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A zinc metabolism-related gene
signature for predicting
prognosis and characteristics
of breast cancer
Jinghui Hong, Mengxin Li, Yichang Chen, Ye Du
and Dong Song*

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University,
Changchun, Jilin, China
Background: Breast cancer is one of the most serious and prevalent

malignancies. Zinc is commonly known to play a crucial role in the

development and progression of breast cancer; however, the detailed

mechanisms underlying this role are not well understood. This study aimed to

develop a zinc metabolism-related gene (ZMRG) signature based on a multi-

database study to predict patient prognosis and investigate the relationship

between drug therapy response and immune enrichment.

Methods: Data for breast cancer samples from The Cancer Genome Atlas and

Gene Expression Omnibus databases were screened for zinc metabolism-

related genes using the Molecular Signature Database. Cox and Least

Absolute Shrinkage and Selection Operator regressions were performed to

construct a ZMRG signature. To assess the predictive performance of the

gene signature, Kaplan–Meier analysis and receiver operating characteristic

curves were used. Additionally, we utilised single-sample gene set

enrichment analysis, the Tumour Immune Estimation Resource, the

Genomics of Drug Sensitivity in Cancer database, and the Cancer

Therapeutics Response Portal to investigate the association between the

tumour microenvironment and drug sensitivity. Quantitative PCR was used

to assess the expression of each gene in the signature in breast cancer cell

lines and patient samples.

Results: Five ZMRGs were identified (ATP7B, BGLAP, P2RX4, SLC39A11, and TH)

and a risk profile was constructed for each. Two risk groups, high- and low-risk,

were identified in this way, and the high-risk score subgroups were found to have

worse prognosis. This risk profile was validated using the GSE42568 dataset.

Tumour microenvironment and drug sensitivity analyses showed that the

expression of these five ZMRGs was significantly associated with immune

response. The high-risk group showed substantial immune cell infiltration and

enrichment of immune pathways, and patients were more sensitive to drugs

commonly used in breast cancer.
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Conclusion: The ZMRG signature represents a new prognostic predictor for

patients with breast cancer, and may also provide new insights into individualised

treatment of breast cancer.
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1 Introduction
Breast cancer (BC), which has been increasing in incidence over

the past few decades, is the most prevalent cancer globally and

continues to be responsible for a significant number of cancer-related

deaths (1). BC can be classified into four molecular subtypes based on

estrogen or progesterone receptor expression and Her-2 gene

amplification. The different subtypes have different risk profiles and

optimal treatment strategies (2). Although the early diagnosis of BC

improves survival, a proportion of BC patients still develop metastases

after treatment or are diagnosed after metastases have occurred (3).

Drug resistance is the central challenge in BC therapy, and it has now

been demonstrated that the development of drug resistance is closely

linked to the tumour immune microenvironment (TIME) (4).

Zinc (Zn) is an essential trace mineral in the human body and

plays a vital role in various biological processes. Zn metabolism relies

on two proteins, ZIP and ZNT, for intracellular and extracellular

transport of Zn ions (5, 6). Zn acts as a cofactor for more than 300

enzymes and is involved in cell signalling, proliferation, immune

function, oxidative stress, and apoptosis (7). Studies have shown that

disruption of Zn metabolism contributes to the development of

various cancers, including BC, prostate cancer, pancreatic cancer,

and hepatocellular carcinoma (8). Zn has also been shown to be

involved in the metastasis of BC (9). Patients with BC often exhibit

elevated tumour and reduced serum Zn levels (10). Abnormalities in

Zn metabolism may directly contribute to BC development and

progression. However, the detailed molecular mechanisms

underlying the role of Zn in the promotion of tumourigenesis and

metastasis requires further exploration. Understanding these

mechanisms may provide new insights for breast cancer treatment.

In this study, we aimed to investigate the relationship between

Zn and the prognosis and characteristics of BC. We screened RNA

expression data from normal and BC tissue samples for

differentially expressed Zn metabolism-related genes (ZMRGs)

and constructed a prognostic signature based on these ZMRGs.

