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Lung cancer is the main cause of cancer-related deaths, and non-small cell lung

cancer (NSCLC) is the most common type. Understanding the potential

mechanisms, prognosis, and treatment aspects of NSCLC is essential. This

study systematically analyzed the correlation between mitophagy and NSCLC.

Six mitophagy-related feature genes (SRC,UBB, PINK1, FUNDC1,MAP1LC3B, and

CSNK2A1) were selected through machine learning and used to construct a

diagnostic model for NSCLC. These feature genes are closely associated with the

occurrence and development of NSCLC. Additionally, NSCLC was divided into

two subtypes using unsupervised consensus clustering, and their differences in

clinical characteristics, immune infiltration, and immunotherapy were

systematically analyzed. Furthermore, the interaction between mitophagy-

related genes (MRGs) and immune cells was analyzed using single-cell

sequencing data. The findings of this study will contribute to the development

of potential diagnostic biomarkers for NSCLC and the advancement of

personalized treatment strategies.

KEYWORDS

non-small cell lung cancer, mitophagy-related genes, prediction model, subtyping,
immune infiltration, immunotherapy response
1 Introduction

According to the GLOBOCAN 2020 report compiled by the International Agency for

Research on Cancer (IARC), lung cancer is ranked the second most prevalent cancer

worldwide and remains a leading cause of cancer-related mortality (1). It can be classified

into two main types: non-small cell lung cancer (NSCLC), which accounts for
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approximately 85% of cases, and small cell lung cancer (SCLC),

which accounts for approximately 15% of cases. The prognosis of

lung cancer is often unfavorable due to factors such as late-stage

diagnosis and resistance to radiation therapy and chemotherapy.

However, recent advancements in targeted therapy and

immunotherapy have shown promising results in reducing

mortality rates (2, 3). Consequently, there is a growing need for

the development of reliable and accurate prognostic biomarkers

using high-throughput technologies to assist clinicians in

optimizing treatment strategies.

Mitochondria are essential organelles that serve as the primary

source of cellular energy and play a vital role in various cellular

processes, including adenosine triphosphate (ATP) synthesis

through oxidative phosphorylation (OXPHOS). Impaired

mitochondrial function reduces the OXPHOS capacity, which

results in the elevated production of reactive oxygen species

(ROS) and subsequent cel lular damage. Uncontrolled

mitochondrial oxidative stress has been implicated in the

development of various diseases, including cancer (4, 5).

Additionally, mitochondria are closely associated with

metabolism, cell signaling, and programmed cell death. Various

triggers, including oxidative stress, DNA damage, and imbalances

in calcium regulation, lead to apoptosis via this mitochondrial route

(6). Moreover, excessive ROS production by mitochondria can

promote lipid peroxidation, leading to the induction of ferroptosis

(7). Mitophagy, a mitochondrial quality control mechanism,

selectively targets and eliminates damaged, dysfunctional, or

senescent mitochondria through lysosomal degradation (8). Two

major pathways drive mitophagy: the PINK1-Parkin-mediated

ubiquitin pathway and the FUNDC1 receptor-mediated pathway,

both of which have been extensively studied (9). Mitophagy plays a

crucial role in maintaining cellular homeostasis and tumor

progression. However, dysregulated mitophagy may promote

tumorigenesis and tumor progression, as well as confer resistance

to anticancer therapies, thereby exerting unfavorable effects (10).

In recent studies, several genes associated with mitophagy have

been identified to be involved in the development of lung cancer

(11). For instance, high expression of PINK1 has been associated

with poor response to chemotherapy. Studies have demonstrated a

significant correlation between high PINK1 expression and

postoperative chemoresistance in lung adenocarcinoma.

Therefore, PINK1 testing could potentially aid in stratifying

patients with poor chemotherapy responses and guide

personalized therapy decisions (12). In addition, the depletion of

PINK1 leads to reduced ATP production, inhibition of mitophagy,

and sensitization of cells to drugs targeting glycolysis in NSCLC

(13). A study identified an E3 ubiquitin ligase called ARIH1/

HHARI that triggers mitophagy in cancer cells in a PINK1-

dependent manner. ARIH1/HHARI polyubiquitinated damages

mitochondria, leading to their removal through autophagy.

Moreover, ARIH1 is widely expressed in lung adenocarcinoma

and promotes chemotherapy resistance (14). Another study found

that reducing Atg7 or Atg5, mediated by K-RAS, in lung tumors

reduced tumor burden and improved survival in malignancies

associated with the rapid initiation phase of tumors (15).

