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Solute carrier (SLC) transporters are membrane-bound proteins that facilitate

nutrient transport, and the movement across cellular membranes of various

substrates ranging from ions to amino acids, metabolites and drugs. Recently,

SLCs have gained increased attention due to their functional linkage to innate

immunological processes such as the clearance of dead cells and anti-microbial

defense. Further, the druggable nature of these transporters provides unique

opportunities for improving outcomes in different immunological diseases.

Although the SLCs represent the largest group of transporters and are often

identified as significant hits in omics data sets, their role in immunology has been

insufficiently explored. This is partly due to the absence of tools that allow

identification of SLC expression in particular immune cell types and enable their

comparison before embarking on functional studies. In this study, we used

publicly available RNA-Seq data sets to analyze the transcriptome in adaptive

and innate immune cells, focusing on differentially and highly expressed SLCs.

This revealed several new insights: first, we identify differentially expressed SLC

transcripts in phagocytes (macrophages, dendritic cells, and neutrophils)

compared to adaptive immune cells; second, we identify new potential

immune cell markers based on SLC expression; and third, we provide user-

friendly online tools for researchers to explore SLC genes of interest (and the rest

of the genes as well), in three-way comparative dot plots among immune cells.

We expect this work to facilitate SLC research and comparative transcriptomic

studies across different immune cells.

KEYWORDS
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1 Introduction

Immune cells are bathed in small molecules such as metabolites,

hormones, and peptides that circulate either through the blood or

the lymph, and encounter many similar molecules within the

extracellular spaces of lymphoid and non-lymphoid tissues.

Further, these metabolites provide key biomass that can be taken

up and used as nutrients as well as for intra- or intercellular

communication. Since many of these metabolites and small

molecules are charged and cannot freely cross the plasma

membrane, cells use specific transporters for the transfer of small

molecules across biological membranes.

Transporters of the solute carrier (SLC) superfamily mediate

solute influx and efflux across the plasma membrane and

intracellular membranes. Currently, >400 SLCs are identified in

the human genome (1), making it the second-largest membrane

bound protein family after the G protein coupled receptor (GPCR)

family (~1,400 members). During homeostasis, there is a constant

turnover of metabolites such as sugars, fatty acids, and amino acids

within cells, all of which need to be transported into and out of

organelles and cells. SLC transporters promote cross-membrane

movement of charged organic and inorganic solutes in

immune cells.

More than 100 SLC genes are linked to human genetic disorders

(2), and the functions of SLCs are linked to many biological

processes. However, despite the genetic and functional richness,

SLCs are remarkably understudied (3). Further, metabolic changes

in immune cells (so-called ‘immunometabolism’) are not only

crucial during homeostasis, but also for the differentiation and

function of immune cells during inflammation (4–7). Thus, a better

appreciation of the SLC family within immune cell populations

would help define how immune cells use certain metabolites and

small molecules for coordinating different aspects of an immune

response, understanding metabolite-based communication between

T cells, macrophages, and dendritic cells, and to manipulate

particular SLCs to modify specific immune responses.

Here, using publicly available gene expression data sets (RNA-

Seq), we first derive new insights into the expression patterns of

SLCs in the phagocytic myeloid populations versus B and T

lymphocytes. Second, we focus more directly on the SLCs of three

major phagocytic cell types: macrophages, dendritic cells, and

neutrophils. Using a bioinformatic tool, Triwise, which allows

three-way comparisons between transcriptomes, we have designed

online interactive plots, through which researchers can explore the

expression of a gene of interest and easily assess its relative

expression and statistical significance between three subsets of

immune cells. Our investigations reveal that SLCs are expressed

significantly higher in professional phagocytes compared to B and T

lymphocytes, and allude to a significant role for SLC11A1 (also

known as NRAMP1) in phagocytes. Specific to macrophage subsets

deriving from various tissues, the heme transporter SLC48A1 (also

known as HRG1) was highly upregulated compared to other

professional phagocytes or adaptive immune cells. Finally, it may
Frontiers in Immunology 02
be possible to use the high transcript levels of specific SLCs as novel

markers for specific dendritic cell subsets, and we could confirm a

role for amino acid transporters (SLC3/SLC7 family) in neutrophils

in inflammatory settings.
2 Materials and methods

2.1 Bulk RNA-seq data sets

Open access RNA-seq data sets were retrieved from the Gene

Expression Omnibus database (8) or through the ImmGen Data

browser (9). The selected data sets, namely, GSE109125 (10),

GSE122108 (11, 12), GSE164255 (13) and GSE107011 (14) had

the following characteristics: GSE109125 contained murine

transcriptome data from cells of the adaptive (e.g. lymphocytes)

and innate immune system (e.g. mononuclear phagocytes, innate

lymphoid cells and granulocytes), while GSE122108 contained

murine data specifically from mononuclear phagocytes. Samples

included several tissues allowing for cross-tissue comparisons.

Samples were retrieved from untreated mice except for one set of

peritoneal neutrophils under an inflammation induced treatment

(i.e., Thioglycolate 3%) in GSE109125. The GSE164255 data set

included Salmonella infectious model samples from spleens of mice

and consisted of naïve classical monocytes and both bystander and

infected iNOS macrophages, 24 hours post-infection. The

GSE107011 data set contained human T and B lymphocytes,

neutrophils, monocytes and dendritic cells. The data sets were

downloaded in the raw gene-count table format. All sequencing

and mapping procedures were performed by the respective authors

of the data sets. Briefly, these procedures consisted in: RNA-seq

using the standard ImmGen ultra-low-input protocol (GSE122108),

the low-input protocol (GSE109125), TRIzol® isolation protocol

(GSE107011) or PCR purification beads followed by mRNA

processing (GSE164255) (15). All murine samples were sequenced

using the Illumina NextSeq 500 and human samples through

Illumina HiSeq 2000. GSE109125 samples followed a thorough

trimming procedure using sickle (v 1.2) and TrimGalore (v 0.4.0).

Reads were mapped to the mm10 (GSE109125 and GSE109125) or

mm9 (GSE164255) mouse genome or transcriptome (GSE107011)

using hisat2 (16) (GSE109125), STAR (17) (GSE122108) or kallisto

(18) (GSE107011). GSE109125 low quality reads (MAPQ < 5) were

removed using samtools and duplicated reads were removed using

Picard MarkDuplicates function (19).
2.2 Microarray data set

The microarray data set GSE35449 (20) containing

macrophages in classical and alternative polarization conditions

was downloaded from GEO as a normalized count matrix. Please

see Beyer et al., PLOS One 2012 (20) for details of M1 and M2

polarization and related RNA analysis.
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2.3 Analysis of RNAseq data sets

After retrieving the raw gene-count tables, preprocessing and

analysis were performed equally to all data sets to ensure

consistency. All analyses were performed independently for each

data set to avoid batch correction. R4.2.3 (R Foundation for

Statistical Computing, Vienna, Austria) with DESeq2 (v 1.38.3)

(21) and edgeR (v 3.40.2) (22) packages were used throughout the

processing and statistical analyses. An initial filtering step removed

all samples that were of no use for this manuscript, leaving 48 total

replicates belonging to 23 samples in GSE109125 and 46 replicates

from 13 samples in GSE122108. We ensured having at least two

replicates per sample, with one exception (Table 1). Genes with low

read counts across samples were removed with the edgeR

filterByExp function using a minimum number of CPM counts of

5 (GSE109125, GSE122108 and GSE107011) or 10 (GSE164255).

This led to a reasonable number of genes per data set: 12,077 genes

for GSE122108, 18,896 for GSE109125, 9,985 for GSE164255 and

10,403 in GSE107011.

