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Dendritic cells (DCs), central participants in the allergic immune response, can

capture and present allergens leading to allergic inflammation in the

immunopathogenesis of allergic rhinitis (AR). In addition to initiating antigen-

specific immune responses, DCs induce tolerance and modulate immune

homeostasis. As a special type of DCs, tolerogenic DCs (tolDCs) achieve

immune tolerance mainly by suppressing effector T cell responses and

inducing regulatory T cells (Tregs). TolDCs suppress allergic inflammation by

modulating immune tolerance, thereby reducing symptoms of AR. Activation of

the TLR4/IRAK4/NF-kB signaling pathway contributes to the release of

inflammatory cytokines, and inhibitors of this signaling pathway induce the

production of tolDCs to alleviate allergic inflammatory responses. This review

focuses on the relationship between tolDCs and TLR4/IRAK4/NF-kB signaling

pathway with AR.

KEYWORDS
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1 Introduction

Dendritic cells (DCs) are bridges between innate and adaptive immune responses, they

not only act as key immunomodulatory factors driving T cell initiation and activation, but

also have tolerogenic functions that promote immune tolerance (1–3). Whether DCs

exhibit immunogenicity or tolerance depends on their different subsets of them and the

different stimuli to which they are exposed (4). Exposure of DCs to allergens leads to

enhanced priming, which further mediates allergic inflammatory responses (5, 6).

However, repeated low-dose exposure to allergens has the potential to make DCs

tolerant (7). Tolerogenic DCs (tolDCs) are DCs with immunomodulatory functions that
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slow the allergic response by killing T cells (7). This would be

beneficial in the treatment of AR.

DCs play an integral role in the pathogenesis and treatment of

allergic rhinitis (AR). DCs recognize pathogen-associated molecular

patterns (PAMPs) or lipopolysaccharide (LPS) through Toll-like

receptor 4 (TLR4) expressed on their membrane to trigger signaling

cascades (2, 6, 8). TLR4/nuclear factor kappa-B (NF-kB) regulates
the balance of T helper type 1 (Th1) and T helper type 17 (Th17) by

affecting the maturation and migration of DCs, which in turn affects

the development of AR (9). The TLR4/interleukin-1 receptor-

associated kinase 4 (IRAK4)/NF-kB signaling pathway eventually

leads to the production of pro-inflammatory cytokines that initiate

inflammatory and immune responses (10). Blocking the

propagation of the TLR4/IRAK4/NF-kB signaling pathway with

tolDCs may become a therapeutic target for AR.
2 Overview of DCs

DCs can be categorized into conventional DCs (cDCs) and

plasmacytoid DCs (pDCs) according to their morphological

features and function (2, 11). pCDs, primarily found in lymphoid

organs, are characterized by the production of large amounts of type I

interferon (IFN) after recognition of foreign nucleic acids (2, 12). In

addition to producing IFN, pDCs also secrete pro-inflammatory

cytokines and chemokines such as interleukin-6 (IL-6), IL-12,

CXC-chemokine ligand 8 (CXCL8), CC-chemokine ligand 3

(CCL3) and more, and these chemokines attract immune cells to

sites of inflammation (13).. MHC class II molecules as well as

costimulatory molecules CD40, CD80, and CD86 can be expressed

by pDCs, although not as efficiently as cDCs (13). cCDs consist of two

main subsets: cDC1 and cDC2, which are present in almost all tissues

(11, 14–16). cDC1 and cDC2 normally exert their roles in the priming

of CD8 T cells and CD4 T cells, cDC1 primarily presents antigens to

CD8 T cells, while cDC2 preferentially initiates various immune

responses of CD4 T cells (11, 17). The locations of cDC1 and cDC2 in

lymphoid and nonlymphoid organs vary, which affects their

interactions with other immune cells and potentially antigens to

which they are exposed (15).