However, there is currently limited availability of transcriptomic
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and single-cell transcriptomic analyses based on mitophagy genes

for the diagnosis, prognosis, and treatment of non-small cell

lung cancer.

In this study, we performed a comprehensive analysis of gene

expression related to mitophagy in NSCLC using the NCBI Gene

Expression Omnibus (GEO). Subsequently, we developed a

prediction model based on mitophagy-related signature genes to

diagnose NSCLC accurately. The model was validated using an

independent dataset from GEO, and NSCLC subtypes were

identified through unsupervised clustering analysis. Furthermore,

we performed in-depth analyses of the prognosis, immune

infiltration, immunotherapy response, and drug sensitivity for

each identified NSCLC subtype.
2 Materials and methods

2.1 Data acquisition and processing

We obtained RNA sequencing (RNA-seq) data and

corresponding clinical information from the GEO public database

(https://www.ncbi.nlm.nih.gov/geo/) for a total of 695 NSCLC

samples. The obtained data underwent standardization using the

R package “limma”. Among these samples, a training cohort

consisting of 539 merged samples from the GSE30219 (16) and

GSE32863 (17) series matrices were selected. To mitigate batch

effects within the merged samples, we used the R package “SVA”

(18). Additionally, we included 156 samples from the GSE19188

(19) series matrix for external validation. Single-cell data from 11

tumor samples were also included from the GSE131907 (20).

Furthermore, we retrieved the mitophagy-related gene set from

the Reactome database and the inflammatory factor-related gene set

from the BioCarta database.
2.2 Differentially expressed genes analysis

Data from the GSE30219 and GSE32863 series matrices were

merged and classified into normal and tumor samples based on

clinical information. We extracted MRGs from the Reactome

database and generated a heat map using the R package

“pheatmap”. DEGs were detected between the normal and tumor

samples, with a false discovery rate (FDR) threshold of less than

0.05. Subsequently, DEGs boxplots and volcano plots were

constructed using the R packages “ggplot2” and “ggpubr”. In

addition, a correlation heatmap of DEGs was visualized using the

R package “corrplot”.
2.3 Analysis of scRNA-seq data in NSCLC

We performed analyses of scRNA-seq data using the R packages

“Seurat” and “SingleR” (21, 22). To retain high-quality scRNA-seq

data, we applied a series of filtering steps on the raw matrix.

Specifically, we included only genes expressed in at least three

cells, excluded cells expressing fewer than 200 genes, and removed
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cells with mitochondrial gene expression exceeding 8%. First, we

applied the NormalizeData function to normalize the scRNA-seq

data and then used the FindVariableFeatures function to identify

the top 2,000 highly variable genes. Subsequently, we performed

principal component analysis (PCA) using the RunPCA function

from the “Seurat” package, reducing the dimensionality of the

scRNA-seq data based on the top 2,000 highly variable genes. We

used the ElbowPlot analysis to identify significant principal

components and performed cell clustering analysis using the top

10 principal components obtained from PCA. The FindNeighbors

function was employed to construct a k-nearest neighbor graph

based on the Euclidean distance in the PCA space, and the UMAP

algorithm was applied for data dimensionality reduction and

visualization. We used reference data from the human primary

cell atlas (23) for cluster annotation and the CellMarker database

(CellMarker (xbio.top)) (24) for reference-based cell annotation.

To evaluate the gene expression scores of MRGs for each cell in

the scRNA-seq dataset, we employed the AddModuleScore function

to compute specific scores for individual cells. Furthermore, we

performed GSVA to assess the enrichment of signature pathways

for each cell type using the MSigDB database (http://www.gsea-

msigdb.org/) (25). Following this, we performed GSEA on the

differentially expressed genes between the high and low groups

based on mitophagy scores (26).
2.4 Construction and validation of a
prediction model

Machine learning models have proven to be powerful tools in

handling large datasets and facilitating rapid analysis and decision-

making in disease diagnosis. In our study, we employed a combined

approach using support vector machine (SVM) (27) and random

forest (RF) (28) algorithms to select relevant features from a set of

25 genes associated with mitophagy. Subsequently, a prediction

model was constructed using logistic regression (29). The sensitivity

and specificity of the prediction model were assessed through the

analysis of receiver operating characteristic (ROC) curves. The

performance of the model was evaluated by calculating the area

under the curve (AUC) of the ROC curve. To visualize the relative

importance of the feature genes within the model and their

contribution to the prediction outcomes, a nomogram model was

generated using the “rms” package in R (30). The prediction

performance of the model was further evaluated by plotting

calibration curves and decision Curve Analysis (DCA) curves. An

external dataset was employed to validate the robustness of the

results (31).
2.5 Analysis based on the human protein
atlas database

To validate the prediction model, the HPA database

(proteinatlas.org) was used to ascertain if the expression levels of

the feature genes in NSCLC differ from those in normal tissues at

the protein level.
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2.6 Cell culture and qRT- PCR analysis