Differential expression was calculated using DESeq with default

parameters. DESeq corrected library depth (normalization),

estimated dispersions with a parametric model and fitted a

negative binomial distribution to allow hypothesis testing with the

Wald method. A p-value adjusted (false discovery rate) < 0.05 was

considered a significant difference in expression per gene. For the

sample with a single replicate, its variance was automatically

calculated by DESeq2 based on the variances of the other samples

(21). To generate scaled data, which was needed for some of the

downstream visualizations and analyses – like principal component

analysis (PCA) or Triwise plots – a version of the data sets with a

corrected mean-variance relationship was calculated using the

varianceStabi l iz ingTransformation funct ion from the

DESeq2 package.
2.4 Analysis of microarray data set

The already normalized matrix of counts was first filtered to

eliminate genes with low expression using edgeR’s filterByExpr

function with a minimum CPM counts of 5 leaving 24,888 probes.

After annotating the probe names with gene names we eliminated

any duplications of genes by choosing the first one in order.

Differential expression was calculated with the limma (v 3.54.2)

(23) package by fitting a linear model in each feature using the lmFit

function with default parameters followed by contrasts.fit and

eBayes functions. Downstream plots were performed in the same

fashion as the RNA-seq datasets.
2.5 Data analyses and visualization in R

PCA plots were generated with the plotPCA() function from the

DESeq2 package.

The Triwise package (v 0.99.5) (24) was used to visualize

differential expression on three cell types at a time in several
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combinations. Triwise dot plots were computed by the

plotDotplot function, which transforms a three-sample expression

matrix to barycentric coordinates allowing the visualization of

three-dimensional expression values in a two-dimensional (2D)

graph. An intuitive explanation of the rationale behind this

visualization can be found in (Supplementary Figures S1A &

S1B). Rose plots were performed with the plotRoseplot function,

which makes a histogram out of the barycentric 2D expression

coordinates, thus showing the number of genes in every section of

the plot. R3.3 was used for the generation of these plots.

SLC genes with the highest expression per sample were chosen

by taking the top 20 SLC genes with the highest mean expression

across replicates for a given sample. This threshold was chosen,

because the top 20 SLCs contain approximately 50% of the

normalized counts of all SLCs per sample analyzed per data set.

Venn diagrams showing common top SLC genes between samples

were performed with the VennDiagram package (v1.7.3) (25).

Heatmaps performed using the pheatmap (v1.0.12) package (26).

2.5.1 Interactive dot plots
To access the six interactive dot plots (IntDP1, IntDP2, IntDP3,

IntDP4, IntDP5 and IntDP6), please see the zip file in the

Supplementary Material.
2.6 Data analysis in GraphPad prism

Read count comparisons from dendritic cell subsets were

visualized in Prism 9 for macOS (version 9.5.0). The resulting

data was analyzed using either a Mann-Whitney T test or an

Ordinary one-way ANOVA with Dunnet t ’s mult ip le

comparisons test.
2.7 Cartoon schematics

Cartoon schematics were created in part using the software

from BioRender.com.
3 Results

3.1 Significantly more SLCs are expressed
in phagocytes compared to lymphocytes

During the encounter with an invading microbe or dying cell,

professional phagocytes digest and turn over overwhelming

amounts of cellular debris and metabolites. During this process of

recycling, a large machinery of metabolite transport involving SLC

proteins is necessary for the phagocyte to maintain its cell volume,

intracellular pH, and inflammatory state (5). To test the premise

that SLCs in general may be more expressed in phagocytes under

steady state level, we made use of a three-way comparison model

called Triwise, which allows us to visualize and analyze gene

expression data from three biological conditions simultaneously
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TABLE 1 Data sets used and cellular samples analyzed in this manuscript.

MURINE TRANSCRIPTS

GEO Cell type Tissue Subtype Sample name Cell sorting markers n

GSE122108

ImmGen ULI:
OpenSource
Mononuclear
Phagocytes
Project

Macrophages

Thymus Macrophage MF.64p.Th Lin- F4/80+ CD64+ 4

Spleen Macrophage MF.480p.SP
CD19- Ly6G- CD115- CD45+ CD11blo F4/80+

MerTK+ CD64+
2

Liver Kupffer cell MF.KC.Clec4FpTim4p64p.Lv Clec4F+ Tim4+ CD45+ F4/80+ CD64+ 3

Lung,
alveolar

Macrophage MF.alv.11cp64pSiglecFp.Lu CD45+ CD11blo CD64+ CD11c+ SiglecF+ 3

Kidney Macrophage MF.6Gn480hi.Kd CD45+ CD11b+ MHCII+ F4/80hi Lin- Ly6G- 2

Peritoneal
cavity

Macrophage MF.PC.1-6 ICAM2+ F4/80+ 6

Dendritic
cells

Liver cDC1 DC.cDC1.XCR1p.Lv CD45+ XCR1+ CD11c+ MHCII+ 3

Liver cDC2 DC.cDC2.172ap.Lv CD45+ CD172a+ CD11c+ MHCII+ 4

Liver pDC DC.pDC.120g8p11cintp6Cp.Lv 120g8+ CD11cint Ly6C+ MHCII+ 4

GSE109125

ImmGen ULI:
Systemwide

RNA-seq profiles
(#1)

Macrophages

Spleen Macrophage MF.RP.Sp Mertk+ CD64+ CD11blo F4/80+ 2

Lung,
alveolar

Macrophage MF.Alv.Lu CD45+ CD11c+ SiglecF+ 2

Peritoneal
cavity

Macrophage MF.PC
CD115+ CD11b+ F4/80+ CD102+ MHCIIlo

CD226+
4

Dendritic
cells

Spleen cDC1 DC.8+.Sp CD45+ MHCII+ CD11c+ CD8+ CD4- 3

Spleen cDC2 DC.4+.Sp CD45+ MHCII+ CD11c+ CD8- CD4+ 3

Spleen pDC DC.pDC.Sp CD45lo CD11b+ 2

Granulocytes

Spleen Neutrophil GN.Sp CD11b+ Ly6G+ 2

Peritoneal
cavity

Neutrophil GN.Thio.PC CD11b+ Ly6G+ 2

Bone
marrow

Neutrophil GN.BM CD11b+ Ly6G+ 2

Spleen Basophil Ba.Sp
CD11b+ CD49b+ FcER1a+ CD11c- CD4-

CD8- CD19- CD117-
3

Spleen Eosinophil Eo.Sp
CD11b+ SiglecF+ FSClo SSChi CD11c- CD4-

CD8- CD19-
2

Innate
lymphoid

cells

Spleen
ILC1-like
NK cell

NK.27 + 11b-.Sp
CD3- CD19- NK1.1+ CD127- CD51- CD49a-
DX5+ CD11b- CD27+

2

Small
intestine

ILC2 ILC2.SI CD45+ CD3- CD19- CD127+ KLRG1+ ST2+ 2

Small
intestine,
lamina
propia

ILC3 ILC3.CCR6+.SI
CD45lo CD3- CD19- NK1.1- Thy1+ NKp46-

CCR6+
2

Small
intestine,
lamina
propria

ILC3 ILC3.NKp46+.SI
CD45lo CD3- CD19- NK1.1- Thy1+ NKp46+

CCR6-
2

Lymphocytes

Spleen B cell B.Sp CD19+ Igm+ TCRb- 1

Spleen CD4+ T cell T.4.Nve.Sp
CD4+ CD8- TCRbhi CD62Lhi CD44lo CD25-

Dump-
2

GSE164255
Hoffman et al.,
Immunity 2021

Monocytes Spleen Monocyte CM
Lin- CD11b+ F4/80- MHCII– CD11c-

Cx3cr1+ CD115+ Ly6C+ CD43-
5

Macrophages
Spleen Macrophage iNOS Lin– CD11b+ F4/80+ CD64+ Ly6C+ CD69+

SCA-1+ MERTKmid CD206– MHCII– CD9–
4

Spleen Macrophage iNOS_inf 3

(Continued)
F
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(24) (Figure 1A; Supplementary Figures S1A & S1B). To reduce the