We further analysed the relationship between ZMRGs and the

TIME and performed relevant drug sensitivity analysis.

2 Materials and methods

2.1 Data acquisition and collection

RNA sequencing data and clinical information for BC and

normal cases (111 normal and 1033 BC cases) were acquired from
02
The Cancer Genome Atlas (TCGA) data portal (https://

portal.gdc.cancer.gov/). The detailed clinical data collected included

age, survival time, status, and staging. GSE42568 was used as a

validation set and was acquired from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). ZMRGs were

extracted from theMolecular Signatures Database (MSigDB) (https://

www.gsea-msigdb.org/gsea/msigdb/).
2.2 ZMRG prognostic signature
construction and validation

Differentially expressed genes (DEGs) between BC and normal

tissues were identified using the “limma” R package. DEGs were

identified under the criteria |log2-fold change (FC)| >0.5 and P <

0.05 after adjusting for false discovery rate (FDR). Protein–protein

interaction (PPI) information for the 76 ZMRGs was obtained from

the STRING database (http://www.string-db.org/, version 11.5). We

identified the ZMRGs that were significantly associated with

prognosis using univariate analysis. Next, we selected stable

prognostic genes (R package “glmnet”) using Least Absolute

Shrinkage and Selection Operator (LASSO) regression. We

constructed a prognostic model from the prognostic ZMRGs using

multivariate Cox regression analysis and calculated Zn metabolism-

related risk scores (ZMRS) based on the corresponding coefficients.

The ZMRG formula was calculated as “Riskscore = gen1 * coef1 +

gen2 * coef2 + gen3 * coef3… + genN * coefN” as a specific

expression. Samples were divided into high- and low-risk groups

based on the median ZMRS score. Time-dependent curve analysis

was generated using the “timeROC” R package to assess the

predictive accuracy of the prognostic ZMRGs.
2.3 Construction and evaluation of
the nomogram

Univariate and multivariate Cox regression analyses were

conducted to identify the independent prognostic values of the

risk scores and of several clinicopathological features (including age,

staging, and survival time and status). A prognostic nomogram

combining the risk score and the clinical characteristics was

constructed using the R package “rms”.
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2.4 Analysis of correlation with
immune status

The enrichment scores of 13 immune-related pathways and 16

immune cell subpopulations were compared between the low- and

high-risk groups by single-sample gene set enrichment analysis

(ssGSEA) using the R package “gsva”. The Tumour Immune

Estimation Resource (TIMER2.0, https://cistrome.shinyapps.io/

timer/) was used to obtain information on the expression of

ZMRGs and immune cell infiltration. We analysed the

relationship between ZMRG expression and the abundance of six

types of immune cells: B cells, CD4+ T cells, CD8+ T cells,

neutrophils, macrophages, and dendritic cells (DCs).
2.5 Analysis of chemotherapeutic
sensitivity and potential drugs in BC