The bronchial epithelial cell BEAS‐2B and the NSCLC cell lines

A549, PC9, and H1299 were from the Cell Bank of Type Culture

Collection of Shanghai Institute of Biochemistry & Cell Biology,

Chinese Academy of Science. BEAS‐2B cells were cultured in Gibco

LHC basal medium (Invitrogen, Carlsbad, CA) supplemented with

10% fetal bovine serum, while the NSCLC cell lines were cultured in

Gibco RPMI‐1640 medium (Invitrogen, Carlsbad, CA) supplemented

with 10% fetal bovine serum. Total RNA was extracted using TRIZOL

reagent (Invitrogen) and then reverse-transcribed into cDNA. b‐actin
was used as an internal control. Real‐time PCR was performed using a

Roche LightCycler® 480 System. Relative expression levels were

calculated as ratios normalized against b‐actin. The QPCR primer

sequences are listed in Supplementary Table S1.
2.7 Correlation between feature genes
and immunity

To explore the correlation between feature genes and immunity, we

employed the “CIBERSORT” package to evaluate the extent of immune

cell infiltration in both normal and tumor samples. Furthermore, we

performed Spearman’s correlation analysis using the “IOBR” and

“psych” packages to investigate the relationships among feature genes,

immune infiltration, and inflammatory factors. The results were visually

represented using the “ggplot2” package (32, 33).
2.8 Consensus clustering analysis

We performed unsupervised clustering analysis on 351 samples

from patients with NSCLC using the “ConsensusClusterPlus” R

package based on the expression profiles of six feature genes. The K-

means algorithm was employed with a maximum number of

subtypes set to 10 (k=10), a sampling rate of 0.8, and 100

resampling iterations. The optimal number of clusters was

determined by evaluating the cumulative distribution function

(CDF) curve and CDF delta area curves (34).

Following the clustering analysis, we investigated the

correlation between the expression levels of MRGs and clinical

pathological features within different subtypes of NSCLC. In

addition, using the gene set variation analysis (GSVA) package,

we calculated the scores of each sample relative to the MRGs. The

significance of the differential expression of MRGs between the two

groups of NSCLC subtypes was assessed using the Wilcoxon test

(35). Furthermore, Kaplan-Meier survival analysis was performed

on the different subtypes using the “survival” and “survminer” R

packages to evaluate their impact on prognosis.
2.9 Analysis of immune infiltration in
NSCLC subtypes

In this study, we employed the CIBERSORT software code in R

to evaluate the proportions of 22 immune cell subtypes within the
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different subtypes of NSCLC. The LM22 gene expression matrix,

which includes 547 genes and defines the composition of 22

immune cell types, served as a standardized reference for

characterizing the human immune cell types. By applying the

CIBERSORT algorithm, we obtained the profiles of the immune

cell infiltrations for each NSCLC subtype. Additionally, we used the

“IOBR” package in R to estimate the expression levels of the

immune and stromal cells in the samples. A comparison of the

abundance of immune cells and stromal cells among different

subtypes was performed, and the results were visually presented

using box plots (32).
2.10 Weighted gene co-expression
network analysis

We performed consensus module analysis using the “WGCNA”

package in R to identify hub genes within each subtype (36).

Initially, we ranked genes based on their median absolute

deviation (MAD) values and selected the top 5000 genes. Next,

we performed sample and gene filtering to exclude those with

excessive missing values. A similarity matrix was constructed,

which was then converted into an adjacency matrix using a

weight coefficient b = 6. Subsequently, the blockwiseModules

function was employed to perform modular analysis on the

adjacency matrix, enabling the establishment of a gene co-

expression network and the assignment of genes to different

modules. For each module, module eigengenes (MEs) were

computed, and their Pearson’s correlation coefficients with the

phenotype data were calculated. Finally, the correlation between

the module genes and phenotype data was visualized using a

heat map.
2.11 Analysis of enrichment

Based on the WGCNA analysis results, we selected genes from

the module with the highest correlation to different NSCLC

subtypes. Subsequently, we performed enrichment analyses using

the Metascape database (https://metascape.org/) (37). In addition,

we imported gene sets from the biological processes (BP) category

using the “msigdbr” package in R (38) and performed biological

process enrichment analysis for different NSCLC subtypes using the

“fgsea” package.
2.12 Prediction of immune
therapy response

First, we analyzed immune checkpoint gene expression in

various subtypes of NSCLC. Subsequently, we employed the

Tumor Immune Dysfunction and Exclusion (TIDE) database

(Tumor Immune Dysfunct ion and Exclusion (TIDE)

