive ground-glass

opacification and asymmetric lung consolidation, while

extrapulmonary ARDS is characterized by symmetrical ground-

glass opacification distributed in perihilar regions (32). Desai et al.

tend to distinguish pulmonary ARDS and extrapulmonary ARDS

by the typical or atypical CT manifestations. The typical CT

manifestations are characterized by extensive and intense

opacification of the dependent parenchyma, whereas the atypical

CT manifestations involve more extensive and intense opacification

of the non-dependent parenchyma. Researchers have observed that

extrapulmonary ARDS often exhibit typical CT features (33). Some

studies have divided the ARDS into diffuse ARDS and lobular

ARDS by CT findings, and found that the two types have distinct

responses to positive end expiratory pressure (PEEP) (25). In

patients with diffuse ARDS, PEEP brought about significant

alveolar dilation, while in patients with lobar ARDS, only mild
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alveolar dilation was induced by PEEP (25). These imaging findings

have guiding implications for clinical management of ARDS.

Radiological features are the most intuitive means to detect

inflammatory infiltration in the lung, which can usually provide

rapid guidance to clinicians when fighting against the illness.
2.3 Heterogeneity in the onset
time of ARDS

The Berlin definition sets the onset of ARDS as within one week

of the occurrence or exacerbation of the underlying injury (17). In

2009, Liao et al. took 48 hours as the cut-off line and divided

patients admitted to ICU into early-onset(<48h after ICU

admission) and late-onset ARDS(>48h after ICU admission), and

they found that these two have different prognoses and mortality

(34). Data from a multicenter observational study showed that

patients with early-onset ARDS had higher scores in both Simplified

Acute Physiology Score (SAPS) II and initial Sequential Organ

Failure Assessment(SOFA), whereas those with late-onset ARDS

had longer ICU and hospital stays (35). Therefore, the onset time of

ARDS is also a very important heterogeneous factor affecting the

outcome of patients. The classification of ARDS according to the

onset time after admission can sometimes predict the possible

clinical manifestations and thus make treatment more favorable.

For example, studies have found that early-onset ARDS is

associated with severe hemorrhagic shock, while late-onset ARDS

is often characterized by pneumonia and multiple organ damage

(26). Moreover, early-onset ARDS responds better to protective

mechanical ventilation (26). The different onset time of ARDS can

bring about protein biomarker diversity, such as receptor for

advanced glycation end product (RAGE)s and Angiopoietin

(Ang)-2, markers of alveolar capillary barrier injury, which are

only elevated in early-onset ARDS (36). The variations in

pathological manifestations, response to therapy, and levels of

circulating proteins underscore the importance of classifying

ARDS based on its onset time.
TABLE 2 ARDS heterogeneity summary.

Derivation of
ARDS

heterogeneity

Main observation
target

Manifestations Targeted treatment

Physiology PaO2/FiO2 Mild;
moderate;
severe

Prone ventilation and neuromuscular blockers for severe ARDS
(23, 24)

Imaging CT imaging findings Diffuse ARDS;
lobular ARDS

Only CT findings of ARDS with diffuse lung injury benefits from
PEEP (25)

Onset time ICU admission to 48 hours Early-onset ARDS;
late-onset ARDS

Early-onset ARDS had a better response to PEEP (26)

Biomarker Biomarker expression level Hyperinflammatory;
hypoinflammatory

Simvastatin was more effective for treatment of hyperinflammatory
ARDS than hypoinflammatory ARDS (27).

Etiology Initial damaged organs Pulmonary ARDS; extrapulmonary
ARDS

Extrapulmonary ARDS responded well to prone ventilation and
PEEP (28, 29).

Genetic susceptibility Key gene variants Ang-2; IL-1b; IL1RN Targeted therapy for genes (30)
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2.4 Biomarker heterogeneity

Biomarkers of ARDS can not only indicate the pathogenesis and

progression of the disease, but also conduce to identify ARDS

subgroups and provide targeted treatment (37–39). RAGE is

mainly distributed in the basal surface of alveolar type 1(AT1)

epithelial cells, and it engages in innate immunity and important

alveolar inflammatory pathways (40, 41). Soluble RAGEs, a marker

of type I alveolar epithelial cell injury, produced by cleavage of full-

length RAGE, are increased only in the early stages of ARDS (39,

42). The randomized controlled trial of a single-center study found

a significant difference in soluble RAGE level between direct ARDS

and indirect ARDS (43). In addition to RAGE, the levels of

Surfactant protein D (SP-D), IL-6, IL-8 and von Willebrand

factor (vWF) were also significantly different between these two

groups (43). In an observational study, patients with non-focal

ARDS had higher plasma levels of soluble RAGE (44).

In ARDS, RAGE reflects alveolar epithelial damage, whereas

Ang-2 is a marker of endothelial cell activation and increased

capillary permeability. In a randomized controlled trial, plasma

Ang-2 level was proved to predict the prognosis and mortality of

patients with ARDS, and high levels of Ang-2 usually suggest poor

prognosis (45). In critically ill patients, the early elevation of Ang-2

can predict the impending occurrence of acute lung injury (ALI)

(46). Ang-2 in ARDS could reflect endothelial injury, which is

common in extrapulmonary ARDS.

Another important plasma marker associated with ARDS

severity is IL-1 receptor antagonist (IL-1RA), a naturally

occurring substance secreted by monocytes, which can bind to

the IL-1 receptor without initiating transcription and thus exert an

anti-inflammatory effect (47). Due to the anti-inflammatory effect

of IL-1RA, it is universally accepted that IL-1RA may play a

protective role in ARDS and sepsis. In the 1994 randomized

controlled trial, IL-1RA was found to have no statistically

significant therapeutic effect in patients with sepsis (48).

Nevertheless, in the post hoc analysis, IL-1RA improved survival

in patients with severe sepsis who had organ failure or a high

predicted mortality rate (>24%) (48). In another randomized

controlled trial in sepsis (including septic ARDS), no clear

therapeutic benefit of IL-1RA was found either (49). In the

upgraded clinical trial, when sepsis patients (including ARDS

patients) were grouped according to the plasma level of IL-1RA at

enrollment, the high IL-1RA level group tended to obtain survival

benefits (50). The ILRN variant rs315952C present in subjects of

European ancestry increases plasma levels of ILR1A and patients

with the variation had higher survival rate in patients with septic

shock (50). Additionally, endothelin serves as a crucial biomarker

for sepsis-induced ARDS, and its production actively contributes to

the progression of organ dysfunction in sepsis, including ARDS

(51). In the context of sepsis-induced ARDS, free fatty acid (FFA)s/

non-esterified fatty acid (NEFA)s emerge as another crucial

substances. Free fatty acid serum C18 can be used as an

important predictor of ARDS development (52). In animal

experiments, reducing plasma non-esterified fatty acid (NEFA)

levels has been shown to decrease the incidence of lung injury (53).
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Beyond that, other markers can also be used to observe the

heterogeneity of ARDS including thrombomodulin, TNF-1

receptor and so on (54, 55). Latent class analysis after

randomized controlled trials found that when ARDS patients

were divided into hyperinflammatory and hypoinflammatory

subgroups according to the expression levels of inflammatory

cytokines, the clinical manifestations and prognoses of the two

subgroups were widely different (56). In this subgrouping, ARDS

patients were regrouped according to inflammatory biomarkers,

and patients with hyperinflammatory ARDS had a higher incidence

of shock and mortality rate, and they response better to PEEP (20).