To explore whether the risk prognostic signature is associated

with chemotherapy resistance in BC, we used the R package

“pRRophetic” to predict the half-maximal inhibitory

concentration (IC50) of chemotherapeutic agents. Two databases

were consulted for potential therapeutic drug screening: the

Genomics of Drug Sensitivity in Cancer (GDSC, https://

www.cancerrxgene.org/) and the Cancer Therapeutics Response

Portal (CTRP, http://portals.broadinstitute.org/ctrp/). From the

GDSC database, the IC50 and corresponding mRNA gene

expression for 265 small molecules from 860 cell lines was

collected. This same information was collected for 481 small

molecules from 1001 cell lines from the CTRP database. Both

datasets were analysed using Pearson correlation analysis to

identify the correlation between target gene mRNA expression

and drug IC50.
2.6 Cell culture

Human breast epithelial (MCF-10A) and BC cell lines (MCF-7,

MDA-MB-231, MDA-MB-468, HCC38, SKBR3, BT549, and

AU565) were purchased from the American Type Culture

Collection (Manassas, VA, USA). The MCF-7, MDA-MB-231,

MDA-MB-468, HCC38, and SKBR3 cell lines were cultured in

high-glucose DMEM (Hyclone, Logan, UT, USA), whereas BT549

and AU565 cells were cultured in 1640 medium (Hyclone), both

containing 10% foetal bovine serum (Cellmax, Lanzhou, China) and

1% penicillin/streptomycin at 37°C, 95% humidity, and 5% CO2 in a

cell culture incubator.
2.7 Quantitative RT-PCR in cell lines and
breast tissues

BC and paracancerous tissues from 14 patients with BC were

sourced from the First Hospital of Jilin University. Tissue collection

was approved by the hospital’s ethics committee. RNA was
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extracted from the cell lines and breast tissue and was reverse-

transcribed to cDNA. Real-time PCR was then performed using the

2 × RealStar Fast SYBR qPCR Mix (GeneStar, Beijing, China) to

quantify the transcripts of the five ZMRGs identified as prognostic

signatures. Primers were purchased from Jilin Comate Bioscience

Co., Ltd. (Jilin, China). The ATP7B, BGLAP, P2RX4, SLC39A11,

TH, and GAPDH oligonucleotide primer sequences were: ATP7B

(F :GGCCGTCATCACTTATCAGCC; R : GGGAGCCA

CTTTGCTCTTGA), BGLAP (F:CACTCCTCGCCCTATTGGC;

R:CCCTCCTGCTTGGACACAAAG), P2RX4 (F:CTAC

CAGGAAACTGACTCCGT ; R :GGTATCACATAAT

CCGCCACAT) , SLC39A11 (F :CAGCTCTCGTGTTC

GTATTCTC; R:TCAGCCAAGTAGACAAAAGCC), TH (F:

G C T G G A C A A G T G T C A T C A C C T G ; R : C C T G T A

CTGGAAGGCGATCTCA) , GAPDH (F :GGAGCGA

GATCCCTCCAAAAT; R: GGCTGTTGTCATACTTCTCATGG).

Target gene expression was quantified relative to the internal

control, GAPDH.
2.8 Statistical analysis

All statistical analyses were performed using R software (version

4.3.0). The Log-Rank test was used to detect survival rates in each

group, the Wilcoxon test was used to compare the differences

between the two data groups, and the Kaplan–Meier method was

used to plot the survival curves of patients in both groups.

Univariate Cox regression and multivariate Cox analysis were

used to construct the prognostic signatures and assess their value.

P < 0.05 was considered statistically significant.
3 Results

3.1 Identification of ZMRGs and DEGs
in BC

The workflow diagram of this study is shown in Figure 1. The

age and tumour stage differences across the cases analysed in this

study are shown in Figures 2A, B. To pinpoint genes related to Zn

metabolism, we chose multiple pathways using the MSigDB

database and identified 76 related genes (Figure 2C). To further

explore the interactions of the selected ZMRGs, we performed a PPI

analysis (Figure 2D). We set the minimum interaction score

required for the PPI analysis to 0.9 (highest confidence level). The

correlation network containing all the ZMRGs is shown in

Figure 2E. In addition, we found 29 DEGs by comparing gene

expression patterns in 1033 BC samples with those in 111 normal

breast samples using thresholds |log2FC| > 0.5 and FDR < 0.05.

Among these DEGs, 19 were upregulated and 10 were

downregulated in BC (Figure 2F). The location on the

chromosome and the expression levels of the 29 DEGs are

illustrated in a circular plot (Figure 2G). The features of

association between these genes were revealed using correlation

matrix plots (Figure 2H).
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FIGURE 2

Expression and Genetic characteristics of ZMRGs in TCGA-BRCA cohort. (A) Age distribution in the TCGA-BRCA cohort. (B) Tumour stage
distribution in the TCGA-BRCA cohort. (C) Heatmap of 76 differentially expressed ZMRGs. (D) PPI analysis among the 76 ZMRGs. (E) The correlation
network of the ZMRGs. (F) Volcano plot illustration of differentially expressed ZMRGs in the TCGA-BRCA cohort. (G) The location of the ZMRGs on
chromosomes. (H) Correlation matrix among the ZMRGs.
FIGURE 1

Workflow diagram of this study.
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3.2 Development of a ZMRG
prognostic signature

Five significant prognostic ZMRGs were identified using

univariate Cox regression in the TCGA-BC cohort (Figure 3A).