Both pDCs and cDCs play important roles in immune

regulation. The regulatory function of DCs depends on their

activation state, which might impact their ability to induce

immunity or tolerance (2, 16). The activity of DCs is closely

related to the presence of immunosuppressive factors (18). Upon

encountering danger signals, DCs are activated and costimulatory

molecules on their surface are upregulated, followed by the

production of chemokines and cytokines (1). Inflammatory

cytokines and chemokines induce allergic inflammatory responses

in the pathogenesis of AR. Allergens are taken up by immature DCs

(imDCs) and presented to naïve T cells, which induce DCs

maturation, and mature DCs (mDCs) promote adaptive immune

responses by inducing effector T cells (18, 19). ImDCs induce

immune tolerance by decreasing CD40 expression and increasing

IL-10 expression (20). In this procedure, imDCs primarily capture

allergens while mDCs mainly act as APCs (21, 22). The imDCs can

produce immunogenic, pro-inflammatory mDCs as well as semi-
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mature DCs that have the potential to acquire tolerogenic

functions (23).

In addition to participating in the immune response, DCs are

important modulators of central and peripheral tolerance (24). The

inability of newly formed T and B lymphocytes to respond to self-

antigens is known as central tolerance (25). DCs maintain central

tolerance by regulating the negative selection of self-antigens (26).

Increased synthesis of indoleamine-2,3-dioxygenase (IDO)1,

upregulated expression of FasL, and induction and maintenance

of T cell incompetence by programmed cell death ligand 1 (PDL-1)

can promote peripheral tolerance in DCs (26, 27). In contrast to

peripheral tolerance, the function of DCs in central tolerance

appears to be very limited and may be limited to promoting

tolerance to a small subset of self-antigens (28). The induction

and maintenance of immune tolerance in DCs is critical for the

development of inflammatory diseases. IL-10 and TGF-b have

strong anti-inflammatory effects and can induce tolerance of DCs,

while IL-1 and IFN-a have obvious pro-inflammatory effects and

can promote the activation of DCs (Figure 1) (29). The presence or

absence of pro-inflammatory cytokines seems to be decisive in the

induction of immunity or tolerance, respectively (4). Both cDCs and

pDCs have distinct roles in inducing immune tolerance (30). pDCs

maintain immune tolerance by secreting IL-10 and other

immunosuppressive mediators, inducing regulatory T cells

(Tregs) and inhibiting the secretion of Th2 cells (12, 31). cDCs

can induce immune tolerance by initiating T cells and can also lead

to peripheral tolerance by inducing T cell incompetence or deletion

(30). IDO1 also helps to maintain the tolerance of cDCs (16, 27).

The migration pathways and functions of pDCs and cDCs differ due

to differences in the expression of chemokines and chemokine

receptors (9). The functions of different subtypes of DCs vary and

are regulated by environmental factors, and changes in the external

environment have an impact on the balance between their tolerance

and immunity (32).
3 TolDCs

TolDCs are generally regarded as a type of steady-state semi-

mature DCs, including most imDCs and some cells with advanced

maturation states (23, 33, 34). With the ability to re-establish

immune tolerance, tolDCs are a specific subset of DCs that

overexpress tolerance markers and release tolerance cytokines

while underexpressing T cells and costimulatory molecules (35,

36). They can be subdivided into induced tolerogenic DCs (itDCs)

and natural tolerogenic DCs (ntDCs) (9, 37). DCs that promote

immune responses in response to some inducing signals (agonists,

physiological conditions, drugs) to acquire tolerogenic functions are

known as itDCs, and ntDCs refer to DCs that inherently promote T

cell tolerance (including T cell anergy, T cell depletion, and

peripheral Treg cells transformation) in the absence of specific

extrinsic signals (37). ItDCs favor the maintenance of homeostasis

under pro-inflammatory conditions, while ntDCs contribute to the

establishment of tolerance under homeostatic conditions (9). ItDCs

and ntDCs are not separate populations, they overlap and may

collaborate within organizations (23). Modulation of DC-induced
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tolerance can influence the immune response, both for itDCs and

ntDCs (37).