influence of tissue-specificity on gene expression signatures, we

made use of a publicly available transcriptional data set (Table 1) –

part of the immunological genome project (ImmGen) – that

contains adaptive as well as innate immune cell subsets isolated

and sorted from the spleen of 6–8-week-old C57BL6/J mice (9). Our

first quality control was to ensure that the samples from the

respective data set formed tight clusters with little intra-sample

variance compared to inter-sample variance (Supplementary

Figures S1C). As no outliers were found on this visual inspection,

we proceeded to the first comparative analysis, in which we looked

at the transcriptome of macrophages compared to adaptive immune

cells, specifically B lymphocytes and CD4 T lymphocytes

(Figure 1B, Aaes et al. , Interactive Dot Plots IntDP1,

Supplementary Material). Not only did the macrophages express

a significant number of genes to a higher extent than the

lymphocytes, this distribution of differentially expressed genes

was directly mirrored in the SLC gene family specifically

(Figure 1C). Recent work from our lab demonstrated a

transcriptional upregulation of membrane-bound transporters –

especially those of the SLC3/SLC7 family – in bone marrow-derived

dendritic cells during engulfment of apoptotic cells (27); to test SLC

transcriptional profiles already visible at steady state, we performed

a similar transcriptome comparison of type 1 conventional

dendritic cells (cDC1s) to lymphocytes (Figure 1D, Aaes et al.,

Interactive Dot Plots IntDP2, Supplementary Material). Again, we

noted an overall transcriptional distinction between dendritic cells

and the adaptive immune cells, which was even more striking when

evaluating the SLC gene family. A third professional phagocyte

population is neutrophils, and here again we observed a significant

number of differentially upregulated genes (Figure 1E, Aaes et al.,

Interactive Dot Plots IntDP3, Supplementary Material) and

particularly of the SLCs compared to the B and T cells. To test

whether these observations are also true in humans, we analyzed

immune cell samples from a human RNA-Seq data set

(Supplementary Figure S1D) (14). Similar to the corresponding
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murine data, the Triwise comparison of human neutrophil

transcripts versus B and CD4 T lymphocytes showed a distinct

gene expression signature (Figure 1F, Aaes et al., Interactive Dot

Plots IntDP5, Supplementary Material), which was much

pronounced in the SLC transcript subset (Figure 1G). Directly

comparing the highest expressed SLCs, which are unique to one

cell type or overlapping among two or all three immune cell types,

we found several identical genes in both the human and murine

data sets (Figure 1H). Among the hits are SLC16A3 (MCT4) – a

monocarboxylate (lactate) transporter, which was recently

identified as an onco-immunological biomarker and associated

with increased neutrophil infiltration in tumors (28, 29), and

NRAMP1, which is encoded by SLC11A1 and is highly expressed

in both human as well as murine neutrophils. General to both

murine and human immune cells, we also found both SLC25A3,

SLC38A2 and SLC44A2 as highly expressed in both innate and

adaptive immune cells. Thus, we note a pronounced SLC

transcriptional profile in three distinct splenic phagocyte

populations – macrophages, cDC1s, and neutrophils compared to

B and CD4+ T lymphocytes from steady state conditions in both

murine and human RNA-Seq data sets.
3.2 Professional phagocytes express
distinct SLC transporters

As all three murine phagocyte populations showed a strong

upregulation of over 100 SLC-encoding genes, we queried whether

these SLCs represented a general phagocyte-specific SLC profile, or

whether each type of phagocyte expressed a distinct set of SLCs.

Therefore, we first compared the total transcriptome of the three

phagocyte populations – all originating from the spleen to minimize

variables. We observed many genes that were significantly

differentially expressed – including SLCs (Figure 2A, Aaes et al.,

Interactive Dot Plots IntDP4, Supplementary Material). We also

replotted the SLCs separately (Figure 2B) to compare more easily
TABLE 1 Continued

HUMAN TRANSCRIPTS

GEO Cell type Tissue Subtype Sample name Cell sorting markers n

GSE35449
Beyer et al., PLOS
2012

Macrophages

PBMC M0 M0 CD14+ 7

PBMC M1 M1 CD14+ CD11BHi CD64+ CD68+ 7

PBMC M2 M2 CD14+ CD11B+ CD23+ CD68+ 7

GSE107011
Monaco et al.,
Cell Rep. 2019

Monocytes PBMC Monocyte C_mono CD14+ CD16- 4

Macrophages PBMC Neutrophil Neutrophils SSC-AHigh CD16+ 4

Dendritic
cells

PBMC
Dendritic
cell

mDC HLA-DR+ CD11C+ 4

Lymphocytes
PBMC B cell B_naive CD19+ CD27- IgD+ 4

PBMC CD4+ T cell CD4_naive CD4+ CCR7+ CD45RA+ 4
frontiersin.
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FIGURE 1

Phagocytes display a pronounced SLC transcriptome profile compared to B and T lymphocytes. (A) A schematic drawing of a Triwise dot plot, which
explains how to interpret the gene expression comparisons between three samples or cell types. The direction of a dot shows in which cell type the
gene is upregulated, while the distance from the center of the plot indicates the strength of upregulation – similar to log fold change. Genes with
the same expression in all three cell types will lie close to each other in the center, regardless of the magnitude of their absolute expression levels
(indicated by grey dots). The colored background in the plot (i.e., yellow, blue or red) depicts the zones, in which upregulated genes in each sample
(cell type #1, #2 or #3 respectively) will be located after gene expression transformation into barycentric coordinates. When a gene is equally
upregulated in two samples compared to the third sample, the dot will locate to the intersection between two zones (e.g., the green dots).
(B, C) Triwise dot plot and rose plot of RNA-Seq data (GSE109125) from splenic immune cell subsets of the adaptive immune system (B cells and
CD4+ T cells) versus macrophages sorted from mice. (D, E) Triwise comparisons and rose plots of murine cDC1 dendritic cells, B cells and CD4+ T
cells (D) and between murine neutrophils, B cells and CD4+ T cells (E). (F) Transcript Triwise comparison and rose plot of human PBMC-derived
neutrophils, B and CD4+ T lymphocytes (GSE107011). (B, D-F) In the Triwise dot plots, genes are indicated with black dots (•) and SLC-encoding
genes with red dots (•) when significantly different expressed. Genes are indicated with grey dots (•) and SLC-encoding genes with blue dots (•)
when not differentially expressed. Labels on the dot plot grid lines indicate transcript fold changes (up to 4,096 folds) of reads in one cellular subset
versus another. Genes encoding known cell-specific markers are indicated for each cell type: Cd19 (CD19), Cd247 (CD247), Cd3e (CD3E), Cd4
(CD4), Adgre1 (F4/80), Mertk (MER proto-oncogene, Tyrosine Kinase), Fcgr1 (Fc receptor, IgG), Itgax (CD11c), Xcr1 (XC motif chemokine Receptor 1),
Cd8a (CD8 subunit Alpha), Csf3r (Colony Stimulating Factor 3 Receptor), Ly6g (Ly-6G) and Itgam (CD11b). (C-F) Labels on the rose plot gridlines
indicate the number of genes (ranging from 10-60) included in each of the six rose petals/buckets. (G) Triwise comparison of SLC transcripts in
human neutrophils, B cells and CD4+ T cells (GSE107011). Differentially expressed SLCs are depicted in magenta (•) and non-differentially expressed
SLCs in light blue (•). Individual, highly and significantly different expressed SLCs are highlighted and labelled with their gene name. Labels on the dot
plot grid lines indicate transcript fold changes (up to 1,024 folds) of reads in one cellular subset versus another. (H) Venn diagrams of the top 20
highest expressed SLCs in neutrophils, B cells and CD4+ T cells in mouse (upper panel) or in human (lower panel) RNA-Seq data sets (GSE109125
and GSE107011 respectively). Gene names highlighted in bold are shared between the two data sets.
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the highly expressed and differentially expressed SLCs individually.