(harvard.edu)) to predict the response to immune checkpoint

blockade. TIDE can analyze two mechanisms involved in tumor

immune evasion: one causing dysfunction of cytotoxic T
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lymphocyte (CTL) infiltration and the other impeding CTL

infiltration into the tumor, known as “exclusion” (39, 40). The

use of TIDE facilitated a more effective prediction of the therapeutic

efficacy of immunotherapy.
2.13 Drug sensitivity analysis

The half-maximal inhibitory concentration (IC50) is a

commonly used concentration indicator to assess drug toxicity or

therapeutic efficacy. We used the “oncoPredict” package in R and

employed expression matrices from the Genomics of Drug

Sensitivity in Cancer (GDSC) database, along with drug treatment

information, as a training set to evaluate chemotherapy sensitivity

in different subtypes of NSCLC (41).
2.14 Statistical analysis

All the statistical analyses were performed by R-4.1.3. Student's

t-test or Wilcoxon’s rank sum test was used to detect the significant

difference between two independent groups, p < 0.05 was

considered statistically significant.
3 Results

3.1 Upregulation of MRGs and activation of
the immune system in NSCLC

We performed batch correction and merged the GSE30219 and

GSE32863 datasets to investigate the expression profiles of MRGs in

the combined dataset. Our analysis revealed that the expression

levels of MRGs were significantly lower in normal tissues than in

tumor tissues (Figure 1A). Among the 25 MRGs exhibiting

differential expression between the normal and tumor tissues,

only MAP1LC3B , PINK1 , PARK2 , UBB , and UBC were

significantly downregulated in the tumor tissues, while expression

of the other genes was significantly upregulated in the tumor

samples (Figures 1B–D). Furthermore, correlation analysis

demonstrated the associations among the 25 differentially

expressed genes related to mitophagy (Figure 1E). Using

CIBERSORT analysis, the results showed a significant increase in

the infiltration of naive B cells, M0 and M1 macrophages, NK cells,

plasma cells, helper T cells, and regulatory T cells in the tumor

tissues (Figure 1F).
3.2 Expression of MRGs based on scRNA-
seq data

Based on the scRNA-seq data from GSE131907, we performed

quality control on 11 tumor samples in the single-cell dataset

(Supplementary Figure 1A) to ensure the quality of the cells

included in the study. Then, the top 2,000 highly variable genes

were identified for PCA to reduce dimensionality (Supplementary
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Figures 1B, C). Subsequently, we clustered the cells into 21 clusters

(Supplementary Figure 1D). We classified them roughly into T cells,

NK cells, macrophages, monocytes, mast cells, epithelial cells,

endothelial cells, B cells, and fibroblasts based on the results of

singleR and CellMarkers database (Supplementary Figures 1E, F,

Figure 2A). The AddModuleScore function was used to calculate

the score of the different cell types based on the MRGs. We found

that fibroblasts had the highest MRG score (mitoscore), followed by

mast cells (Figures 2B–D). We then performed GSVA analysis on

different cells and found that the HALLMARK inflammation-

related pathways such as apoptosis, inflammatory_response,

TGF_BETA_SIGNALING, and TNFA_SIGNALING_VIA_NFKB

were upregulated in mast cells (Figure 2C). In addition, a GSEA

analysis was performed between samples with an Hscore and Lscore

for mitophagy-related scores. We found that the differentially
Frontiers in Immunology 05
expressed genes between the high and low groups were highly

enriched in pathways such as KEGG_neuroactive_ligand_

receptor_interaction, KEGG_cytokine_cytokine_receptor_

interaction, KEGG_natural_killer_cell_mediated_cytotoxicity, and

KEGG_ecm_receptor_interaction (Figure 2E).
3.3 Construction and validation of a
prediction model