A suitable and stable biomarker not only enhance comprehension

of the disease progression, pathogenesis and possible prognosis of

ARDS, but also facilitate physicians to make appropriate treatment

decisions for different subtypes of ARDS.
2.5 Etiological diversity of ARDS

The etiology of ARDS is diverse and variable, including

pneumonia, aspiration of stomach contents, sepsis, acute severe

pancreatitis, extensive burn, etc. Pneumonia and non-pulmonary

sepsis are the most common risk factors for ARDS (6). A

retrospective cohort study of microbial-positive pneumonia found

that bacterial infection was the leading cause of pneumonia,

followed by fungal, viral, and mixed pathogen infections (57).

However, the incidence of lung injury induced by bacterial

pneumonia is lower than the latter (57). For patients with sepsis,

the incidence of ALI caused by gram-positive and gram-negative

bacterial infections was similar (57). For patients with viral

infection, studies had pointed out that influenza A virus is the

main viral cause of ARDS in adults (58). Compared with H1N1

influenza virus group, which mainly causes mild and moderate

ARDS, H7N9 influenza virus infection has a high risk of severe

ARDS (59, 60). In addition, the infection of severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) could also lead to ARDS,

namely the severe COVID‐19,which brings about significant lung

injury by binding to the ACE2 receptor (61). Similar to sepsis

induced ARDS, COVID-19 are characterized by coagulation

dysfunction, which is prone to form pulmonary thrombosis and

lung dysfunction (61). Vascular enlargement is a specific imaging

finding of lung injury caused by COVID-19, differing from the

etiology of other pathogens (61, 62).

Different etiology often leads to different clinical manifestations

and mechanisms. As early as 1998, researchers had found that

ARDS caused by pneumonia and extrapulmonary factors (trauma,

peritonitis, shock, intestinal infection, etc.) has different pathologies

and distinct responses to PEEP (63). Since then, ARDS had been

divided into pulmonary and extrapulmonary subgroups according

to etiology, and a series of studies have been conducted on ARDS

according to this classification. Compared with indirect injury

(extrapulmonary ARDS), patients with direct injury (pulmonary

ARDS) would have higher lung compliance and less responsiveness

to PEEP (64). Alveolar epithelial injury, alveolar collapse and fibrin

deposi t ion most ly occur in pulmonary ARDS, whi le
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extrapulmonary ARDS mainly causes vascular endothelial injury

(15, 65). Wide differences in imaging manifestations and

biomarkers between pulmonary ARDS and extrapulmonary

ARDS arouse extensive concern (32, 43). Additionally, several

studies had shown that the mortality of those two are not the

same. The mortality rate of extrapulmonary ARDS was slightly

higher than that of pulmonary ARDS, but the difference was not

significant (66, 67). Various etiologies of ARDS often have different

outcomes and pathophysiological mechanisms. Subgrouping of

ARDS by etiologies can predict the likely progression of the

disease and prevent the occurrence of serious conditions.

In clinical practice, the incidence of sepsis or ARDS is higher

than that of sepsis-induced ARDS, but the prognosis of sepsis-

induced ARDS is worse (68, 69). Sepsis-related ARDS has a lower

PaO2/FiO2 ratio, more obvious dyspnea, longer recovery time, and

lower success rate of extubation than non-sepsis-related ARDS (5, 6,

70). According to previous studies, sepsis is the main cause of

ARDS, accounting for 31% of the etiology of ARDS, and ARDS is a

serious and destructive complication of sepsis (4). Extreme hypoxia

approximately account for 38.2% of mortality in ICU (5). Hence,

sepsis-induced ARDS is a notable group, and further research on

this subgroup may immensely reduce the mortality of respiratory

causes in ICU.
2.6 Genetic variability

When studying the genetic characteristics of ARDS, it is

arduous to obtain a family pedigree of ARDS patients, because

the disease is often secondary to other serious systemic diseases and

most cases are sporadic (71). However, researchers can study the

association between individual genetic variants about ARDS risk

factors. Studies found that the single nucleotide polymorphism

(SNP) rs1190286 in the POPDC3 gene was associated with a

reduced risk of ARDS, and the -308A allele of TNF was

associated with increased mortality of ARDS (72, 73). The SNP

rs315952C of IL1RN can increase the plasma level of IL1RA and

reduce the risk of ARDS (74). In the study of the causal relationship

between genes and diseases, Mendelian randomization analysis is

commonly used (75, 76). Through the analysis of haplotypes of IL-

1b, it was found that plasma level of IL-1b can affect the 90-day

mortality of sepsis (77). As a key marker of endothelial activation

and permeability, Ang-2 gene variation is also crucial for the disease

risk prediction of ARDS. Studies have found that gene variation in

Ang-2 may lead to an increased risk of ARDS, such as the variant T

allele of one tSNP (rs2515475) and haplotype TT in block 2

containing the T allele (78). The association between the

development of ARDS and this SNP was found to be dependent

on the linkage disequilibrium between rs2515475 and rs2959811,

primarily occurring in subjects of extrapulmonary injury (78). The

primary reason for the impact of Ang-2 gene variation on ARDS

occurrence lies in its association with pulmonary vascular

permeability, leading to an increased likelihood of pulmonary

edema fluid accumulation when extrapulmonary injury affects the

lungs (79). Furthermore, it has been demonstrated that genetic

variations in the Ang-2 gene can alter its expression (80). The
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plasma level of Ang-2 can serve as a reliable prognostic and

mortality predictor for patients with sepsis and ARDS (81).

Genetic polymorphisms contributing to ARDS occurrence are

generally relevant to innate immunity, surfactant function,

oxidative stress, and capillary endothelium (71). Genetic variants

correlated to the pathogenesis of ARDS are the root of the

heterogeneity of ARDS. Candidate genes can be obtained by

microarray gene expression analysis, genome-wide association

analysis, RNA sequencing and so on. Studies of candidate

genes can contribute to further identify the causal genes in

ARDS pathogenesis.
2.7 Individual variation

Individuals with underlying diseases and diverse personal

characteristics or living habits also exert a certain influence on the

occurrence and progression of ARDS. Various studies have

demonstrated that patients suffering from diabetes, severe obesity,

hypertension and cardiovascular disease are more prone to

experiencing unfavorable outcomes following infection with

COVID-19 (82–84). Diabetic and obese individuals typically

exhibit compromised innate and adaptive immunity, along with a

persistent state of chronic low-grade inflammation (85). In a

regression cohort study, advanced age was found to be

significantly associated with an increased risk of mortality, and

patients who developed ARDS as a complication of COVID-19 were

observed to have a higher prevalence of hypertension and diabetes

(86). Additionally, lifestyle behaviors such as smoking and drinking

can affect ARDS progression and prognosis. A 15-year cohort study

revealed a dose-response correlation between smoking and the

development of ARDS, whereas no such association was observed

among individuals who consumed alcohol (87). Studies found that

exposure to cigarette smoke results in an increased influx of

neutrophils and induces damage to the alveolar epithelium (88).