The transcriptome analysis of the three types of phagocytes did not

show a striking directional distribution (as seen between phagocytes

and adaptive immune cells) (Figure 2C). We also compared the

transcriptome of human phagocytic subsets (Figure 2D, Aaes et al.,

Interactive Dot Plots IntDP6, Supplementary Material) and plotted

the SLC transcripts separately (Figure 2E). Unlike the ImmGen

murine data, the human data set did not contain the same well
Frontiers in Immunology 07
defined phagocyte populations. In the human RNA-Seq data set, we

could perform comparative analysis of classical monocytes (instead

of murine macrophages), myeloid dendritic cells (in place of cDC1)

and low-density neutrophils, which showed a directional

distribution of the human transcripts, distinguishing the

transcriptomes of neutrophils from monocytes and dendritic cells

(Figure 2F). The human data set analysis again revealed similarities

to the murine data, such as SLCO4C1, which in the murine data set
A B
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C

FIGURE 2

Shared and unique SLC signatures are expressed in distinct phagocyte populations from the same tissue of origin. (A, D) Triwise dot plot of RNA-Seq
data sets representing three phagocyte populations: Murine splenic macrophages, neutrophils and cDC1 dendritic cells (GSE109125 in A) or human
PBMC-derived monocytes, neutrophils and dendritic cells (GSE107011 in D). Genes are indicated with black dots (•) and SLC-encoding genes with
red dots (•) when significantly different expressed. Genes are indicated with grey dots (•) and SLC-encoding genes with blue dots (•) when not
differentially expressed. Labels on the dot plot grid lines indicate transcript fold changes (up to 2,048 folds) of reads in one cellular subset versus
another. (B, E) Triwise dot plot of only the SLC-encoding genes in murine (GSE109125 in B) or human phagocytes (GSE107011 in E) indicating
differentially expressed SLCs in magenta (•) and non-differentially expressed SLCs in light blue (•). Individual SLCs that are found back among the top
20 highest expressed SLCs in each cell type are highlighted and labelled. (C, F) Rose plots showing directional distribution of all differentially
expressed genes (top panel) or the differentially expressed SLCs specifically (bottom panel) among the three phagocyte populations. The labels on
the gridlines indicate the number of genes per rose petal/bucket. (G) The top 20 most expressed SLCs found in each type of phagocyte are
compared in a Venn diagram. The gene names of the SLCs that are unique to one cell type or shared among two or all three populations are written
in the boxes. Gene names in bold font are found among the top 20 most expressed SLCs in all three populations in both the murine (GSE109125)
and human (GSE107011) data sets.
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was highly expressed in neutrophils, being abundant in human

neutrophils (Figures 2B, E).

To test whether the phagocyte-specific differentially expressed

SLCs were merely a reflection of transcriptional reads, or whether

we could identify a set of highly expressed SLCs common to all

phagocytes, we depicted the top 20 highest expressed SLC genes

from each phagocyte in a Venn diagram and identified overlapping

or uniquely highly expressed SLCs (Figure 2G, left panel). Five SLCs

were among the top 20 in all three murine phagocytes: Slc6a6, a

taurine transporter found in the plasma membrane; the lysosomal

metal ion transporter Slc11a1; and three mitochondrial membrane

transporters Slc25a3, -5 and Slc44a2 encoding transporters of

phosphate, adenine, and choline respectively. To ensure that the

SLC expression profiles were unique to phagocytes, and not just a

general immune cell SLC gene profile, we compared the top 20

expressed genes of each phagocyte to adaptive immune cells

(Supplementary Figure S2A). By comparing each of these gene

lists (Table 2), we could identify SLC11A1 as the only transporter to

be highly expressed in all three professional phagocytes, but not

among the top 20 expressed SLCs in B or T lymphocytes (Table 3).

The role of SLC11A1, also known as natural resistance-associated

macrophage protein 1 or NRAMP1 in lysosomal ferrous iron

transport in phagocytes has been well described in the context of

anti-microbial defense (30–33). NRAMP1 is highly expressed in

neutrophilic granules, which fuse with yeast Candida albicans

containing phagosomes to deprive the microbe from nutrients as

an antimicrobial defense mechanism (31), and in macrophages and

dendritic cells, NRAMP1 has been linked to antigen presentation

(34, 35). Although lysosomes also play an important role in T cell

biology and in their release of cytotoxic molecules (36), Slc11a1 is

not expressed neither in CD4+ nor in CD8+ T lymphocytes (37).

Our analysis thus revealed a high expression of SLC11A1/NRAMP1

specifically in all three phagocyte populations alluding to its

multiple phagocyte-specific functions, which are different from

that of lymphocytes.

This analysis also revealed highly expressed SLCs unique to one

of the lymphocyte populations (Table 3); interestingly, Slc6a6,

Slc25a3 , Slc25a5 and Slc44a2 were generally high in B

lymphocytes and/or CD4 T cells. SLC6A6 has been described for

its role in T cell immunity, in which a high expression is positively

associated with CD8 effector T cell proliferation and function (38),

while in macrophages, SLC6A6 is found upregulated during

polarization to a more pro-inflammatory phenotype (39). To our

knowledge, no immune cell-specific role of the three mitochondrial

transporters has yet been described, and this may lead to the

exploration of new research domains for their transport functions

in innate and adaptive immunity.

Finally, we compared the top 20 most expressed SLCs in

phagocytes across the human and murine data sets (Figure 2G).

We found a number of SLCs that are similarly expressed - despite

the difference in immune cell host (human vs mouse), tissue

(peripheral blood vs spleen) and immune cell subtypes (monocyte

vs macrophage; myeloid DC vs cDC1). Thus, even based on just

these two data sets, we could draw parallels between SLC gene

expression patterns in human and murine immune cell subsets, and
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this data analysis points toward a role for specific SLCs as potential

novel immune cell markers.