We used SVM and RF algorithms to select feature genes from

the 25 MRGs and predict the occurrence of NSCLC. The SVM

analysis allowed us to identify the top 10 optimal feature genes

associated with NSCLC occurrence. Subsequently, we performed a

random forest analysis, which involved selecting the top 10 genes
B

C D

E F

A

FIGURE 1

Differentially expressed MRGs in NSCLC. (A) The box plot displays the GSVA scores of the MRG gene set across samples to observe the overall
expression differences of MRG between healthy individuals and patients with NSCLC. P-values were estimated by Wilcoxon rank-sum test. ****P <
0.0001. (B) The expression patterns of 25 MRGs are presented in the heatmap. Each row represents a specific MRG and each column represents a
sample. There are a total of 351 tumor samples and 72 normal samples. The color gradient ranging from blue to red indicates low to high expression
levels, respectively. (C) The volcano map illustrates 25 differentially expressed MRGs in NSCLC, where a negative log2FC indicates downregulation
and a positive log2FC indicates upregulation of the gene expression. (D) The box plot displays the differential expression of 25 MRGs between
healthy individuals and NSCLC patients. P-values were estimated by Wilcoxon rank-sum test. *P < 0.05, *** P < 0.001, ****P < 0.0001. (E)
Correlation analysis between the 25 differentially expressed genes. Red and blue represent positive and negative correlations, respectively. The depth
of color represents different correlation coefficients. (F) The box plot shows the expression differences of 22 immune cells between healthy
individuals and NSCLC patients. P-values were estimated by Wilcoxon rank-sum test. *P < 0.05, ** P < 0.01, *** P < 0.001, ****P < 0.0001.
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based on the error rate curve. The gene importance scores were

obtained from the random forest model (Figures 3A, B). The genes

selected by the SVM-RFE algorithm and random forest were

intersected to obtain the final set of genes (SRC, UBB, PINK1,

FUNDC1,MAP1LC3B, CSNK2A1). Multivariable logistic regression

analysis demonstrated that these six selected genes were associated

with NSCLC (Figure 3C). We further evaluated the predictive

performance of the model using an ROC curve, and the area

under the curve (AUC) was determined to be 0.925. In addition,

we validated the model using an external dataset (GSE19188), and

the AUC based on this validation was 0.966 (Figures 3D, E). To

visually illustrate the prediction performance of the feature genes,

we created a nomogram model (Figure 3F). The model, which

integrated the information from all six feature genes, showed

superior prediction value compared to individual feature genes.

To assess the calibration and clinical utility of the model, we

generated calibration plots and DCA curve analysis (Figures 3G,

H). These analyses demonstrated that the nomogram model had

good prediction efficacy for NSCLC. Subsequently, we collected

IHC staining images of six feature genes-associated proteins from

the HPA database, which were obtained from both NSCLC and

normal lung tissue. Significantly higher protein expression levels

were observed for three of the feature genes (SRC, CSNK2A1,

FUNDC1) in NSCLC samples relative to normal samples, thereby

supporting our findings (Supplementary Figure 2A). The protein

expression levels of the additional three feature genes showed no

significant difference between the NSCLC samples and the normal

samples. Furthermore, qPCR was used to validate the expression of

six feature genes that were screened in both the lung cancer cell lines

(A549, PC9, H1299) and the normal bronchial epithelial cell line

(BEAS-2B). Results indicated a significant upregulation of the six

feature genes in lung cancer cells (Supplementary Figure 2B). The

expression patterns of CSNK2A1, FUNDC1, and SRC were

consistent with our bioinformatics analysis results, therefore, we

attempted to construct a prediction model using these three genes.

The predictive performance of the model based on the three feature

genes was not as good as that of the six-gene model, as evidenced by

the ROC curve (Supplementary Figure 2C), and the AUC based on

this model was only 0.882. In addition, we analyzed the correlation

between the six feature genes and immune cells, as well as

inflammatory factors. Among the selected feature genes, UBB,

PINK1, and MAP1LC3B exhibited a negative correlation with the

infiltration of the aforementioned immune cells, while the other

feature genes showed a positive correlation (Supplementary

Figure 3A). UBB, PINK1, and MAP1LC3B were significantly

positively correlated with 10 out of 24 inflammatory factors,

whereas the remaining feature genes showed the opposite trend

(Supplementary Figure 3B).
3.4 Identification and differential analysis of
subtypes in NSCLC

Based on the six feature genes related to mitochondrial

autophagy, unsupervised clustering was performed to classify all

tumor samples into subtypes. Through comprehensive analysis of
Frontiers in Immunology 06
the cumulative distribution function (CDF) curve (Figure 4B) and

delta area (Figure 4C), the optimal segmentation efficiency was

achieved at k=2, with a clustering number of 2 (Figure 4A). The heat

map illustrates the differences in expression levels of the feature

genes and the distribution of clinical pathological features between

the two subtypes (Figure 4D). We observed that the prediction

model demonstrated good efficacy for both subtypes of NSCLC

(Figure 4E). Cluster 1 had a significantly higher number of

individuals in tumor stages T1–T2 and N0–N1 than Cluster 2

(Figure 4F). Survival analysis also demonstrated a significantly

higher survival rate in Cluster 1 than in Cluster 2 (Figure 4G).