However, the meta-analysis of observational studies conducted

between 1985 and 2015 by Simon et al. revealed a significant

association between alcohol consumption and an increased risk of

ARDS (89). This may be attributed to the depletion of glutathione

resulting from chronic alcohol exposure, which subsequently leads

to dysfunction of alveolar epithelium and failure in clearing alveolar

fluid (90). The presence of significant inter-individual variations

and diverse risk factors among patients often exerts an impact on

the onset and progression of ARDS, thereby posing challenges to

clinical diagnosis and treatment.
3 Pathogenesis of septic ARDS

Sepsis is the most common pathogenic factor of ARDS, which

can cause ARDS in less than a week, and the prognosis of those

patients is poor (91). ARDS, a common clinical critical disease, has a

mortality rate as high as 40%, and septic ARDS has a worse

prognosis and higher mortality (91). The underlying mechanism

of sepsis-induced ARDS is very complex, and the general process

may be as follows: under the action of injury factors (such as
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1277161
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1277161
bacterial and viral attacks, traumas, peritonitis and so on),

circulating immune cells are activated and inflammatory

mediators are overwhelmingly released in the blood, which

damages the systemic vascular endothelium, including the

capillary endothelium of the lung. When the endothelium of

pulmonary capillaries is damaged, it will cause the activation of

immune cells in the lung. These cells aggravate the pulmonary

inflammatory response and eventually leads to lung injury

(Figure 1). Septic ARDS are mainly histologically manifested in

five aspects: epithelial and endothelial injury, various cell death,

oxidative stress, microcirculation disorder and pulmonary edema.
3.1 Vascular endothelial and alveolar
epithelial injury

The development of sepsis-induced ARDS can be attributed to

both direct and indirect lung injury (11). The air-exchange function

of the alveoli is maintained by the alveolar-capillary barrier, which

is mainly composed of three parts, including the epithelial cell layer,

the microvascular endothelial cell layer, and the interstitial space

between the epithelium and the endothelium. The destruction of the

barrier will disrupt the ventilation/perfusion ratio, leading to lung

injury and dysfunction (92). Vascular endothelial integrity is

synergistically established by vascular endothelial cadherin and

the endothelial receptor kinase Tie2, and this process is regulated
Frontiers in Immunology 06
by vascular endothelial protein tyrosine phosphatase (VE-PTP)

(93). Sepsis down-regulates the expression of Angpt-1, Tek, and

KDR in systemic tissues at the transcriptional level, and Angpt-1,

Tek, KDR corresponds to Ang-1, Tie2, and VEGFR2 or Flk-1.When

these proteins are down-regulated, permeability of pulmonary

capillary endothelial is increased and then lung injury develops

(94).The alveolar epithelium, composed of alveolar type I and type

II cells, is primarily responsible for gas exchange and alveolar fluid

clearance in the lung. Epithelial cell death is the main feature of

alveolar damage in ARDS, which can be caused by bacterial and

viral infection, mechanical stretch, hypoxia and other reasons (95).
3.2 Cell death

With the progress of scientific research, scientists have realized

that the modes of cell death include but are not limited to necrosis

and apoptosis necroptosis, pyroptosis, ferroptosis, lysosomal-

dependent cell death, autophagy-dependent cell death and so on

(96). Apoptosis is the main form of programmed cell death without

producing inflammation (97). Excessive apoptosis of cells is critical

in the progression of sepsis-induced ARDS. In sepsis-induced lung

injury, apoptosis mainly appeared in endothelial rather than

epithelial cells (98). Microvascular dysfunction induced by sepsis

is closely related to vascular endothelial cell apoptosis, which is

mediated by caspases and iNOS/NAPDH oxidase pathways.
FIGURE 1

Sepsis can cause ARDS through circulating immune cells and cytokines. After the host undergoes the attack causing sepsis, circulating immune cells
are activated and abundant inflammatory mediators are released in the blood. These cells and cytokines injure the vascular endothelium systemically,
including the capillary endothelium of the lung. When the endothelium of pulmonary capillaries is damaged, activated immune cells migrating into the
lung aggravate the pulmonary inflammatory response and eventually lead to ARDS occurrence.
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Besides, some studies had shown that in sepsis-induced ARDS, the

degree of neutrophil apoptosis is inversely proportional to the

disease severity, and the delay of neutrophil apoptosis will

aggravate lung tissue injury (99).

In ARDS, inflammation and cell death interact such that both

processes are gradually and automatically amplified, creating a

vicious cycle. One study demonstrated that upregulation of IL-

1R1promotes alveolar macrophage pyroptosis and worsens lung

injury (100). In addition, inflammasomes released from pyroptotic

cells can also induce IL-1b activation and enhance inflammatory

responses in macrophages (101). Pulmonary endothelial cells also

underwent caspase-11-mediated pyroptosis in sepsis-induced lung

injury (102). Caspase-11, activated by LPS, can cleave Gasdermin D

into polypeptides and form nanopores in the cell membrane,

causing pyroptosis and the release of the cytokine IL-1b (103,

104). Extensive lung endothelial cell death, the release of lactate

dehydrogenase (LDH) and IL-1b, and the destruction of endothelial

cell barrier are important pathological mechanisms of sepsis-

induced ARDS.

In inflammation, necrosis of macrophages can be regulated by a

receptor-interacting protein kinase (RIPK)1-RIPK3 complex-

dependent pathway, namely necroptosis. Necroptosis is driven by

necrosome and it alerts the immune system after overwhelming

damage to the host, involving cell swelling, membrane rupture, and

release of cytoplasmic contents (105). LPS-TLR4 signaling pathway

can promote the occurrence of alveolar macrophage necroptosis

(106). The recognition of TLRs towards bacteria is closely

associated with bacterial cell wall. TLR2 primarily recognizes the

cell wall components of Gram-positive bacteria and peptidoglycan

from Staphylococcus aureus, while TLR4 plays a pivotal role in LPS

signaling transduction from Gram-negative bacteria (107).

Necroptosis of endothelial cells and epithelial cells can also exist

in sepsis-induced ARDS (108–110). In a mouse model of sepsis,

RIPK3 deficiency significantly prolonged the survival of mice, and

pretreatment with necrostatin-1 can reduce mortality rate in

systemic inflammatory response syndrome (111, 112).