To examine the SLC transcripts in other innate immune cell

subsets, we compared the total transcriptome and the SLC genes in

innate lymphoid cell (ILC) subsets, namely ILC1-like NK cells, ILC2

and ILC3 (Supplementary Figure S2B). Although these cells were

isolated from the spleen or intestinal lamina propria, the directional

distribution of differentially expressed genes of the total

transcriptome and SLC family were evenly spread across the three

ILC populations. When narrowing the analysis to only ILC2 and

ILC3 subsets of the small intestine, a clear directional distribution of

differentially expressed genes was seen between the two types of

lymphoid cells; while 243 out of 289 of the SLC transcripts were not

differentially expressed, a few distinct SLCs appeared highly

upregulated in one over the other populations, such as the

calcium-dependent L-proline and glycine importer SLC6A20 in

pro-inflammatory NKp46+ ILC3 cells and confirmed the ILC2-

specificity of the large amino acid transporter SLC7A8 (40, 41)

(Supplementary Figure S2C). Thus, through these three-way

transcriptome comparisons of innate and adaptive immune cell

subsets, we identify known and novel SLC signatures that are shared

or unique to multiple cell types.
3.3 Macrophage-specific SLCs in tissue
sites or differentiation states

Our analyses so far indicated that each type of phagocyte

expressed a set of highly abundant SLC transcripts, which were

not among the top 20 SLCs in lymphocytes. To assess whether the

tissue of origin may impact these SLC gene lists, we expanded our

analysis to include other subsets or tissue-specific phagocytes. First,

we compared the SLC transcriptome of macrophages from six

different tissues, and two independent murine RNA-Seq data sets

(Figure 3A; Table 1; Supplementary Figure S1E). This revealed a

large fraction (from 40% to 86%) of SLCs that are differentially

expressed between tissue-specific macrophages. The differentially

expressed SLCs showed a preferred polarization toward alveolar,

splenic and renal macrophages (Figure 3B), which may indicate a

higher turnover of metabolites in these tissues, especially in the

kidney-derived macrophages; as for the other tissues, the directional

distribution of SLCs was analogous to that of the entire

transcriptome (Supplementary Figure S3A). More specifically,

alveolar macrophages express a significantly higher level of

several Na+/H+ exchangers (i.e. NHE) belonging to the SLC9

family, while transporters of divalent cation – e.g. ferrous iron

(Fe2+) – such as SLC11A1 (i.e. NRAMP1) and SLC40A1 (i.e.

Ferroportin) as well as a known heme transporter SLC48A1 (i.e.

HRG1) were expressed at significantly higher levels in macrophages

isolated from tissues of high red blood cell turnover (i.e.

erythrophagocytosis), such as spleen and liver-resident

macrophages (Kupffer cells). As an attempt to identify a common

highly expressed SLC gene signature specific to macrophages

independent of their tissue of origin, we compared the

overlapping genes among the top 20 SLCs in each of the five
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macrophage subset comparisons (Figure 3C). Aside from the four

SLCs (Slc3a2, Slc6a6, Slc25a3, -5), which were found to be highly

expressed also in adaptive immune cells (Table 3), we could identify

Slc48a1 as a highly expressed SLC common to all but one

macrophage subsets studied. Interestingly, it has previously been

demonstrated in bone marrow-derived macrophages, that HRG1

colocalizes with NRAMP1 (SLC11A1) on phagolysosomal

membranes containing ingested senescent red blood cells (RBCs)

(42), once again suggesting the importance of iron and heme

transport in erythrophagocytosis. Finally, heatmap analyses of the

top 20 expressed SLCs within each tissue-specific macrophage

subset revealed clear clusters that often correlated with tissue-

specific markers such as Siglec-F associated with alveolar
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macrophages and CLEC4F specific for Kupffer cells (Figure 3D;

Supplementary Figure S3B). Thus, we could identify tissue-specific

SLC signatures on macrophages, and identified a shared (i.e., tissue

independent) SLC marker, SLC48A1/HRG1.

Besides tissue-specificity, we also examined if macrophages

under different differential states would express specific SLCs

(Table 1). The human microarray data set allowed us to compare

M0, M1 and M2 macrophages derived from seven healthy human

donors (20). Although the current view is that this M1 vs M2

categorization is too rigid and that in vivo it is to be more fluid or

plastic with M1-like and M2-like phenotypes that can further

change, we used the existing data sets to get a gauge on SLC

expression in macrophages depending on their differentiation
TABLE 2 Unique transcripts among the most abundant SLCs in splenic phagocytes.

Macrophages
cDC1

Dendritic cells
Neutrophils B cells

CD4+

T cells

SLCs unique to phagocytes

Slc1a3 ✗ – – – –

Slc2a3 – – ✗ – –

Slc2a6 – – ✗ – –

Slc4a1 ✗ – – – –

Slc4a8 – ✗ – – –

Slc8b1 – ✗ – – –

Slc9a9 ⚫ ⚫ – – –

Slc11a1 ⚫ ⚫ ⚫ – –

Slc12a9 – ✗ – –

Slc16a3 – – ✗ – –

Slc16a10 ✗ – – – –

Slco2b1 ✗ – – – –

Slco4c1 – – ✗ – –

Slc25a24 – – ✗ – –

Slc25a39 ⚫ ⚫ – – –

Slc25a45 – – ✗ – –

Slc29a1 ✗ – – – –

Slc31a2 – – ✗ – –

Slc35a5 – – ✗ – –

Slc37a2 ✗ – – – –

Slc39a1 ✗ – – – –

Slc40a1 ⚫ – ⚫ – –

Slc45a3 ✗ – – – –

Slc46a3 – ✗ – – –

Slc48a1 ✗ – – – –

Slc66a2 – ⚫ ⚫ – –
fron
The most highly expressed SLCs found in the splenic RNA-Seq data sets of adaptive immune cells (CD4+ T cell and B cells) versus each of the three professional phagocytes (macrophages, cDC1
and neutrophils) were compared in three separate Venn diagrams (Supplementary Figure S1A). The SLC genes uniquely expressed in phagocytes, and not in lymphocytes, are listed in this table.
Blue shaded background and dark blue circles (⚫) indicate genes that are expressed among the top 20 SLCs in all three phagocyte populations. Light blue circles (⚫) indicate genes that are unique
to two phagocyte populations, while light blue crosses (✗) indicate genes that are unique to just one phagocyte population.
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TABLE 3 Shared and unique SLC transcripts in splenic phagocytes and lymphocytes.

Macrophages
cDC1

Dendritic cells
Neutrophils B cells

CD4+

T cells

SLCs unique to lymphocytes

CD4+ T & B cells

Slc1a5 – – – ⚫ ⚫

Slc3a2 – – – ✗ ✗

Slc25a11 – – – ✗ ✗

Slc25a36 – – – ✗ ✗

Slc28a2 – – – ⚫ ⚫

Slc38a1 – – – ⚫ ⚫

Slc38a2 – – – ✗ ✗

Slc50a1 – – – ⚫ ⚫

CD4+ T cells

Slc2a4rg-ps – – – – ⚫

Slc9a3r1 – – – – ⚫

Slc12a7 – – – – ⚫

Slc16a5 – – – – ⚫

Slc20a1 – – – – ⚫

Slc25a12 – – – – ⚫

Slc35a4 – – – – ⚫

Slc35b3 – – – – ⚫

B cells

Slc9a7 – – – ⚫ –

Slc12a6 – – – ⚫ –

Slc15a4 – – – ⚫ –

Slc25a4 – – – ⚫ –

Slc25a37 – – – ⚫ –

Slc30a5 – – – ⚫ –

Slc35c2 – – – ✗ –

Slc38a9 – – – ⚫ –

Slc38a10 – – – ⚫ –

SLCs shared between
phagocytes & lymphocytes

CD4+ T & B cells

Slc1a5 – ✗ – ✗ ✗

Slc3a2 ⚫ ⚫ – ⚫ ⚫

Slc25a3 ⚫ ⚫ ⚫ ⚫ ⚫

Slc25a5 ⚫ ⚫ ⚫ ⚫ ⚫

Slc25a11 – ⚫ ⚫ ⚫ ⚫

Slc25a36 – ✗ – ✗ ✗

Slc38a1 – ✗ – ✗ ✗

Slc38a2 – ⚫ ⚫ ⚫ ⚫

Slc44a2 ⚫ ⚫ ⚫ ⚫ ⚫

CD4+ T cells
Slc6a6 ⚫ ⚫ ⚫ – ⚫

Slc9a3r1 – – ✗ – ✗

B cells

Slc12a6 – – ✗ ✗ –

Slc25a4 – ✗ – ✗ –

Slc25a37 ✗ – – ✗ –

Slc35c2 – ⚫ ⚫ ⚫ –
F
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The top 20 expressed SLCs in the splenic RNA-Seq data sets of lymphocytes versus professional phagocytes were compared in three separate Venn diagrams (Supplementary Figure S1A). Dark
blue circles (⚫) on dark background are SLCs unique to lymphocytes in all three phagocyte comparisons. SLCs uniquely expressed in lymphocytes in two phagocyte comparisons are shown by
light blue circles (⚫), and if one comparison with light blue crosses (✗). SLCs on a shaded red background and dark red circles (⚫) are highly expressed in lymphocytes as well as in all three
phagocytes. Bright red circles (⚫) are SLCs shared among two phagocytes and lymphocytes, while bright red crosses (✗) indicate SLCs that are shared between just one phagocyte and
lymphocytes.
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states. The variance between the three cell types was very low