TolDCs promote tolerance by facilitating the induction and

expansion of different subsets of regulatory lymphocytes (38). They

can acquire tolerogenic functions by inducing Tregs proliferation,

autoreactive T cell incompetence and apoptosis, and interact with

naïve T cells to promote tolerance (4, 39, 40). Treg cells or allergen-

specific type 1 regulatory T (Tr1) cells also induce tolDCs to

regulate immune responses (41). Both tolDCs and imDCs induce

Tregs, but the former are more stable and do not produce pro-

inflammatory cytokines (33). With plasticity functions, tolDCs play

important roles in maintaining homeostasis and regulating

inflammation (39). Inhibitory receptor signaling is one of the

essential factors for tolDCs to suppress pro-inflammatory

immune responses and induce immune tolerance (42).

Immunosuppressive cytokines secreted by them can induce

differentiation of Tregs to further mediate tolerogenic immune

responses (24, 43). TGF-b, a cytokine with immunosuppressive

functions, regulates the function of tolDCs by promoting Tregs

expansion and impairing the differentiation, activation and

proliferation of CD4 and CD8 T cells (44). IL-10 downregulates

DC expression of MHC class II and costimulatory molecules and

reverses the effects of pro-inflammatory cytokines, and IL-10-

induced tolDCs release higher levels of IL-10 (37, 45). IL-10 also

upregulates FasL and PDL-1 expression on tolDCs and reduces

inflammatory responses by inhibiting NF-kB (34, 44). TGF-b/IL-10
signaling plays a key role in tolDCs-mediated Tregs amplification

(46, 47).

TolDCs modulate immune tolerance by regulating the release of

TGF-b, IL-10, IL-35, and granzyme B from regulatory B cells
Frontiers in Immunology 03
(Bregs) (44). IL-10 can also be secreted by Tregs and Tr1 cells,

which are produced by tolDCs-induced naïve CD4 T cells (33, 48).

Along with increasing IDO1 expression, tolDCs induced T cell

apoptosis via the Fas/FasL pathway (27, 38). In addition, tolDCs

release other cytokines to modulate T cell and Treg activity, and

increase the expression and release of immunomodulatory

molecules to promote the development of tolerance (38, 45).

Perforin-expressing DCs, an important population of tolDCs, can

restrict autoreactive T cells (2). Retinoic acid, directly secreted by

tolDCs, inhibits effector T cells and induces Tregs and Bregs

differentiation (49). CD103+ DCs, which produce TGFb and

retinoic acid, can induce the differentiation of naïve T cells into

Tregs and Tr1 cells, thus further regulating the function of tolDCs

(50). Heme oxygenase-1 (HO-1) regulates tolDCs function by

actively inhibiting T cell responses. High expression of HO-1

favors the tolerance capacity of tolDCs, while when HO-1 is

blocked, tolDCs lose their immunomodulatory effect (51).

Vitamin D, estrogen, IL-27 and many others can also induce

tolDCs to regulate immune tolerance (Figure 2) (33). Because

they express low levels of costimulatory molecules and high levels

of inhibitory receptors, tolDCs are beneficial in reducing

inflammation and immune responses (18, 24).
4 TLR4/IRAK4/NF-kB
signaling pathway

TLRs are 1 class of transmembrane proteins synthesized in the

endoplasmic reticulum (52, 53). TLRs, sensing damage-associated

molecular patterns (DAMPs) as well as PAMPs, can initiate
FIGURE 1

Immunogenicity and tolerance of DCs. DCs activate T cells in the presence of IL-1 and IFN-a under pro-inflammatory conditions; while DCs have
tolerogenic functions that induce Tregs to suppress inflammation in the presence of inhibitory factors such as IL-10 and TGF-b. Activation of DCs
highly expresses MHC class II and costimulatory molecules (CD80/CD86 and CD40), while tolerance of DCs lowly expresses them.
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signaling in both innate and adaptive immune pathways (54, 55).

Up to now, 10 TLRs have been identified in humans and 12 in mice

(56). Hyperactivation of TLR family member TLR4 triggers the

production of inflammatory factors, which is associated with a

variety of diseases (57). TLR4 triggers inflammation in various

microbial infections, cancer, and autoimmune diseases (58). TLR4

induces pro-inflammatory responses to invading pathogens and

plays a crucial role in allergic inflammation (59). In the presence of

LPS-binding protein (LBP) and CD14, TLR4 binds to LPS with the

help of co-receptor myeloid differentiation protein 2 (MD-2) (53,

59). The surroundings have an effect on the bond between them

(60). Stimulated activation of TLR4 consists of two major

intracellular signaling pathways: the myeloid differentiation

primary response 88 (MyD88)-dependent pathway and the toll-

interleukin-1 receptor (TIR) structural domain-containing adapter-

induced IFN-b (TRIF) pathway (54). These two signaling pathways

lead to the production of two sets of pro-inflammatory cytokines.