Ferroptosis, as a form of cell death dependent on the regulation

of iron and ROS, is also involved in the disease progression of ARDS

caused by sepsis. Studies have shown that neutrophil extracellular

traps (NET)s can regulate sepsis-induced ARDS by activating

ferroptosis in alveolar epithelial cells (113). Ferroptosis exists not

only in alveolar epithelial cells, but also in alveolar capillary

endothelial cells and macrophages (114–117). Researchers are

inclined to investigate targeted drugs that can effectively inhibit

the process of ferroptosis, thereby potentially impeding the

progression of sepsis-induced ARDS (117–120). In addition,

autophagy also plays a role in the process of sepsis-induced lung

injury. Autophagy is a cytoprotective process that promotes the

degradation and recycling of cellular components, and its activation

can alleviate lung injury and inflammation caused by sepsis (121).

Dysregulation of autophagy can lead to the aggravation of lung

injury, pulmonary fibrosis, chronic obstructive pulmonary disease

and other lung diseases (122–125).
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3.3 Oxidative stress

Oxidative stress generally refers to a state of imbalance between

oxidation and antioxidant defense system (126). Oxidation is

basically caused by highly oxidizing substances such as ROS and

reactive nitrogen radicals (RNS).The production of these substances

can not only fight against invading pathogens, but also oxidize or

damage DNA, proteins and lipids, inducing gene mutations, protein

denaturation and lipid peroxidation (127). Under physiological

conditions, the oxidation and reduction of the human body can

reach a state of equilibrium. In the pathological situation of ARDS

caused by sepsis, plentiful neutrophils flood into lung tissue and

alveolar space, and neutrophils contain NADPH oxidase

complexes, which are the primary source of ROS (128). Excessive

ROS can bring about lung epithelial and endothelial injury. A study

showed that instillation of enzymes producing oxygen metabolites

in the rat lung alone can cause non-neutrophil-dependent ALI

(129). Moreover, oxidative stress can also cause pulmonary capillary

endothelial injury by impairing vasodilation, increasing the

adhesion of leukocytes and platelets to the blood vessel wall, and

improving capillary permeability, which eventually leads to lung

injury (130). Nowadays, molecules associated with oxidative stress

has been considered a vital and new target for the treatment of

septic ARDS disease, and antioxidant therapy is an essential part of

the therapy of sepsis (131, 132).
3.4 Pulmonary microcirculation disorder

Sepsis is a systemic disease that can affect the microcirculation

of the lung through hemodynamic changes and vascular endothelial

damage. In sepsis patients, the deformability of erythrocytes

reduced and the cell aggregation increased, resulting in

microvascular circulation disorders (133, 134). Sepsis can cause

the damage of the endothelial and the release of the inflammatory

cytokines, leading to the adhesion and aggregation of the immune

cells and platelets on endothelial cells, which possibly results in

microvascular thrombosis and the occurrence of ARDS. During

sepsis, cytokine storms can lead to the overexpression of nitric oxide

(NO) synthase on endothelial cells and the synthesis of NO,

resulting in vasodilation and adrenergic hyporeactivity, which

affects microcirculatory hemodynamics (135). It has been

reported that intestinal ischemia can induce a massive

accumulation of neutrophils, leading to extensive occlusion of

pulmonary arteries, veins, and microvessels (136). Park et al. used

customized video-rate laser scanning confocal microscopy and lung

imaging windows to show that of in the sepsis-induced ALI,

microvascular perfusion in the lung was greatly affected and

regulated by Mac-1 in neutrophils (137). The diameter of

neutrophils is larger than that of pulmonary capillaries, and

neutrophils must deform to enter capillaries, which is known as

neutrophil sequestration (138, 139). Neutrophils will form clusters

that block capillaries and arterioles, leading to the disorder of
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microcirculation in the lung and the formation of dead space with

ventilation-perfusion mismatch (137). Besides, NETs formed by

neutrophils could block capillaries in the lungs (140). The

occurrence of pulmonary microcirculation disorders can result in

the accumulation of metabolic waste within the lung, leading to the

development of pulmonary edema, inflammation, and hypoxia.
3.5 Pulmonary edema

The pathological feature of ARDS includes non-cardiogenic

pulmonary edema (141), primarily resulting from both alveolar-

capillary barrier damage and impaired clearance of edema fluid

(142). Moreover, the ability of clearing edematous fluid in ARDS

patients was associated with shorter length of ICU stays and

reduced mortality (143). The edema fluid of ARDS can be

transported from the alveolar cavity to the alveolar interstitium

and eliminated by lymphatic drainage, while the alveolar fluid can

be transferred to the vasculature for equilibrium via blood

circulation (142). During the clearance process, the transport of

alveolar fluid is mainly driven by active Na+ transport located in the

alveolar epithelium. Na+/K+-ATPase drives Na+ channels to

transport Na+ to achieve the clearance of alveolar fluid (142). In

ARDS patients, the impaired ability of lung to clear edema may be

related to the dysfunction of Na+/K+-ATPase located in alveolar

epithelium (144). Studies have found that improving the function of

Na+/K+-ATPase and/or epithelial Na+ channels, such as using beta-

adrenergic agonists and increasing sodium transport, can improve

alveolar fluid clearance (145–147). Adenovirus-mediated transfer of

Na+/K+-ATPase b1 subunit genes can also increase lung fluid

clearance (148). When this enzyme is inhibited or the associated

ion channels are inhibited, alveolar edematous fluid will be poorly

absorbed (149). Hence, exploring the mechanism of edema

clearance and targeting the NA+/K+-ATPase holds significant

guiding implications for the treatment of ARDS.
4 Immunological mechanisms of
sepsis-induced ARDS

When pathogens invade the host, the innate immune system

responds immediately (150). The pattern recognition receptors

(PRRs) can be expressed by both innate immune cells and

epithelial cells of the lung (151). PRR can recognize invading

pathogens and endogenous molecules through pathogen-

associated molecular patterns (PAMP) and damage-associated

molecular patterns (DAMP). In this process, immune responses

are activated and amplified, which forms cytokine storms. The

secretion and release of numerous pro-inflammatory substances

can result in vascular endothelial dysfunction, thereby further

enhancing pulmonary microvascular permeability, which

ultimately facilitates the occurrence and progression of ARDS

(152, 153). Following lung injury, innate immune cells such as

neutrophils and monocytes are recruited to the alveolar space,
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leading to subsequent damage of the alveolar epithelium and