(Supplementary Figure S1F) and the difference in overall transcript

expressions was also markedly less pronounced (Supplementary

Figure S3C). Comparing the top 20 highest expressed SLCs in each

of the three cell types, the majority of transcripts was shared among

all three, while the M0 macrophages expressed no unique SLCs

(Supplementary Figure S3D). Upon looking more specifically at the

SLC transcripts, we observed mild but significant differences

between a few SLC genes, which may point toward a role in

macrophage differentiation or their function (Figure 3E).
3.4 SLC expression in dendritic
cell subsets

Next, we examined the transcriptome of dendritic cell subsets

isolated from two different tissues. We limited this analysis to the

main conventional dendritic cell (cDC) subsets, cDC1 and cDC2,

and plasmacytoid dendritic cells (pDC). A three-way comparison of

the total transcriptome confirmed a clear difference in the overall

gene expression between cDCs and pDCs (Supplementary Figure

S4A), and strikingly, this difference became even more noticeable

when we plotted only the SLC gene sets (Figures 4A, B).

Interestingly, some of the same SLCs were significantly

upregulated in one DC subtype over the other in both the splenic

as well as in the hepatic data set e.g., Slc11a1 in cDC1, Slc12a2 in

cDC2, and Slco4c1 and Slc41a2 in pDC. Therefore, we aimed to

identify SLCs that are unique to one DC subset or general to all

three subsets by comparing the highest expressed SLCs of each

subset with each other and across the two tissues (Figure 4C). This

analysis resulted in nine and ten overlapping SLCs in the spleen and

liver data set respectively, and upon comparing the two intersecting

SLC gene sets, seven SLCs were identical, of which just one

transporter, Slc38a1, was unique to dendritic cells and not

appearing in the other phagocyte or adaptive immune cell

comparisons (Table 2). SLC38A1, or SNAT1, is a sodium-

dependent importer of Glutamine, and is reported in neurons to

be expressed in the somatodendritic compartment, hinting towards

a role in dendritic cell plasticity (43). We further compared the

tissue-overlapping, highly expressed SLCs, which were unique to

one or two dendritic cell subsets. Slc8b1 encodes a mitochondrial

sodium/calcium exchanger protein and was found uniquely in the

cDC1 subset. Similarly, a gene set of four SLCs were unique to

pDCs, while three other SLCs were highly expressed exclusively in

the two conventional DC subsets. If these various SLC transcripts

were indeed highly abundant also compared to other genes, then

they could act as potential new markers of DC subsets. Hence, we

plotted and tested the expression levels of each potential SLC

marker against known DC markers such as XCR1 in cDC, Sirpa

encoding CD172a/SH2 in cDC2 and Itgax encoding the general DC

marker, CD11c, in pDCs (Figure 4D; Supplementary Figure S4B).

In the spleen, Slc8b1 (i.e., NCLX) transcript levels were not different

from that of XCR1, which is a highly specific marker and

chemokine receptor on cDC1. To our knowledge, no DC-specific

role of SLC8B1 has been described to date, but mitochondrial
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calcium fluxes have been linked to phagocytosis, phagosomal ROS

production and pathogen killing by macrophages (44).

The four potential pDC-specific SLCs were not differentially

expressed from CD11c (encoded by Itgax) – a general DC marker –

and they are therefore less likely to be used as pDC-specific markers

(Figure 4D; Supplementary Figure S4B). Of the shared cDC1 and

cDC2 markers, the glutamine importer encoded by Slc38a2

especially caught our attention, because very recently, SLC38A2

and glutamine signaling specifically in cDC1s was shown to dictate

anti-tumor immunity in vivo (45). Since our analysis identified two

sodium-coupled neutral amino acid transporters (SNAT) encoded

by Slc38a1 and Slc38a2 as possible markers of all DCs or of

conventional DCs, respectively, it will be interesting to expand

the latest findings on SLC38A2 function in cDC1 and anti-tumor

immunity (45) to other disease models and to cDC2s.

In conclusion, dendritic cell subsets isolated from two different

tissues, spleen and liver, showed similar total and SLC-specific

directional transcriptome distributions, and we could identify

highly expressed SLCs that may act as (intracellular) markers of

cDC1-specific, pDC-specific or of both cDC1 and -2.
3.5 SLC expression in neutrophils

Next, we analyzed and compared the transcriptome of

neutrophils isolated from either inflamed (thioglycolate-induced)

peritoneal cavities or steady state neutrophils from either bone

marrow or spleen (Figure 5A). The total gene sets showed a clear

difference between inflamed and healthy tissues. This polarized,

inflammation-induced gene expression signature was also clear

when comparing the directional distribution of differentially

expressed genes and that of SLCs specifically (Figure 5B), as a

significant number of differentially expressed SLCs were either

upregulated or downregulated specifically in inflammatory

neutrophils compared to the two naïve subsets. A link between

SLCs and inflammation has previously been described in the

context of amino acid SLC transporters of the SLC1 and SLC7

families (46), and might explain why we observe significantly

increased expression of heteromeric amino acid transporter

complex SLC3A2/SLC7A11 in the inflamed tissue of our analysis.

This observation also nicely coincides with recent findings from our

lab, showing that SLC7A11 is highly upregulated in innate immune

cells of inflamed skin (27).

To compare the SLC signature in neutrophils to other

granulocyte subsets, we performed an additional comparison

between eosinophils, basophils and neutrophils (Figure 5C;

Supplementary Figures S5A, B). We found SLC transcripts that

were upregulated in one or several of the three granulocyte

populations, with a slight preference towards basophils and

neutrophils over that of eosinophils. Also, in the three

granulocyte populations, we could detect a list of common highly

expressed SLCs – nine in total – of which the glutamine transporter

GLUT3, encoded by Slc2a3, was the only transcript not to be

associated with any other phagocyte or adaptive immune cell

expression profile (Figure 5D; Table 2). Neutrophils from
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FIGURE 3