All 29 DEGs were screened for prognostic value using LASSO

regression (Figures 3B, C). Subsequently, the corresponding

coefficient values were extracted and individual risk scores were

calculated based on the coefficient-weighted expression levels of the

selected genes. The risk score was calculated as follows: risk score =

(–0.052542 × ATP7B expression) + (–0.436158 × BGLAP

expression) + (–0.065372 × P2RX4 expression) + (0.017788 ×

SLC39A11 expression) + (0.223976 × TH expression). Patients

were stratified into high- and low-risk groups according to the

median cut-off values (Figure 3D). Principal component analysis

(PCA) demonstrated that samples were clearly divided into two

groups according to their risk scores (Figure 3E). The distributions

of the risk scores and survival metrics are shown in Figure 3F. With
Frontiers in Immunology 05
the increase in risk score, the risk of death increased, while the time

to overall survival (OS) decreased. Kaplan–Meier survival curve

analysis revealed that patients in the high-risk group had

significantly worse OS than those in the low-risk group

(P < 0.001; Figure 3G). Time-dependent ROC curve analysis was

used to estimate the predictive power of the prognostic ZMRGs

(Figure 3H). The AUCs were 0.613 and 0.644 for the ZMRGs at 1

and 3 years of follow-up, respectively, indicating relatively good

predictive accuracy.

The signature significantly predicted survival in univariate

and multivariate Cox regression analyses. Univariate Cox

regression analysis indicated that the risk score was an

independent predictor of poor survival in patients with BC

(HR = 1.8394, 95% CI: 1.2773–2.6488; Figure 4A).

Multifactorial analysis yielded the same result, with the risk

score being identified as an independent prognostic factor (HR

= 2.2868, 95% CI: 1.5703–3.3303; Figure 4B) after adjusting for

other clinical characteristics, including age and tumour stage. In
A B

D E F

G H

C

FIGURE 3

Correlation analysis between prognosis and characteristics of BC patients from the TCGA-BRCA database. (A) Univariate Cox regression of the five
ZMRGs. (B) LASSO regression of the five ZMRGs. (C) Cross-validation in the LASSO regression. (D). The distribution of risk scores of the five ZMRGs.
(E) The PCA plots based on risk scores. (F) The distribution of OS status of the five ZMRGs. (G) Kaplan–Meier survival curves for OS in the two risk
groups. (H) AUC values of ROC curves for risk scores.
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addition, we generated a heatmap of the clinical characteristics of

TCGA cohort (Figure 4C).
3.3 Validation of the ZMRGs signature in
GEO dataset

To validate the ability of the selected ZMRG signature to predict

BC prognosis, we selected the external cohort GSE42568 (104 BC

samples) from the GEO database. The risk model estimated risk

scores for selected patients were calculated using the same formula

and the same cut-off values were used to classify them as high- or

low-risk patients (Figure 5A). Similar to the results obtained from

the original TCGA cohort, patients in the high-risk group were

more likely to die (Figure 5B). Survival analysis revealed

significantly different survival rates between the two risk groups

(Figure 5C). The AUCs were 0.808 and 0.758 for the ZMRGs at 1

and 3 years of follow-up, respectively, meaning we also achieved

good predictive accuracy in the GEO cohort (Figure 5D).
Frontiers in Immunology 06
3.4 Evaluation of a
clinicopathologic nomogram

We constructed a nomogram by combining the ZMRG signature

with two clinical characteristics (age and AJCC stage) to better predict

1-, 3-, and 5-year OS in patients with BC (Figure 6A). The plotted

calibration curves showed a good agreement between the predicted

and actual survival curves, confirming that the column line graphs

had satisfactory predictive discrimination (Figure 6B).
3.5 Association between immune status/
tumour immune infiltration and risk score
of ZMRGs