endothelium. Consequently, a significant accumulation of edema

fluid occurs in both the alveoli and interstitium (95, 154). During

the pathogenetic process of sepsis-induced ARDS, the host is not

always in a state of hyperimmunity. Due to the complex negative

feedback of the immune system and immune exhaustion, it will also

show a state of immune paralysis in the later stage of the disease

(155). The immune system exhibits diminished or absent

responsiveness to infection at this juncture, resulting in an

exceedingly high fatality rate among these sepsis patients. The

signaling pathways, inflammatory cytokines, recruited

immunocytes, immune paralysis and complement system

mentioned below are all closely involved in the cascade of

inflammatory reactions in sepsis and its associated lung

injury (Figure 2).
4.1 Inflammatory cytokine

The progression of sepsis is significantly influenced by the

involvement of crucial cytokines such as IL-1b, IL-18, IL-6, IL-12,
IL-17, and others. Il-1b is a member of the IL-1 family and is

produced by inflammasome activation. Studies have shown that the

level of IL-1b in non-survivors is higher than that in survivors,

indicating that the high level of IL-1b is probably related to the

adverse outcome of sepsis (156). The key pathological alteration

contributing to the progression of sepsis to septic ARDS is the

progressive increase in pulmonary vascular permeability. IL-1b has

been found to increase endothelial permeability by inhibiting the

transcription of VE-cadherin (157), suggesting that IL-1b is an

important cytokine in the pathogenesis of ARDS induced by sepsis.

IL-18 in patients with septic ARDS were significantly higher than

patients with sepsis alone, demonstrating that IL-18 in sepsis are

key cytokines causing lung injury (158). In a randomized controlled

trial, plasma IL-18 levels were also discovered to be associated with

the mortality in sepsis-induced ARDS (159). In studies of cytokines,

IL-6 has also been suggested to correlate with the severity of sepsis

(160, 161). IL-6 was frequently found in the blood and lung of

patients with sepsis, but the exact role of IL-6 in sepsis is still under

investigation, which may be related to the activation of the

complement pathway and capillary leakage (162, 163). In

addition, IL-12, IL-17, IFN-g, and TNF-a all play important pro-

inflammatory roles during sepsis. They interact and promote each

other, eventually inducing inevitable organ damage. For example,

during sepsis, dendritic cells, macrophages, and lymphocytes could

secrete IL-12, one cytokine able to promote T cell differentiation.

The production of TH1 and TH17 cells promote the secretion of

IFN-g and IL-17 (164). As the core cytokine in the cytokine storm,

IL-17 can stimulate endothelial cells, epithelial cells, fibroblasts

or macrophages to synthesize and secrete GM-CSF, IL-1b, IL-6,
TNF-a and other cytokines and chemokines (165). The findings

suggest that inflammatory cytokines play a crucial role as mediators

in the development of lung injury induced by sepsis, and they

synergistically interact to facilitate the progression of inflammation.
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4.2 Inflammatory signal pathways

PRR can interact with PAMP and DAMP, activating the

myeloid differentiation primary response protein 88 (MyD88)

dependent pathway or Toll/IL-1R domain-containing adaptor-

inducing IFN-b (TRIF) dependent pathway (166). Then, through

this signal transduction, downstream nuclear factor kB (NF-kB)
(167, 168), JAK/STAT (169, 170) mitogen-activated protein kinase

(MAPK) (171–173) and other signaling pathways (174) are

activated. These pathways upregulate the transcription of genes

associated with inflammation, leading to the synthesis and release of

various inflammatory molecules.

Some signal pathways in sepsis can cause lung injury and thus

affect the disease process of ARDS. The NF-kB signaling pathway

and its subsequent activation of NLRP3 inflammasome may be an

important immune mechanism for ARDS induced by sepsis. In a

sepsis induced ARDS rat mode, after the use of anti-TLR4

monoclonal antibodies, down-regulating expression of TLR4,

MyD88, and NF-kB in macrophages and its alleviated pulmonary

inflammatory injury were observed (168). NF-kB signaling pathway

can further contribute to inflammasome production by activating

the transcription of inflammasome components, such as the NLRP3

and the pro forms of cytokines (IL-18, IL-1b) (175). Blocking the

activation of NLRP3 inflammasome and inhibiting the signaling

pathway of NLRP3 can alleviate sepsis-induced lung injury (176).
Frontiers in Immunology 09
The mitogen-activated protein kinases (MAPKs) pathway owns

three major subfamilies, including the extracellular signal-regulated

protein kinase (ERK) cascade, c-jun NH2 terminal kinase/stress-

activated protein kinase (JNK/SAPK) cascade and p38-MAPK

cascade (177). Multiple studies have found that ALI in sepsis

patients can be significantly alleviated by inhibiting signaling

pathways such as JNK and p38 MAPK (172, 178, 179). Pre-

injection of specific inhibitors of JNK and p38 MAPK could

decrease postoperative lung permeability and alleviate systemic

inflammation after CLP inducing sepsis (172). One study on

sepsis-induced ARDS also found that by inhibiting the activation

of ERK1/2, p38 MAPK and p65, inflammatory infiltration and wet/

dry ratio of lung tissue were all significantly decreased (171). Above

all, pathways of ERK1/2, p38MAPK and JNK are probably involved

in the lung injury induced by sepsis.

The activation of JAK/STAT signaling pathway has a dual effect

on ARDS induced by sepsis. On the one hand, methotrexate (MTX),

one inhibitor of the JAK/STAT signaling pathway, was shown to

significantly reduce the production of pro-inflammatory cytokines

and improve pulmonary inflammatory infiltration (169). Hence,

inhibiting JAK/STAT signaling pathway could alleviate

inflammatory lung injury in sepsis. On the other hand, several

researchers have performed genome-wide analyses associated with

ALI, the data suggest that the activation of STAT3 in type II alveolar

pneumocytes (AT2) plays a dominant role in epithelial repair (180).
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FIGURE 2

When the systemic system is in a state of sepsis, the inflammation in the circulation will affect various tissues and organs, in which the lung is often
affected. (A) When the cytokine storm occurs in the circulation, cytokines can enter the lung through the broken endothelium and cause damage to
the lung tissue. (B) Sepsis induces lung injury through inflammatory signaling pathways, including nuclear factor kappa B (NF-kB), JAK/STAT, and
mitogen-activated protein kinase (MAPK). (C) In addition to the activation of resident macrophages in the alveoli, neutrophils, macrophages, a few
lymphocytes and monocytes can also enter the alveoli through the damaged endothelium, causing inflammation and tissue damage. (D) With the
massive activation of inflammation caused by sepsis, there will be apoptosis and depletion of immune cells, which is manifested as immune paralysis.
The apoptosis, dysfunction and exhaustion of T cells are mainly mediated by the PD-1 pathway.
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Due to the bidirectional nature of this pathway, when targeting this

pathway for anti-inflammation, it may be necessary to closely

monitor the impact on epithelial repair when targeting this

pathway for anti-inflammatory purposes.
4.3 Immune cells involvement

Sepsis-related circulating inflammatory overload causes

pulmonary capillary endothelial damage and lung inflammatory

injury, which involves a variety of immune cells. In the early stage of

sepsis-induced lung injury, the massive release of pro-inflammatory

cytokines results in disruption of vascular endothelial structures

and endothelial leakage. Neutrophils and monocytes migrate across

the endothelial cells and infiltrate in the alveoli (166).