Interaction of MyD88 and TIR homology domain-containing

adaptor protein (TIRAP) further leads to activation of IRAK4,

accompanied by activation of IRAK1 and IRAK2 (59, 61–63).

IRAK4 is the most upstream kinase in this pathway and is

directly related to MyD88 (61). IRAK4 plays a decisive role in the

TIR signaling pathway (64). Activated IRAK4 is recruited to TNF-

receptor associated factor 6 (TRAF6), which then further activates

IkB kinase (IKK) signaling via transforming growth factor-activated

kinase 1 (TAK1), ultimately leading to NF-kB activation and

expression of other pro-inflammatory cytokines (59). These

inflammatory factors will drive the inflammatory response,

leading to hyperactivation of the immune system. While the TRIF

pathway is mediated by TRIF and TRIF-related adaptor molecule
Frontiers in Immunology 04
(TRAM) to activate type 1 IFN genes and delayed NF-kB via IFN

regulatory factor 3 (IRF-3) (54). These pathways will have an

impact on the balance of inflammatory cytokines (Figure 3).

Notably, TLR4 is the only TLR that relies on both MyD88 and

TRIF pathways, and the TLR4/MyD88 signaling pathway is

associated with AR (65, 66).
5 TolDCs and TLR4/IRAK4/NF-kB
signaling pathway

DCs are one of the most important immune cells that express

TLR4 (67). There are a large number of TLR4 receptors on the

surface of DCs (68). Activation of the TLR4 signaling pathway

promotes the maturation of DCs (67). The expression of

costimulatory molecules CD80/CD86 on DCs is also affected by

TLR4 (69). Meanwhile, TLR4 stimulates B cells to produce IL-10,

which can further induce tolDCs (70). TLR4 expressed on DCs

regulates immune tolerance by releasing IDO1, which further

regulates adaptive immune responses by promoting immune

suppression and tolerance (27, 67, 71). TLR4 ligation in LPS-

primed DCs induced higher levels of IDO1 and aryl hydrocarbon

receptor (AhR), further inducing the production of tolDCs (71).

Cvetkovic et al. (72) showed that excretory-secretion products (ES

L1) released by trichinella spiralis larvae induce the production of

tolDCs via TLR4. Kim et al. (73) demonstrated that mycobacterium

avium subspecies hominissuis (MAH) infection promotes the

generation of tolDCs under the influence of TLR4 signaling. Han

et al. (74) showed that minocycline may induce tolDCs by blocking

the suppressor of cytokine signaling 1 (SOCS1)/TLR4/NF-kB
FIGURE 2

Mechanism of action of tolDCs in promoting tolerance.
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signaling pathway. The above studies suggest that TLR4 may be a

target for the action of tolDCs.

LPS primarily signals through TLR4 and thus may be involved

in MyD88, IRAK4 and NF-kB signaling. As a cell wall component

of all Gram-negative bacteria, LPS largely contributes to the

induction of tolDCs by upregulating anti-inflammatory cytokines

such as IL-10 and TGF-b (53, 75, 76). IL-10, which induces the

generation of tolDCs, can inhibit IRAK4, TRAF6 and IRAK1 on the

TLR4/IRAK4/NF-kB signaling pathway, thereby inhibiting

MyD88-dependent TLR4 signaling (75). IL-10 also inhibits IKK,

NF-kB P65/P50 activity (77). With the function of inducing tolDCs,

IL-37 can combine with IL-18Ra to reduce the expression of

MyD88, IRAK4 and TRAF6, which further leads to the reduction

of NF-kB expression (78). MiRNA-155, miRNA-146, let-7 can

regulate tolDCs via different signaling molecules, among which

miR-146 can directly target IRAK1, TRAF6 to negatively regulate

the TLR/MyD88/NF-kB pathway, and mi-155 can directly target

TRAF6 (79, 80). Apoptotic cells induced the production of tolDCs

to inhibit the transduction of the TLR4/NF-kB signaling pathway

(81). Atorvastatin-induced tolDCs reduce inflammatory cell

infiltration and inhibit oxidative stress via the TLR4/NF-kB
signaling pathway (82).