Zn metabolism plays a significant role in breast tumour

immunity. To further investigate the association between the

ZMRG risk scores and tumour immunity, the enrichment scores

of 16 immune cell subpopulations and 13 immune-related pathways
A B

C

FIGURE 4

Prognostic value of the risk signature. (A) Univariate Cox analysis on OS for the risk score in TCGA-BRCA cohort. (B) Multivariate Cox regression on
OS for the risk score in TCGA-BRCA cohort. (C) Heatmap of the association between clinical and pathological features in the two risk groups.
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were compared between the low- and high-risk groups by single-

sample gene set enrichment analysis (ssGSEA). The results showed

that eight immune cell types (DCs, macrophages, mast cells, NK

cells, Tfhs, Th1 cells, Th2 cells, and Tregs) were significantly more

enriched (P < 0.05) in the high-risk group than the low-risk group,

meaning higher levels of immune cell infiltration were present in

the high-risk group (Figure 7A). In terms of immune-related

pathways, nine pathways showed significantly higher (P < 0.05)

immune activity in the high-risk group than in the low-risk group

(Figure 7B). Next, the correlation between the expression of the five
Frontiers in Immunology 07
prognostic ZMRGs (ATP7B, BGLAP, P2RX4, SLC39A11, and TH)

and the level of BC immune infiltration was explored. The results

suggested that the expression of these ZMRGs was associated with

infiltration patterns of many immune cells. The expression level of

ATP7B was positively correlated with the level of immune

infiltration of CD8+ T cells (P = 1.58 × 10–2), CD4+ T cells

(P = 3.71 × 10-2), and macrophages (P = 7.45 × 10–9)

(Figure 7C). The expression level of BGLAP was positively

correlated with the level of immune infiltration of B cells

(P = 3.15 × 10–4), CD8+ T cells (P = 5.36 × 10–15), macrophages
A B

DC

FIGURE 5

Validation of risk characteristics in the GEO cohort using ZMRG risk scores. (A) The distribution and median risk score in the GEO cohort. (B) PCA
distribution. (C) Kaplan–Meier survival curves for OS in the two risk groups. (D) AUC values of ROC curves for risk scores in the GEO cohort.
A B

FIGURE 6

Development of the prognostic nomogram. (A) Nomogram based on the five ZMRGs comprising the signature and the clinical information. (B) The
calibration plots for predicting 1-, 3-, and 5-year survival probabilities.
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(P = 3.98 × 10–8), neutrophils (P = 2.30 × 10–5), and dendritic cells

(P = 4.05 × 10–3) were negatively correlated with the level of

immune infiltration (Figure 7D). The level of P2RX4 expression

positively correlated with the level of immune infiltration of

macrophages (P = 5.38 × 10–3) and negatively correlated with the

level of immune infiltration of dendritic cells (P = 3.67 × 10–2)

(Figure 7E). The expression level of SLC39A11 was positively

correlated with the level of immune infiltration of CD8+ T cells

(P = 3.89 × 10–2) and macrophages (P = 1.12 × 10–6) (Figure 7F).

The expression level of TH was positively correlated with the level

of immune infiltration of CD8+ T cells (P = 7.73 × 10–3) and was

negatively correlated with the level of infiltration of macrophages

(P = 4.25 × 10–2) (Figure 7G). To further validate the role of ZMRGs

in the biological process of immunity, we performed a GO

enrichment analysis of DEGs between the high-risk and low-risk

groups. The results showed that ZMRGs were significantly enriched

in the biological processes of immunization, consistent with the

results of this part of the study (Supplementary Figure 1).
3.6 Exploration of chemotherapeutic
response and potential drugs for BC based
on ZMRGs