Neutrophils are important components of innate immunity.

There are four main mechanisms facilitating neutrophils fighting

against microbial infection: degranulation, phagocytosis, cytokine

production and NET. Neutrophil activation in the alveolar space is

a universal feature of ALI in humans and animal models. During an

episode of sepsis, circulating neutrophils undergo deformation,

leading to their entrapment in the small capillaries of the

pulmonary microcirculation. Trapped neutrophils respond to

local chemokine gradients and migrate into lung tissue to cause

lung injury (181).Neutrophils infiltrated in lung tissue can play a

bactericidal and phagocytic role, simultaneously, their own

secretion of cytotoxic products and the production of NETs can

also lead to alveolar epithelial and endothelial damage (182, 183). In

sepsis, the network structure of NET can limit the transmission and

proliferation of pathogens, and the important components of NET

such as histone, neutrophil elastase, and MPO can play a

bactericidal role (184). NET has a definite role in controlling

infection, but increasingly more studies have shown that excessive

production of NET can cause thrombosis and tissue damage (182,

183, 185). In sepsis- induced ALI, activated platelets can promote

the formation of tissue factor-rich NETs, which in turn can release

thrombotic signals (182). Moreover, data from critically ill patients

with sepsis and lung injury suggest that higher levels of circulating

NETs will have adverse clinical consequences and even cause organ

dysfunction (186, 187). For the moment, researchers tend to explore

effective targeted drugs to inhibit NETs, so as to reduce multiple

organ function damage and lung injury caused by sepsis (188–190).

During sepsis, alveolar macrophages are activated and they are

able to secrete inflammatory cytokines to affect inflammatory

environment. Alveolar macrophages can promote the trans-

endothelial migration of neutrophils through the Src kinase/

NAPDH oxidase pathway (191). Alveolar macrophages are

essential for the maintenance of inflammatory homeostasis in the

lung, and the impairment of 11b-hydroxysteroid dehydrogenase

type-1(HSD-1) in alveolar macrophages leads to the aggravation of

inflammation and the increased mortality in sepsis-induced ARDS

(192). IFN-b can improve the dysfunction of alveolar macrophages

in sepsis and reduce the mortality of septic ARDS (193). The mode

of macrophage death can also affect lung inflammation, such as,

pyroptosis. The up-regulation of IL-1R1 signaling caused by IL-1b
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can promote the pyroptosis of alveolar macrophages and aggravate

lung injury (100).

Apart from that, lymphocytes and monocytes may also perform

a crucial role in sepsis-induced ARDS. Single-cell sequencing of

pneumonia, sepsis, and sepsis with ARDS found that the monocyte

cluster in patients with early ARDS caused by sepsis was

characterized by down-regulation of SOCS3 expression and up-

regulation of multiple type I IFN-induced genes (194). In a

bioinformatics analysis of key genes in sepsis-induced ARDS,

compared with patients with sepsis alone, patients with septic-

ARDS had higher levels of activated memory CD4+T lymphocytes

and naive B lymphocytes, and lower levels of CD8+ T lymphocytes

in their lung tissues (195). The findings of these studies suggest that

lymphocytes and monocytes may play a pivotal role in the

pathogenesis of this disease, necessitating further research.
4.4 Immune paralysis

The development and coexistence of systemic inflammatory

response syndrome and compensatory anti-inflammatory response

syndrome in sepsis exert a profound influence on the systemic

immune environment (196).Initially, basic and clinical research on

sepsis mainly focused on its excessive inflammation. But in contrast

to the beneficial results of animal experiments, the clinical trials

often failed, in which the management of inflammatory control and

immunosuppressive drugs had been used (197–199). Due to the

continuous development of immune paralysis in the process of

sepsis progression, the use of immunosuppressive therapy may lead

to treatment failure or even condition aggravation. The main

mechanisms of septic immune paralysis include abnormal

immune cell death, lymphocyte exhaustion, inhibition of antigen

presentation, and expansion and activation of regulatory immune

cells (200). When the apoptosis of immune cells is inhibited, the

mortality rate of sepsis will decrease (201). Immune paralysis may

also play an important role in the development of septic ARDS, and

severe immunosuppression is often associated with adverse clinical

outcomes. In one study, emergent lung and spleen harvest from

patients who had died of sepsis revealed an expanded population of

immunosuppressive cells in both organs and expression of

inhibitory receptor ligands PD-L1 on lung epithelial cells, with

extensive depletion of splenic CD4+, CD8+T cells and HLA-DR cells

(202). After patients with sepsis were cured and discharged,

systemic organs were still in a state of immunosuppression for a

long time, and such patients were more likely to have secondary

severe pulmonary infection (203).The suppression of pulmonary

innate immunity induced by sepsis is mediated by IRAK-M

molecules. When IRAK-M is knockout, septic mice would have a

higher survival rate and bacterial clearance rate in the lung and

blood (204). Immune paralysis dominates the systemic immune

system in the later stages of sepsis, which contributes to the failure

of immunosuppressive therapy. This compromised immune

response renders patients vulnerable to infections and leads to a

dismal prognosis, necessitating careful attention during the late-

stage treatment process of septic ARDS.
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4.5 Other mechanisms

The dysregulated systemic inflammatory response to infection

can result in organ dysfunction throughout the body, leading to

sepsis. Researchers found experimentally that complement is

overactivated in septic hosts with adverse consequences (205–

207). Complement activation is an innate immune response to

fight infection, but excessive activation ultimately enhances organ

dysfunction, including the heart, lungs and kidney (208–212). In

sepsis, activation of the complement system is caused by

recognition of PAMPS by mannose-binding lectins and ficolin,

among others (213). DAMPs, the endogenous molecules released by

distressed or damaged cell, can also lead to complement activation

(213). The imbalanced activation of complement in the whole body

can give rise to thrombotic inflammation and eventually bring

about organ dysfunction. In sepsis-induced lung injury,

complement activation can lead to the release of C3a and C5a,

which can up-regulate the expression of endothelial adhesion

molecules and recruit neutrophils to the alveoli (214). The

released inflammatory molecules will recruit more inflammatory

cells, eventually resulting in tissue damage and lung dysfunction

(214). A marked increase in circulating complement activation

products has been found in sepsis (215), and complement

activation product C3a is associated with enhanced alveolar

capillaries permeability (216). In addition, sepsis patients with

enhanced capillary permeability are more likely to develop ARDS

(217). The terminal complement complex exhibited an average

increase of 110% two days prior to the progression from sepsis to

ARDS, as demonstrated by a study (218). The above indicate that

complement is closely related to the progression of sepsis to ARDS.

The targeting of complement as a therapeutic approach for sepsis-

induced lung injury had been investigated in several studies,

yielding favorable outcomes (219, 220).