NF-kB can be activated through canonical and non-canonical

signaling pathways (83). Activation of the non-canonical NF-kB
signaling pathway may be more effective in stimulating peripheral

tolerance than the canonical NF-kB signaling pathway, which
Frontiers in Immunology 05
primarily responds to pro-inflammatory signals, and the non-

canonical NF-kB pathway in tolDCs may treat inflammatory

diseases (84). Inhibition of core transcription factor pathways

such as NF-kB produces tolDCs, which further interfere with NF-

kB signaling by increasing IL-10 (76, 85). The tolDCs phenotype is

promoted by NF-kB p50, which negatively affects the survival of

DCs and their ability to effectively activate T cells (75). The

expression of tolerance-promoting molecules such as IDO1 can

be enhanced and the expression of pro-inflammatory cytokines

such as IFNb, IL-1b, and IL-18 can be reduced during the

accumulation of p50 in the nuclei of tolDCs (27, 75). The above

studies demonstrated that tolDCs could inhibit different targets on

the TLR4/IRAK4/NF-kB signaling pathway according to different

induction signals. This will facilitate the development of different

targeted drugs.
6 TolDCs and AR

DCs trigger allergic inflammation or contribute to immune

tolerance to sensitizing allergens at different maturation stages,

locations, and environments (86). The nature and level of inhaled

allergens, route of administration, and changes in the local

microenvironment all have an impact on the function of different

subsets of DCs (5). Factors such as the type of antigen, the presence

of danger signals in the microenvironment, and the genetic
FIGURE 3

Two activation pathways of TLR4. TLR4, toll-like receptor 4; LPS, lipopolysaccharide; LBP, LPS-binding protein; MD-2, myeloid differentiation protein
2; MyD88, myeloid differentiation primary response 88; TIR, toll-interleukin-1 receptor; TRIF, TIR-domain-containing adapter-inducing interferon
(IFN)-b; TIRAP, TIR domain-containing adaptor protein; TRAM, TRIF-related adaptor molecule; IRAK4, interleukin-1 receptor-associated kinase 4;
TRAF6, TNF-receptor associated factor 6; IKK, IkB kinase; TAK1, transforming growth factor-activated kinase 1; NF-kB, nuclear factor kappa-B; IRF-3,
IFN regulatory factor 3.
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background of the host determine whether DCs produce strong

Th2-driven allergic responses or acquire tolerance (5). TolDCs

achieve suppressive function by suppressing T cell inflammation

or activating Tregs (26). Induction of tolDCs by delivery of

antibodies bearing the antigen has been shown to be highly

efficient in ameliorating the disease process in a range of mouse

models (4). Co-delivery of tolerogenic drugs and antigens into

nanoparticles has been reported to promote the production of

tolDCs (87).

TolDCs are beneficial in suppressing allergic inflammation and

relieving allergic symptoms in AR, and may be a potential

therapeutic target for AR. Suppression of allergic immune

responses by tolDCs inducing allergen-specific blocking

antibodies, immunosuppressive cytokines, Tregs, and Bregs is an

alternative way to treat AR (88). Induction of tolDCs producing

IDO1 promotes immune tolerance in allergic inflammation (27,

29). Upregulation of tolDCs and Tregs favors allergen-specific IgG

production and induces immune tolerance, which may inhibit IgE

activity and basophil activation (86). The protective allergen-

specific IgG4 produced by Tregs competes with IgE for allergen

binding to prevent IgE-mediated allergic reactions (52). TolDCs

with high expression of IL-10 inhibit Th1 differentiation and limit

effector T cell function, thereby suppressing allergic inflammation

and promoting allergen-specific tolerance (41). Cui et al. (89)