GSVA analysis revealed a significantly higher overall expression

level of MRGs in Cluster 2 than in Cluster 1 (Figures 4H, I).
3.5 Constructing a gene co-
expression network

A weighted gene co-expression network analysis (WGCNA)

was performed to identify co-expression modules that showed the

highest correlation with each cluster. WGCNA was performed on

both datasets of diseased samples after batch normalization. All

samples were included in the analysis, and the optimal soft-

thresholding value was set to 6. The results revealed a total of

nine modules generated (Figures 5A, B). Among these modules, the

black module and the turquoise module exhibited the strongest

correlation with Cluster 1 and Cluster 2, respectively (Figure 5C).

Subsequently, we performed functional enrichment analysis on the

WGCNA modules that exhibited the highest correlation with each

cluster. For this analysis, we used the Metascape database to analyze

the genes within the black module and the turquoise module. The

results revealed significant enrichment in the pathways associated

with angiogenesis, endothelial development, and cell adhesion in

Cluster 1 (Figure 6A). In Cluster 2, there was significant enrichment

in the pathways related to cell cycle and metabolism (Figure 6B).

Furthermore, FGSEA highlighted that Cluster 1 was enriched in the

pathway of antigen processing and presentation of exogenous

antigens. On the other hand, Cluster 2 exhibited enrichment in

pathways such as signal transduction by p53 class mediator and

mitochondrial translation (Figure 6C).
3.6 Predicting the immune therapy
response and sensitivity to chemotherapy
drugs in different mitophagy-related
NSCLC subtypes

To investigate the differences in the immune microenvironment

among different subtypes of NSCLC, we used the CIBERSORT

package and IOBR package to assess the infiltration proportions of

distinct immune and stromal cells. The infiltration levels of

dendritic cells, M1 macrophages, mast cells, neutrophils,

fibroblasts, and T cell CD4 memory cells were significantly

elevated in Cluster 2, while monocytes, NK cells, and endothelial

cells exhibited higher infiltration levels in Cluster 1 (Figure 7A,

Supplementary Figure 4A). The expression of most inflammatory
frontiersin.org
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f a c tors was h igher in Clus ter 1 than in Clus ter 2

(Supplementary Figure 4B).

Immunotherapy checkpoint inhibitors have demonstrated

durable efficacy in some NSCLC patients. In this study, we

investigated the differences in expression levels of immunotherapy

checkpoint genes between two NSCLC subtypes. Our analysis
Frontiers in Immunology 07
revealed significant differences in the expression levels of several

immunotherapy checkpoint genes, including BTN2A1, TNFSF9,

CD226, BTN3A1, CD47, CD28, and TNFRSF18 (Figure 7B). This

suggested that these two NSCLC subtypes might respond differently

to immunotherapy checkpoint inhibitors. We further employed the

TIDE algorithm to predict the effectiveness of immunotherapy
B

C

D E

A

FIGURE 2

Expression of MRGs based on scRNA-seq data. (A) The cells were clustered into 9 types using the UMAP dimensionality reduction algorithm, and
each color represents the annotation phenotype of each cluster. (B) Scoring MRGS in various cell types based on AddModuleScore. (C) The heatmap
displays the enrichment of different pathways identified through GSVA analysis in different cell types. The color gradient ranging from blue to red
indicates low to high expression levels, respectively. (D) The left panel shows the scoring of MRGS in various cell types for the high-scoring group,
while the right panel shows the low-scoring group. (E) The bar plot displays the pathways enriched with differentially expressed genes between the
high and low-scoring groups of mitochondrial autophagy. The red color indicates NES > 0, indicating pathways associated with high expression,
while the blue color represents pathways associated with low expression.
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FIGURE 3