Macrophages express unique SLCs independent of the tissue of origin. (A) Triwise dot plots of the SLC-encoding genes in RNA-Seq data sets from
alveolar, peritoneal and splenic macrophages (GSE109125), or from Kupffer cells, splenic, thymic, renal, alveolar or peritoneal macrophages
(GSE122108). Differentially expressed SLCs are depicted in magenta (•) and non-differentially expressed SLCs in light blue (•). Individual, highly and
significantly different expressed SLCs are highlighted and labelled with their gene name. Labels on the dot plot grid lines indicate transcript fold
changes (up to 4,096 folds) of reads in one cellular subset versus another. (B) Rose plots indicating the directional distribution of all differentially
expressed SLCs in each Triwise comparison respectively. Gridline labels indicate the number of genes per rose petal/bucket. (C) The top 20 most
expressed SLCs found in each macrophage subtype are compared in a Venn diagram corresponding to each Triwise dot plot and rose plot. The
gene names of the SLCs that are shared among all three macrophage subsets are outlined in the box in the middle. Gene names in bold font are
also among the top 20 highest expressed SLCs in adaptive immune cells. Gene names in red bold font are unique to macrophages and not found
among the top 20 most expressed SLCs in other phagocytes, nor in B or CD4+ T lymphocytes. (D) The reads of the top 20 most expressed SLCs in
RNA-Seq data sets (GSE122108) from six macrophage subsets were compared in a heat-map. Clusters of highly expressed SLCs, representative of
each macrophage subtype, are indicated on the y axis, while clusters of tissue origin are indicated on the x axis. The color grading in the heat map
ranging from blue to red indicates the relative gene expression. Genes encoding known macrophage-specific markers are highlighted with dark blue
boxes along the y axis: Siglecf (Sialic Acid Binding Ig Like Lectin F), Cx3cr1 (C-X3-C Motif Chemokine Receptor 1), Adgre1 (F4/80), Itgam (CD11b),
Mrc1 (Mannose Receptor C-Type 1), Clec4f (C-Type Lectin Domain Family 4 Member F) and Vcam1 (Vascular Cell Adhesion Molecule 1). (E) Triwise
comparison and rose plot of the directional distribution of SLC transcripts among human M0, M1 and M2 macrophages (GSE35449).
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FIGURE 4

Identifying highly expressed SLCs as potential new markers of dendritic cells subsets. (A) Triwise dot plots of the SLC-encoding genes in RNA-Seq
data sets representing conventional dendritic cell type 1 and 2 (cDC1 and cDC2) as well as plasmacytoid DCs deriving from the spleen (GSE109125,
left) or isolated from the liver (GSE122108, right). Differentially expressed SLCs are depicted in magenta (•) and non-differentially expressed SLCs in
light blue (•). Individual, highly and significantly different expressed SLCs are highlighted and labelled with their gene name. Labels on the dot plot
grid lines indicate transcript fold changes (up to 256 folds) of reads in one cellular subset versus another. (B) Rose plots indicating the directional
distribution of all differentially expressed SLCs in each Triwise comparison respectively. Gridline labels indicate the number of SLCs per rose petal/
bucket. (C) The top 20 most expressed SLCs found in each dendritic cell subtype are compared in a Venn diagram corresponding to the two Triwise
dot plots. The gene names of the SLCs that are shared among all three DC subsets are outlined in the boxes in the middle. Gene names in bold font
are also among the top 20 highest expressed SLCs in adaptive immune cells. Gene names in red bold font are unique to DCs and not found among
the top 20 most expressed SLCs in other phagocytes, nor in B or CD4+ T lymphocytes. Highly expressed SLCs, true to both the splenic and hepatic
comparisons, are indicated in boxes (right panel) and represent SLCs uniquely expressed in cDC1 subsets, pDC subsets or shared among the most
expressed SLCs in cDC1 & cDC2 subsets. (D) Normalized read counts of uniquely expressed SLCs specific for cDC1 or to pDCs were compared to a
known cDC1 subset-specific marker, Xcr1 (encoding XC motif chemokine Receptor 1) or to a general DC-specific marker, Itgax (encoding CD11c),
respectively. Each dot represents one biological replicate (= cells isolated from one mouse) and are plotted as the mean with standard deviation as
error bars. The cDC1 gene set was analyzed with a Mann-Whitney, two-tailed T test. The pDC gene set was analyzed with a one-way ANOVA,
Dunnett’s multiple comparisons test; Itgax served as control; ns, not significant.
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colorectal tumor sites have been correlated with GLUT3 expression

(47), and upon neutrophil activation e.g. by bacteria, GLUT3 moves

from the intracellular environment to the plasma membrane (48).

Further, we wanted to identify potential neutrophil-specific SLC

markers, which were not associated with a high expression in other

granulocytes, and which were highly expressed independent of the

tissue of origin and the inflammatory state. Therefore, we compared

the three neutrophil subsets isolated from inflamed peritoneum, or

steady state bone marrow or spleen (Supplementary Figure S5C). By

overlaying the 13 SLC-encoding genes found in all three neutrophil

populations, we identified five neutrophil-specific SLCs, which were

not found in other granulocytes. Further, we could identify three

SLCs that are highly expressed specifically in neutrophils,

independent of the tissue or inflammatory state (Figure 5E). Of

these three genes, we know now that Slc11a1, which encodes

NRAMP1, is generally highly expressed in all phagocytic cells

(Table 2). SLC31A2 is involved in copper uptake across

intracellular membranes and has been associated with high

expression in atherosclerotic plaques, which are linked with

neutrophil degranulation (49). The function of SLC35A5 is

predicted to be related to UDP-sugar transport, but otherwise this

is an orphan transporter with no obvious function. Based on this

analysis, addressing SLC35A5 in neutrophils may be worthy

of pursuit.

We also investigated whether infections may change the SLC

transcriptome of phagocytes. For this purpose, we found an RNA-

Seq data set based on monocyte or macrophage samples from naïve

or Salmonella-infected mice (13) (Table 1). Our analyses showed

that bystander and infected macrophages were clearly

distinguishable from their monocyte ancestors (Supplementary

Figure S1F). This difference was visible among the total transcript

distribution (Supplementary Figure S5D) as well among the SLC

transcript distribution (Supplementary Figure S5E). Interestingly,

when comparing the top 20 highest expressed SLCs in each of the

three samples, there was a majority of SLCs shared among the three

– perhaps due to their shared monocyte ancestor – while the

bystander and infected macrophages shared especially one highly

expressed SLC, namely Slc48a1 or HRG1, which we earlier

identified as a common SLC in macrophages of various tissue of

origin (Supplementary Figure S5F).
4 Discussion

The SLC superfamily is the largest group of membrane

transporters and is growing with the identification of new

members based on both primary and tertiary sequence similarities

and functional studies. Many SLCs are still ‘orphan transporters’

with respect to their substrate, subcellular location or method of

transport. Work from our lab and others have identified specific

SLC transporters to play important roles during clearance of

apoptotic cells (efferocytosis) and in anti-microbial defense.

However, a more systematic and focused approach to elucidate

the role of SLCs in phagocytes is still needed. With this work, we

sought to: (1) identify SLCs that were unique to phagocytes, (2)
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identify SLCs that are unique to phagocytes subsets in specific

tissues and contexts/inflammation, and (3) identify SLCs that may

serve as new immune cell-specific markers. In our first analysis, we

compared the transcriptome of three professional phagocyte

populations to that of B and CD4+ T lymphocyte subsets. This

revealed a significant increase in SLC transcript expression in the

phagocytic innate immune cell compartment compared to the

lymphocytes, which represented the adaptive immune cells.

Further, there were also highly expressed SLCs specific to the

lymphocyte subsets, and future research is needed on these

transporters in B and CD4 T lymphocytes.