showed that activated AhR could induce the production of

tolDCs to differentiate naïve T cells into Treg cells and inhibit

Th17 cell differentiation, regulating the balance between Treg and

Th17 cells. Activated AhR also induces tolDCs to generate Tr1 cells

to regulate the balance of Th1 and Th17 (2). Min et al. (90) used LPS

to activate bone marrow-derived DCs to induce the production of

tolDCs in a mouse model in vivo, and they found that induced such

tolDCs increased the number of Tregs in the lungs of ovalbumin-

induced asthmatic mice, which could help to attenuate the Th2-

mediated allergic immune response and treat allergic asthma. It is

worth noting that the dosages of LPS need to be strictly controlled

when inducing tolDCs, because the maturation of DCs by LPS is

highly dose-dependent and also depends on the type of LPS used.

Higher dosages induce an inflammatory DC phenotype rather than

a tolerogenic one. Hong et al. (91) modulated immune tolerance by

inducing tolDCs, which promotes the differentiation of Tregs

thereby alleviating allergic reactions to food in mice. Sun et al.

(46) demonstrated that Tregs are involved in the anti-inflammatory

activity of tolDCs and that the adaptive transfer of tolDCs

suppresses allergic airway inflammation. Liu et al. (92) showed

that the protein disulfide isomerase (PDI) produced by house dust

mites (HDMs) induces tolDCs to produce Tregs to promote

immune tolerance, which helps to alleviate airway allergic

inflammation. Liu et al. (93) showed that tolDCs and Tregs were

suppressed in the AR nasal mucosa compared with those in the

non-AR nasal mucosa, which in turn suggested that large amounts

of tolDCs are beneficial in the treatment of AR. Sublingual

immunotherapy (SLIT) of AR can also induce the production of

tolDCs to further alleviate allergic inflammation (94). All these

findings fully demonstrate the definitive efficacy of tolDCs in the

treatment of allergic diseases. This will promote the application of

tolDCs in the treatment of AR.
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7 TLR4/IRAK4/NF-kB signaling
pathway and AR
With abundant leucine repeats, TLRs regulate Th1/Th2 immune

balance through DCs, mast cells and Tregs (52, 60). The adaptive

immune response can be skewed toward Th1 by TLRs, which can

cause DCs maturation and T cell activation (60). A variety of

inflammatory cytokines and chemokines are released when TLRs

activate DCs (95). Activation of DCs by allergens results in Th1/Th2

imbalance, which contributes to the development of AR. Genetic

factors, environmental factors, and allergens themselves all influence

the role of the TLRs in AR (52). TLRs agonists with well-defined

immunomodulatory properties, favoring anti-allergic T lymphocyte

responses and also increasing IL-10 production to prevent Th1 and

Th17 responses (37, 96). TLR4 can initiate, exacerbate, or prevent

allergic diseases (66). Generally, TLR4 is expressed at low levels and is

upregulated once activated by allergens or other factors (52). TLR4

protein expression levels are elevated in the nasal mucosa of

individuals with AR (96). Their elevated expression contributes to

TLR4/MyD88 signaling to enhance inflammatory cell generation

(66). MyD88 is a protein that articulates with TLR4 in the

cytoplasm, which further mediates downstream signaling pathways.

IRAK4, a serine/threonine kinase, is an intermediate in the TLR4/

NF-kB signaling pathway that transduces signals from TLR4 by

bridging MyD88 (62, 97). IRAK4 is the only kinase in the IRAK

family whose activity has been shown to be required to initiate

signaling, and IRAK4 inhibitors will block all MyD88-dependent

signaling (63). IRAK4 kinase has an important role in defense against

infection in vivo, and its activity is a prerequisite for the establishment of

an innate immune response, the loss of which will lead to exacerbation

of the infection (98). Korppi et al. (99) showed that IRAK4 may play a

role in allergic diseases, where IRAK4 rs4251513, rs4251559, and

rs1461567 single nucleotide polymorphisms (SNPs) were associated

with serum immunoglobulin E (IgE) levels. Staschke et al. (100) showed

that IRAK4 kinase can regulate Th17 differentiation, thereby favoring

the treatment of Th17-mediated inflammatory diseases, and their

findings suggest that IRAK4 is a promising target for the treatment

of Th17 cell-mediated inflammatory diseases. While Th17 cells are

strongly associated with AR (101). Because of the important role of

IRAK4 in triggering allergic inflammation, IRAK4 inhibitors could be

targets for anti-inflammatory drugs (102, 103). Deletion or inactivation

of IRAK4 attenuates the development of inflammation (104).