The establishment and evaluation of the diagnostic model. (A) The error rate curve of the Random Forest model. The plot demonstrates the variation
of the prediction error of the Random Forest learning model under different quantities of trees. (B) The ranking plot displays the importance scores
of genes as evaluated by the Random Forest model. The MeanDecreaseGini index is used to measure the importance of feature genes in the model,
where a higher value indicates a higher level of importance of that variable in the model.(C) The forest plot displays the 6 genes selected through
logistic regression.(D) Receiver operating characteristic curve evaluating the diagnostic performance of feature genes. The horizontal axis represents
the false positive rate, while the vertical axis represents the true positive rate. (E) The receiver operating characteristic curve was used to evaluate the
diagnostic performance of the feature genes in the external validation dataset GSE19188. (F) Nomogram for predicting the risk of NSCLC based on
feature genes. The feature weight of six important feature genes is used as input variables, and the “Total points” denote the total score obtained by
adding up the scores of all input variables. “Pr(group)” represents the risk score corresponding to the “Total points,” which indicates the likelihood of
developing NSCLC. (G) Calibration curve illustrating the calibration performance of a predictive model. The horizontal axis represents the predicted
value, while the vertical axis represents the actual observed value. The closer the bias-corrected curve is to the Ideal dashed line, the higher the
calibration performance of the model. (H) DCA estimates the clinical benefit of the nomogram. The plot shows a comparison of the net clinical
benefits for different prediction models at different decision thresholds. The model constructed using six feature genes exhibits the highest
clinical benefit.
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FIGURE 4

Identification and Differential Analysis of mitophagy-related NSCLC subtypes. (A) Consensus clustering matrix showing the clustering agreement
between samples when k (number of clusters) = 2. (B) Representative cumulative distribution function (CDF) curve showing the clustering results for
k (number of clusters) ranging from 2 to 10. (C) Relative changes in CDF delta area curves, which measure the stability of clustering across different
values of k (number of clusters). (D) The heatmap displays the expression of mitochondrial autophagy-related feature genes with clinical information
in different subtypes of NSCLC. (E) The box plot compares the diagnostic performance of prediction models for two subtypes of NSCLC. P-values
were estimated by Wilcoxon rank-sum test. ****P < 0.0001. (F) The stacked bar chart illustrates the distribution differences of tumor T and N staging
between two subtypes of NSCLC. P-values were estimated by Student's t-test. (G) The survival curves demonstrate the survival differences between
the two subtypes of NSCLC. The horizontal axis represents the survival time, and the vertical axis represents the survival probability. The p-values
were calculated using the Tarone-Ware test. (H) The box plot illustrates the differential expression of 25 MRGs between two subtypes of NSCLC. P-
values were estimated by Wilcoxon rank-sum test. *P < 0.05, ** P < 0.01, *** P < 0.001, ****P < 0.0001. (I) The box plot displays the GSVA scores of
the MRG gene set in two subtypes of NSCLC. P-values were estimated by Wilcoxon rank-sum test. ****P < 0.0001.
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checkpoint inhibition treatment. We observed that Cluster 1

exhibited a significantly lower TIDE score (Figure 7C), indicating

a better response to immunotherapy. In addition, we found that

Cluster 1 had a lower Exclusion score and a higher Dysfunction

score compared to other clusters. However, there was no significant

difference in the microsatellite instability (MSI) score between the

clusters (Figures 7D–F). To explore the sensitivity to chemotherapy

drugs in different NSCLC subtypes, we used the oncoPredict
Frontiers in Immunology 10
package to evaluate the IC50 values of several chemotherapy

drugs. The results of the drug sensitivities showed that the IC50

values of cisplatin, paclitaxel, vincristine, and gemcitabine were

lower in Cluster 2 than in Cluster 1. This meant that patients in

Cluster 2 might benefit more from the above chemotherapy drugs

(Figures 7G–J). Additionally, our correlation analysis between drug

response and gene expression revealed that the highly expressed

MRGs in Cluster 2 negatively correlate with the IC50 values of the
B

C

A

FIGURE 5

Constructing a gene co-expression network using WGCNA in different mitophagy-related NSCLC subtypes patients. (A) The scale plot of WGCNA to
identify optimal vector power (cutoff value = 0.85). (B) Sample dendrogram and trait heatmap. (C) Correlations between different modules and
clusters: every module has its correlation coefficient and corresponding p-value.
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aforementioned chemotherapy drugs (Supplementary

Figures 5A-D).
4 Discussion

Studies have consistently demonstrated the involvement of

mitophagy in various cancer processes, including tumor

initiation, progression (42), augmentation of immunotherapy

(43), and enhancement of chemotherapy sensitivity (44).
Frontiers in Immunology 11
However, most investigations have focused primarily on