General to the innate and adaptive immune cell populations, on

which the analyses throughout this work were based, we were able

to identify a list of four common and highly expressed SLCs:

SLC6A6, SLC25A3, SLC25A5 and SLC44A2. Besides the known

role of taurine transport by SLC6A6 in T cell immunity and

polarization of inflammatory macrophages (38, 39), an immunity-

specific role of the additional three mitochondrial transporters has

not been demonstrated.
4.1 Iron and heme transporters are highly
expressed specifically in phagocytes

Our analyses revealed a tendency of increased expression of an

importer of divalent cations (SLC11A1), which contributes to

recycling of iron as well as a heme transporter (SLC48A1) in

phagocytic populations. Besides the known role of especially

SLC11A1/NRAMP1 in phagocytic anti-microbial defense (30–33),

iron fluxes have also been linked to apoptotic cell clearance – or

more specifically to erythrophagocytosis. A homologue or SLC11A1

and second member of the SLC11 family member, SLC11A2 (also

known as NRAMP2/DMT1) has been described for its role in

ferrous iron import in phagolysosomal membranes of macrophages

during erythrophagocytosis (50). However, in our interactive plots

comparing the transcriptome of phagocytic populations to those of

lymphocytes, Slc11a2 locates to the very middle, and does not show

the same phagocyte-specific expression as Slc11a1.

Related to erythrophagocytosis, HRG1, which is encoded by

Slc48a1, was the single SLC we found to be highly expressed and

unique to macrophages from five distinct tissues as well as in

bystander or infected macrophages from Salmonella-infected

mice. SLC48A1 is known to mediate heme export from

phagolysosomes following RBC ingestion (51), which may explain

its high expression in macrophages isolated from the bone marrow,

liver and spleen – sites of high RBC turnover; however, SLC48A1

function in lung macrophages, peritoneal macrophages and its

association to macrophages during infection with Salmonella

remain to be defined.

Special attention must be paid to transcriptome analyses (e.g.

RNA-Seq) of primary phagocytes, since we know from our own

data (5), and that of others (52) that RNA contamination from

engulfed and ingested cellular material inside phagocytes may

complicate the downstream transcriptome analysis. In our

analysis of the ImmGen data sets, we found that Slc4a1
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FIGURE 5

Neutrophils express specific SLCs different from other types of granulocytes. (A) Triwise dot plot of RNA-Seq data sets representing neutrophil
subsets isolated from the peritoneum after thioglycolate-induced peritonitis, from the bone marrow or the spleen (GSE109125). In the left panel,
genes are indicated with black dots (•) and SLC-encoding genes with red dots (•) when significantly different expressed. Genes are indicated with
grey dots (•) and SLC-encoding genes with blue dots (•) when not differentially expressed. In the right panel, differentially expressed SLCs are
depicted in magenta (•) and non-differentially expressed SLCs in light blue (•). Individual SLCs in each neutrophil subset are highlighted and two
neutrophil-specific markers are labelled with their gene name: Ccl2 (encoding C-C Motif Chemokine Ligand 2) and Ly6g (Ly-6G). Labels on the dot
plot grid lines indicate transcript fold changes (up to 256 folds) of reads in one cellular subset versus another. (B) Rose plots showing the directional
distribution of all differentially expressed genes (left panel) or the differentially expressed SLCs specifically (right panel) among the three neutrophil
subsets. The labels on the gridlines indicate the number of genes per rose petal/bucket. (C) Triwise dot plot (left panel) comparing the transcription
level of SLC-encoding genes in RNA-Seq data sets representing three splenic granulocyte subsets: eosinophils, basophils and neutrophils
(GSE109125). Differentially expressed SLCs are depicted in magenta (•) and non-differentially expressed SLCs in light blue (•). Individual, highly and
significantly different expressed SLCs are highlighted and labelled with their gene name. Labels on the dot plot grid lines indicate transcript fold
changes (up to 1,024 folds) of reads in one cellular subset versus another. Rose plot (right panel) indicating the directional distribution of all
differentially expressed SLCs among the three granulocyte subsets. Gridline labels indicate the number of SLCs per rose petal/bucket. (D) The 20
most expressed SLCs found in each granulocyte subset are compared in a Venn diagram. The gene names of the SLCs that are unique to one subset
or shared among two or all three granulocyte populations are written in the boxes. Gene names in bold font are also among the top 20 highest
expressed SLCs in other phagocytes and adaptive immune cells. Gene names in red bold font are unique to granulocytes and not found among the
top 20 most expressed SLCs in other phagocytes, nor in B or CD4+ T lymphocytes. (E) Highly expressed SLCs in neutrophils regardless of their
inflammatory state (identified in Supplementary Figure S4C) were compared to those specifically expressed in neutrophils and not in other
granulocyte subsets (D). Unique or overlapping genes are written out in the associated boxes.
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expression was highly associated with macrophages. While this

chloride/bicarbonate exchanger may function in phagocytes, it

was initially characterized in erythrocytes as Band3, which

increases the blood’s capacity to carry carbon dioxide as plasma

bicarbonate (53). Some of the phagocyte populations analyzed

were from the splenic red pulp, an area where the macrophages

could have engulfed erythrocytes as part of the homeostatic RBC

turnover (54). While mature erythrocytes were long thought not

to have mature mRNA (55), macrophages could have acquired the

Slc4a1 mRNA from reticulocyte remnants, and this remains to

be determined.
4.2 SLCs as expression markers
of DC subsets

Specific to cDC1 dendritic cells, our analysis identified a highly

expressed mitochondrial sodium/calcium exchanger (NCLX)

encoded by Slc8b1. In fact, in one data set, the expression level of

Slc8b1 was even at the level of Xcr1, which is a known marker of

cDC1. SLC8B1 is highly expressed in mitochondrial cristae, where it

conducts sodium-dependent calcium efflux (56). Mitochondrial

calcium overload contributes to neurodegenerative diseases (57)

as it was demonstrated in a neuronal-specific deletion model of

SLC8B1 in mice (58), however, to our knowledge, no DC-specific

role of SLC8B1 has yet been described. Previously, calcium fluxes in

phagocytes were found to be linked to apoptotic cell engulfment as

demonstrated in C. elegans (59), where the knockdown of two genes

encoding calcium influx transporters in the plasma membrane

resulted in decreased apoptotic cell removal. In mice and in

murine macrophages, mitochondrial calcium fluxes and signaling

are also tightly regulated with phagocytosis. Upon pathogen killing,

murine macrophages rapidly increase their cytosolic calcium

followed by activation of a calcium uniporter, MCU, which

ensures a rapid influx of calcium into the mitochondrial matrix

(44). The mitochondrial influx of calcium activates a metabolic

switch, which aids in phagosomal ROS production and hence

pathogen killing. One could hypothesize that SLC8B1 serves as a

brake on this mechanism, and that its knockdown would increase

the antimicrobial activity of cDC1 cells.
4.3 Neutrophils upregulate a
specific SLC signature in response
to induced inflammation

Throughout this manuscript, we based our results on immune

cells isolated from mice that were untreated and hence the

transcriptomes represented in general the homeostatic gene

expression signatures. However, in one analysis we compared

neutrophils isolated from untreated versus thioglycolate-injected

mice – i.e., a model of induced peritonitis. Not only do neutrophils,
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from the inflamed mice clearly distinguish themselves from that of

the untreated mice, this skew was also markedly present in the

analysis of just the SLC superfamily of genes. In the inflammatory

neutrophils, both Slc2a1 (encoding Glucose transporter 1; GLUT1)

and Slc23a2 (encoding Sodium-dependent vitamin C transporter 2;

SVCT2) were highly upregulated compared to the non-inflamed

counterparts. Interestingly, a recent paper demonstrated for the first

time a direct transport pathway between SLC23A2 and SLC2A1 of

ascorbic acid (aka Vitamin C) and its connection to tooth formation

in rats during wound healing (60). Thus, our observations support

the view of neutrophils as important players in wound healing and

tissue repair (61) and highlight SLC transporters as possible key

players in this process.
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