Activation of IRAK4 transmits inflammatory signals to NF-kB in the

nucleus via TRAF6 and IKKs.

NF-kB was originally thought to be a transcription factor that

regulates immunoglobulin gene expression, and its optimal

function may be to regulate the development and activation of

the immune system (105). Further research has revealed that NF-kB
is a key regulator of innate and adaptive immune responses (106).

NF-kB is involved in signaling regulation of multiple pathways.

Activation of NF-kB induces the secretion of many pro-

inflammatory mediators leading to an inflammatory response as

well as the activation of immune cells (107). DCs can recognize

allergic inflammation and propagate pro-inflammatory signals

through NF-kB, which can also influence the occurrence and
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development of allergic inflammation by regulating the

differentiation and maturation of T cells (106). Increased NF-kB
activity induces IgE synthesis, and decreased NF-kB activity

suppresses allergic inflammatory responses (108, 109).

Multiple drugs can treat AR via TLR4/IRAK4/NF-kB signaling

pathway. Wu et al. (110) showed that probiotics can ameliorate

allergic inflammation through the TLR4/NF-kB signaling pathway.

Dong et al. (111) showed that Luteolin could treat AR by improving

Th1/Th2 imbalance and reducing inflammation via the TLR4/NF-

kB signaling pathway. Li et al. (112) showed that apigenin could

attenuate the inflammatory response in AR through the TLR4/

MyD88/NF-kB signaling pathway. Liu et al. (113) showed that

microRNA-345-5p could alleviate allergic inflammation in AR mice

through the TLR4/NF-kB signaling pathway. These studies amply

demonstrate the inseparable relationship between the TLR4/NF-kB
signaling pathway and AR. We can choose the best target on this

signaling pathway to intervene in AR depending on the needs.
8 Conclusions and future outlook

The immune response of DCs in AR towards immunity or

tolerance is essential for the treatment of AR. We can induce DCs

with tolerance function on demand, and inducing tolDCs to act on

specific targets is expected to be a scalable immunotherapy for AR.

Knocking down the expression of costimulatory molecules and

MHC class II with inhibitors of the TLR4/IRAK4/NF-kB signaling

pathway to induce tolDCs is a feasible approach. NF-kB inhibitors

that induce tolDCs are already in clinical trials (45). We can also

combine the immunogenicity and tolerability of DCs as needed for

better clinical translation. The purpose of inducing tolDCs is to

suppress unwanted immune responses in the long term (24). DC-

targeting strategies reduce the risk of extensive immunosuppression

(4). Current studies have shown that the application of DCs

immunotherapy is safe and well tolerated (114).

Despite the great potential of tolDCs-based immunotherapies,

the mechanism of their immunomodulatory activity is unclear (18),

and further studies and a full understanding of their function in

immunosuppression are needed. Are tolDCs phenotypically and

functionally stable in a pro-inflammatory environment? Whether

tolDCs have a stable and long-lasting effect in treating AR via the

TLR4/IRAK4/NF-kB signaling pathway? This is something we need

to explore further. Although there are many ways for inducing

tolDCs, there are still substantial knowledge gaps to be filled in the

application of tolDCs to treat AR via the TLR4/IRAK4NF-kB
signaling pathway. Easier, shorter cycles and long-term tolerance

are our goals. A better understanding of the pathogenesis of AR will

contribute to new ways of treating AR. We hope to use tolDCs to
Frontiers in Immunology 07
develop drugs without toxic side effects to treat AR via the TLR4/

IRAK4NF-kB signaling pathway in the future.

In conclusion, the potential of tolDCs applied to the treatment

of AR is enormous.
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