And beyond that, the coagulation and complement systems are

closely related, and activation of the coagulation system is

considered as part of the initial immune response to invading

pathogens. Inflammation and coagulation are key host responses

to infection and injury and have been implicated in the

pathogenesis of both sepsis and ARDS (221). There is evidence

that thrombosis and coagulation dysfunction are the main causes of

ALI and ARDS (222). Both sepsis and ARDS are in a procoagulant

state, and the interaction between the inflammatory response and

the coagulation system plays a crucial role in the pathogenesis of

sepsis-induced ARDS (223, 224). Sepsis can cause the alveolar-

capillary barrier injury and further lead to the continuous state of

promoting coagulation and fibrinolysis inhibition systemically (221,

225). In this process, tissue factor (TF) is considered to be the

primary procoagulant initiation factor following infection and

inflammation (226). Endotoxins or bacteria can activate TF-

dependent clotting pathways to form a procoagulant state in the

blood vessels and alveolar spaces of the lung (224, 227). TF can

activate clotting factor VII, which further activates the downstream

clotting cascade to produce thrombin. While thrombin causes fibrin

deposition in interstitial spaces, perivascular spaces and pulmonary

alveolus, high levels of thrombin may up-regulate lung

inflammation genes and cause alveolar-capillary barrier damage
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(223). When subjected to pro-inflammatory stimulation (such as

cytokine stimulation), alveolar epithelial cells will release TF-

bearing microparticles, and the increase of circulating TF and

microparticles expression levels will promote the coagulation

cascade, resulting in the formation of thrombin and extensive

fibrin inundation (228). Extensive pulmonary microthrombosis

will increase dead space ventilation, which leads to the mismatch

of ventilation-perfusion and causes respiratory dysfunction. An

animal study on sepsis-induced ALI demonstrated that inhibiting

the exogenous clotting pathway through inactivation of active site of

FVIIa caused reduced fibrin deposition, decreased systemic

cytokine response, and improved lung inflammation (229, 230).

Nebulization of recombinant human-activated protein C(rh-APC)

or plasma-derived human antithrombin had been found to

attenuate lung coagulation activation, stimulate pulmonary

fibrinolysis and alleviate lung inflammation without affecting

blood clotting systemically (231). Nebulization of heparin or

danaparoid also decreased pulmonary coagulopathy; however,

they possess the drawback of impacting systemic coagulation

(231, 232).

Researchers had found that thrombin-activated platelets and

TF-enriched NETs facilitates immune thrombosis in sepsis-related

lung injury, in which the two-hit procedures of thrombosis

formation triggered by activated platelets and NETs contribute to

the progression of ARDS (182). Besides, the expression of TF in

peripheral blood monocytes induces intravascular thrombosis

during sepsis as well (233).
5 Precision medicine of ARDS

Precision medicine is a medical strategy requiring clinicians to

take into account the individual characteristics of patients, in which

the patients will be grouped according to their heterogeneity, and

receive targeted prevention, diagnosis and treatment. Numerous

therapeutic approaches have garnered clinical attention for the

treatment of ARDS, encompassing drug therapy, respiratory

management, ECMO, and cell therapy. The utilization of inhaled

surfactant therapy was initially employed in the neonatal

respiratory distress syndrome (NRDS) due to the incomplete

development of type II alveolar cells, which resulted in

insufficient production of functional surfactant (234). Given the

similarities between adult ARDS and NRDS, certain studies had also

been conducted on inhaled surfactants for adult ARDS (235, 236).

Although a multicenter randomized controlled trial in 1996 showed

that inhaled surfactant did not improve 30-day mortality in sepsis-

associated ARDS (237), recent studies in the treatment of COVID-

19 have shown that surfactant administration can combat

pulmonary dysfunction and enhance the diffusion of other drugs

along the airway epithelium, which sheds new light on the

application of surfactants (238, 239).

The inhibition of neutrophil elastase (NE) is crucial in

mitigating lung injury caused by neutrophils, thus making NE

inhibitors indispensable for the treatment of ARDS. In the past

two years, the COVID-19 pandemic has brought renewed attention

to the therapeutic role of NE inhibitors, which are anticipated to
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mitigate extracellular matrix degradation caused by neutrophils and

restrict viral dissemination by inhibiting proteolytic activation of

the S protein (240, 241). Compared with healthy individuals, the

plasma level of NE in ARDS patients is significantly higher,

and studies have found that SIRS patients with NE content over

220ng/ml are prone to ARDS (242). Elevated NE activity was also

observed in bronchoalveolar lavage fluid of ARDS patients (243).

The inhalation of prostaglandins has the potential to induce

pulmonary vasodilation, decrease pulmonary artery pressure, and

enhance oxygenation; however, there is substantial evidence

suggesting that prostaglandins may elicit severe adverse reactions,

such as hypotension (244).

The antifungal agent ketoconazole exhibits anti-inflammatory

properties. Previous clinical studies have demonstrated its ability to

prevent the progression of severe patients to ARDS (245), while

showing limited efficacy in treating early-stage ARDS (246). The

administration of ibuprofen did not demonstrate efficacy in

preventing the development of ARDS in critically ill patients with

sepsis (247); however, its early utilization for COVID-19 treatment

has exhibited a preventive effect on complications and an

improvement in prognosis (248).

ECMO is a form of extracorporeal life support technology,

serving as an alternative therapeutic approach in cases of critical

cardiac or pulmonary dysfunction (249). The device extracts blood,

facilitates gas exchange outside the body, and then reinfuses the

oxygenated blood back into the circulatory system of patients. Since

the 2009 influenza A (H1N1) pandemic, ECMO has been

documented to significantly reduce mortality in severe ARDS

cases, thus garnering considerable attention and advancement

(250–252). The utilization of ECMO in adults with severe ARDS

was shown a significant reduction in 60-day mortality when

compared to conventional mechanical ventilation (253). But a

randomized controlled study demonstrated that there is no

survival benefit associated with the early use of ECMO in severe

ARDS when compared to its use as a rescue therapy after

conventional mechanical ventilation (254). The use of ECMO is

indicated for the treatment of severe ARDS following failure of

protective mechanical ventilation and prone position ventilation

(249, 255). Additionally, it can be employed in cases where the

patient’s condition is unstable and urgent transfer to a specialized

ward (256). ECMO has been extensively employed during the

COVID-19 pandemic and showed significant improvements in

patient outcomes and reductions in mortality rates across

multiple studies (257, 258). Although ECMO has demonstrated

survival benefits in several studies of severe ARDS, it still entails

numerous risks, including infection (259) and coagulation related

complications (257, 260). Therefore, careful attention must be paid

to its indications and contraindications during ECMO utilization to

reduce mortality.