To explore the value of the ZMRG-related risk scores for

predicting common chemotherapeutic agents for BC, we used the

“pRRophetic” database to predict the chemotherapeutic responses

in BC patients. We calculated the IC50 values of commonly used
Frontiers in Immunology 08
drugs in the high- and low-risk groups. The IC50 values of drugs

recommended in the current major BC treatment guidelines include

cisplatin, docetaxel, doxorubicin, vinorelbine, palbociclib

(PD.0332991), and olaparib (AZD2281), among others, were

lower in the high-risk group than in the low-risk group, meaning

there was greater sensitivity to these drugs in the high-risk group

(Figure 8A). We also identified several potential BC therapeutics

using the GDSC and CTRP databases. According to the GDSC

database analysis, BX-795, bleomycin, and others may be

effective drugs (Figure 8B). Based on analysis of the CTRP

database, CHIR-99021, fluvastatin, lovastatin, and others may be

effective (Figure 8C).
3.7 Validation of the mRNA expression
level of ZMRGs

The expression of the ZMRGs which form the signature was

validated using qRT-PCR. We detected gene expression in several

common breast cancer cell lines and a normal breast epithelial cell

line, as well as comparing expression between breast cancer and

paracancerous tissues from 14 patients. The results showed that

P2RX4 and SLC39A11 were highly expressed in most breast

cancer cell lines (Figures 9A, B), and ATP7B and P2RX4 were

significantly up-regulated in BC tissues (P < 0.05) (Figures 9C, D),

which is consistent with the results of previous bioinformatics

analyses based on the TCGA database and other results described

in the literature.
A

B

C

D

E

F

G

FIGURE 7

Comparison of ssGSEA scores between the two risk groups and correlation between the expression of the five ZMRGs and immune infiltration in BC.
(A) Enrichment scores for eight immune cell types in the two risk groups. (B) Enrichment scores for 13 immune-related pathways in the two risk
groups. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001. (C–G) Correlation between ATP7B, BGLAP, P2RX4, SLC39A11, TH expression and
immune infiltration in BC based on the TIMER database.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1276280
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hong et al. 10.3389/fimmu.2023.1276280
A

B C

FIGURE 8

Potential therapeutic agents for BC based on ZMRG risk scores. (A) Comparison of IC50 values for commonly used drugs recommended in BC
treatment guidelines in two risk groups. (B) Drug sensitivity analysis based on the GDSC database, drugs such as BX-795 and bleomycin may be
therapeutically effective. (C) Drug sensitivity analysis based on the CTRP database, drugs such as CHIR-99021, fluvastatin, and lovastatin may be
therapeutically effective. Positive correlations are represented by red bubbles and negative correlations by blue bubbles. The darker the colour of the
bubbles the higher the correlation. The size of the bubbles is positively correlated with the significance of FDR. A black border on the bubbles
indicates FDR ≤ 0.05.
A B

DC

FIGURE 9

Validation of mRNA expression levels of the five ZMRGs. (A, B) The mRNA expression level of P2RX4 and SLC39A11in breast cancer cell line, as measured
by qRT-PCR. (C, D) The mRNA expressions of ATP7B and P2RX4 in breast tissue as measured by qRT-PCR. *P < 0.05; **P < 0.01; ***P < 0.001; ns,
no significance.
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4 Discussion

In recent years, the relationship between BC and Zn has

received increasing attention. Zn is an important trace element in

the body and is involved in regulating numerous cellular metabolic

processes. Abnormal Zn metabolism can lead to the development

and progression of BC (11). However, studies on the prognostic

value of genes related to Zn metabolism in BC have not yet been

reported. Prognostic signatures are essential for precision medicine

and can help guide clinical decisions. Therefore, we explored the

ability of ZMRGs to predict prognosis and established a prognostic

signature to provide more accurate therapeutic decisions and

diagnostic approaches for BC.

Our prognostic signature included five ZMRGs (ATP7B, BGLAP,

P2RX4, SLC39A11, and TH). Previous studies have explored the

relationship between ZMRGs and tumours, with all ZMGRGs

studied being found to play a role in tumour development and

progression. ATP7B is highly expressed in many tumours including

BC, ovarian cancer, oesophageal cancer, gastric cancer, and

hepatocellular carcinoma (12, 13). ATP7B is not only involved in

tumour progression, but also in the development of platinum drug

resistance (14–16). A previous study reported that BGLAP was

associated with advanced breast cancer staging (17). P2RX4 belongs

to the P2 purinergic receptor family, which is commonly upregulated

in a variety of tumours and is associated with poor prognosis (18).