Mesenchymal stem cells and their extracellular vesicles have

been shown to modulate immunity and improve endothelial barrier

integrity in cellular and animal experimental studies of ARDS (261,

262). However, in the recent randomized controlled trials of severe

ARDS from COVID-19, no benefit was found on survival and

ventilator-free days (263). Whether mesenchymal stem cell-related
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cell therapy is suitable for ARDS, a rapidly progressive disease,

needs to be further studied and explored.

A randomized controlled trial found that only those patients

with severe ARDS (PaO2/FiO2 ≤ 150mmHg) had a good response

to prone position ventilation. And prone position ventilation

significantly reduced 28-day and 90-day mortality in these

patients (24). In ARDS caused by COVID-19, the use of

dexamethasone combined with respiratory support can reduce the

mortality of patients (264). A randomized controlled trial reported

in 2020 claimed that the early use of dexamethasone reduced the

duration of mechanical ventilation and mortality in patients with

moderate and severe ARDS (265). Therefore, dexamethasone may

be a good choice for patients with moderate-to-severe ARDS or

patients with COVID-19 who have extensive lung injuries. In

addition, in a randomized controlled trial, there was no

significant difference between the simvastatin treated and the

placebo-treated in the trial of ARDS. But in a secondary analysis

of this study, patients were grouped according to inflammatory

degrees, and the therapeutic effect of simvastatin on the

hyperinflammatory phenotype was observed (27). The common

treatments for ARDS are lung-protective ventilation, prone position

ventilation, and fluid therapy. According to the heterogeneity of the

disease, clinicians would not blindly use these methods for all

patients without subgrouping, but take the individual

characteristics into consideration to implement targeted and

effective treatment.

In view of the particularity and risk of sepsis-induced ARDS,

advanced treatment methods are expected to be developed urgently.

Inflammatory infiltration and high vascular permeability are the

key factors of sepsis-induced ARDS (266), which are two important

targets worth cutting into. For example, in the aspect of

inflammation, the inhibition of protein expression in key

inflammatory signaling pathways and anti-complement antibodies

are used to control septic ARDS in animals (171, 267, 268). In terms

of vascular endothelial permeability, protection by endothelial

connexin is enhanced by inhibiting proteins that affect the

endothelial barrier or natural endothelial-protective factors (266,

269). In the study of sepsis patients, the levels of plasma Ang-2 were

found to be associated with ANGRT2 genetic variants, which would

lead to an increased risk of ARDS (270). For patients with high

plasma ANG-2 levels, lowering ANG-2 levels may be an

appropriate strategy for the prevention and treatment of sepsis-

induced ARDS.
6 Conclusion and prospect

ARDS is a heterogeneous syndrome, and different etiology,

severity of symptoms, and individual genetic differences can bring

about various clinical manifestations and responses to treatment. In

view of the heterogeneity of ARDS, increasingly more researchers

and clinical staff are inclined to classify ARDS, and further carry out

personalized treatment to obtain beneficial results. For example, in

studies using statins and prone ventilation to treat ARDS, patients

with severe ARDS (PaO2/FiO2 < 150mmHg) were specifically
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selected for these two trials, and treatment-related survival benefits

were obtained (24, 271). Given the heterogeneity of ARDS,

categorizing patients with ARDS into pulmonary and

extrapulmonary groups based on the etiology is another solution

having received much attention. There are differences between

pulmonary ARDS and extrapulmonary ARDS in pathological

manifestations, imaging findings, respiratory mechanics,

mortality, biomarkers and even genetics (32, 43, 63, 72, 272).

Sepsis is a systemic disease in which the immune system reacts

out of control in response to infection or injury, leading to systemic

organ dysfunction. When sepsis progresses to the advanced stage of

shock, it is more likely to be accompanied by ARDS and higher

mortality rate (273). Sepsis-induced lung injury primarily arises

from vascular endothelial damage, leading to the transmission of

circulating inflammation to the lungs. This condition

predominantly manifests as damage to the lung capillary

endothelium and alveolar epithelium, cell death, oxidative stress,

microcirculatory disorders and pulmonary edema. Pathological

manifestations of that disease include diffuse alveolar damage,

destruction of alveolar capillaries, pulmonary edema, and

potentially even atelectasis (91).

The immune mechanism of sepsis-induced ARDS is mostly

related to the pathogenesis of sepsis itself, involving excessive

activation of inflammatory signaling pathways and cytokines,

activation of immune cells, immune paralysis and interaction of

coagulation and complement. The cascade of cytokine activation in

sepsis is able to cause systemic inflammation, including the lungs.

Sepsis causes lung inflammation and injury by damaging the

vascular endothelium, and the activation of endothelial cells give

rise to the accumulation of inflammatory cells and inflammatory

cytokines secretion. The aggregation of neutrophils can produce a

large amount of myeloperoxidase and NETs, and then cause

vascular thrombosis. Alveolar macrophages can regulate lung

inflammation, and most of them can promote the amplification

of inflammatory response and increase the concentration of

cytokines. The death and apoptosis of alveolar macrophages can

promote the accumulation of neutrophils, and their pyroptosis

process also produces inflammatory cytokines. Obvious immune

paralysis occurs in the later stage of sepsis, which often indicates

poor prognosis and high mortality (274). The immunosuppression

of sepsis is similar to that of tumors, which is related to the

inhibition of T lymphocytes caused by PD-1 pathway. When

immune paralysis is relieved, the prognosis of patients can be

greatly improved. Perhaps, PD-1 and PD-L1 can also become

important targets of septic-ARDS. After being discharged,

surviv ing pat ients would undergo longer per iods of

immunosuppression and are more likely to lack of resistance

against infection (202, 203).

At present, the solution to the heterogeneity of ARDS is to pay

attention to the manifestations and biological subgroups of ARDS,

such as PaO2/FiO2 level and inflammation degree, and give

candidate therapeutic strategies according to the classification.

The heterogeneity of ARDS affects the efficacy of various

treatments, including drug therapy, respiratory management,
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ECMO (275). The discovery of the heterogeneity of ARDS had

benefited from the latent class analysis of randomized controlled

trials, which has made advances in the treatment of specific

subgroups. There are still existing many unanswered questions

regarding the advancement of precision medicine in ARDS, such

as the biologic overlap between ARDS and sepsis, the impact on

patient recruitment, the stability of ARDS subphenotypes and so on

(276). The resolution of key issues can promote the progress of

effective treatment of ARDS and usher in the progress of severe

disease research.

According to a report from the Lancet Respiratory Medicine in

2022, precision medicine for ARDS is necessary, but there are still

two major challenges (277). One is that the key nodes have limited

information and cannot be determined. The pathogenesis of ARDS

is complex, and the specific pathways involved will become

deranged during the disease process. The other is rapid disease

progression of ARDS, with a high mortality rate within 72 hours

(278). At present, precision medicine is widely used in the field of

cancer, but it still takes days to weeks to achieve staging and

classification. The time requirements in the precision

management of ARDS are deemed impractical, and it is crucial to

rapidly determine our precise classification of the disease within a

matter of hours.
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