Specifically, P2RX4 plays a key role as a regulator in inflammation and

immune cell function (19). A previous study showed that P2RX4 was

upregulated in BC samples, which is largely similar to our findings. It

has also been demonstrated that P2RX4 enhances BC invasiveness,

breast tumour growth, and metastasis (20). Given its role in promoting

tumour formation, P2RX4 has emerged as a potential therapeutic

target (21). SLC39A11 is a solute carrier of membrane transport

protein family 39 (SLC39A). SLC39A11 was previously found to be

significantly upregulated in BC tissues compared to normal breast

tissues (22), which is similar to our findings. In colon cancer,

SLC39A11 expression is also upregulated, possibly in response to the

increased Zn demand in cancer cells (23). SLC39A11 is also a

prognostic indicator and therapeutic target in lung adenocarcinoma

(24). TH encodes a protein that is involved in the conversion of

tyrosine to dopamine. Higher levels of TH expression are associated

with worse outcomes, and positive TH expression is a poor prognostic

indicator of metastatic neuroblastoma (25).

It is well known that Zn is important for immune function and that

abnormalities in Zn metabolism affect immune cells and lead to

alterations in host defences (26). Zn is involved in the regulation of

multiple intracellular signalling pathways in innate and adaptive

immune cells (27, 28). In innate immunity, Zn deficiency affects the

activity of natural killer cells and phagocytosis by macrophages (8, 29).

In adaptive immunity, some Zn transporter proteins that are highly

expressed in T cells, such as Zip6 and Zip8, are directly involved in T

cell activation via Zn endocytosis (30). Additionally, Zn is an essential

cofactor that directly affects the biological activity of thymosin, which in

turn affects T-cell generation, maturation, differentiation, proliferation,

and functional changes (31, 32). Our ssGSEA results confirmed the
Frontiers in Immunology 10
presence of large immune cell infiltration and enrichment of immune

pathways in the high-risk group, suggesting that more immune

pathways were activated in the high-risk group than in the low-risk

group. These results suggest that the high-risk group is generally

immunologically activated, indicating that patients with a high-risk

signature are more likely to show a better response to immunotherapy,

which may be a focus for future therapeutic development.

Interactions between different components of the tumour

microenvironment affect tumour development and metastasis and

promote BC chemoresistance (33). Chemoresistance during BC

treatment significantly affects prognosis. The mechanism of

chemoresistance in tumours is complex and involves interactions

between numerous signalling pathways (34). Clarifying the

mechanisms underlying drug resistance is challenging. Therefore,

it is crucial to accurately differentiate drug-sensitive populations. In

our study, drug sensitivity analysis was performed on high- and

low-risk groups, defined using our ZMRG signature, drawn from

the GDSC and CTRP databases. High-risk patients were found to be

more sensitive to drugs commonly used in BC, such as cisplatin,

docetaxel, doxorubicin, vinorelbine, palbociclib, and olaparib.

Using our ZMRG prediction model to evaluate the sensitivity of

BC drug therapy, we hope to provide new therapeutic ideas for BC

treatment and more precise and individualised treatments for

patients with BC in future clinical practice.

Despite improving confidence in our results through our

multifaceted analyses, database validation, and validation of

multiple BC cell lines and patient samples, this study has some

limitations. First, this was a retrospective study, and data for all

patients with BC were collected from public databases. Second,

further validation of our findings is needed in future studies because

the drug sensitivity prediction conducted here is based only on

bioinformatics analyses. In addition, the molecular mechanisms

underlying the function of the ZMRGs which contribute to our risk

score in BC need to be explored in more depth.

In summary, we constructed a prognostic signature based on

ZMRGs to predict the prognosis of BC patients. This model is related

to the immune microenvironment and can distinguish the immune

status of patients with BC. More importantly, it could be used to

provide new treatment options for BC patients in different risk groups.
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