individual MRGs, and research using comprehensive mitophagy-

related gene sets remains limited. In our study, GSVA analysis

revealed a significant upregulation in the overall expression of

mitophagy-related gene sets within the tumor samples. Therefore,

we developed a prediction model for NSCLC based on six carefully

selected mitophagy-related feature genes. The model exhibited

remarkable efficacy in assisting NSCLC diagnosis, as evidenced by

an impressive area under the curve (AUC) value of 0.925 for

diagnosis efficiency within the GEO queue and an AUC of 0.966
B

C

A

FIGURE 6

Enrichment analysis results of two mitophagy-related NSCLC subtypes. (A) The bar graph displays the enrichment results of hub genes associated
with the MEblack module, which exhibits the highest correlation with Cluster 1. Colored by p-values. (B) The bar graph displays the enrichment
results of hub genes associated with the MEturquoise module, which exhibits the highest correlation with Cluster 2. Colored by p-values. (C) The
heatmap illustrates the Fgsea results of Cluster1 and Cluster2. The color gradient ranging from blue to red indicates low to high expression
levels, respectively.
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during external validation. Furthermore, leveraging these six feature

genes, we successfully stratified NSCLC patients into two distinct

subtypes, which displayed significant differences in prognosis. A

comprehensive analysis confirmed that these subtypes also

exhibited notable dispari t ies in immune infi l t rat ion,

chemotherapy response, and immunotherapy potential. Extending

our investigation to single-cell analysis of NSCLC provided

additional insights into the intricate relationship between

mitophagy, inflammation, and immunity in NSCLC. These

findings have shed new light on the underlying mechanisms

driving NSCLC, ultimately contributing to a broader

understanding of this complex disease.

The prediction model consisted of six mitophagy-related genes

(SRC, UBB, PINK1, FUNDC1, MAP1LC3B, and CSNK2A1). It was

constructed through machine learning using SVM and random

forest algorithms for feature selection. Analysis revealed a strong

correlation between these six genes and the infiltration of certain

immune cells, indicating their potential role in immune regulation

within tumors. SRC is a tyrosine kinase involved in multiple aspects
Frontiers in Immunology 12
of tumor development, including proliferation, migration, and

angiogenesis. It was highly expressed in the NSCLC samples. The

inhibition of SRC has emerged as a feasible therapeutic strategy for

treating advanced NSCLC (45). In addition, studies have revealed

elevated expression levels of FUNDC1 in lung cancer tissues, which

aligns with our findings (46). Research has indicated that high

expression of PINK1 is associated with poor chemotherapy

response. Elevated PINK1 expression is significantly correlated

with postoperative chemoresistance in lung adenocarcinoma (12).

Silencing PINK1 can inhibit the proliferation of lung cancer cells

and disrupt their cell cycle (47). Furthermore, PINK1 and Parkin

have been proposed as tumor suppressor factors. MAP1LC3B, also

known as LC3B, is a protein involved in autophagy and mitophagy.

It participates in the formation and fusion of autophagosomes,

facilitating the degradation and clearance of cellular waste

materials. Interestingly, research has suggested that high

expression of LC3B is associated with lower invasiveness of

NSCLC tumors (48). CSNK2A1 is a gene that encodes the protein

kinase CK2a, which regulates various cellular functions, including
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FIGURE 7

Prediction of immune therapy outcomes and sensitivity to chemotherapy drugs in different mitophagy-related NSCLC subtypes. (A) The box plot
illustrates the immune infiltration profiles of two subtypes of NSCLC assessed using CIBERSORT. P-values were estimated by Wilcoxon rank-sum
test. *P < 0.05, ** P < 0.01, ****P < 0.0001. (B) The box plot displays the differential expression of immune checkpoint genes in two subtypes of
NSCLC. P-values were estimated by Wilcoxon rank-sum test. *P < 0.05, ** P < 0.01, ****P < 0.0001. (C) The box plot depicts the prediction of the
TIDE score in two subtypes of NSCLC based on the TIDE database, which is a metric used to assess tumor immune function and predict the
response to immunotherapy. P-values were estimated by Wilcoxon rank-sum test. ***P < 0.001. (D) Exclusion score is a metric used to assess the
degree of immune exclusion phenomenon within tumors. P-values were estimated by Wilcoxon rank-sum test. ***P < 0.001. (E) Dysfunction score
is a metric used to measure the degree of abnormality in tumor immune function. P-values were estimated by Wilcoxon rank-sum test. ***P <
0.001. (F) MSI score is a measure used to assess the genomic stability of a tumor and detect the level of microsatellite instability within it. P-values
were estimated by Wilcoxon rank-sum test. ***P < 0.001. (G) The sensitivity of two mitophagy-related NSCLC subtypes to cisplatin is shown in box
plots with IC50 values on the y-axis. P-values were estimated by Wilcoxon rank-sum test. ***P < 0.0001. (H) The sensitivity of two mitophagy-
related NSCLC subtypes to paclitaxel is shown in box plots with IC50 values on the y-axis. P-values were estimated by Wilcoxon rank-sum test. ***P
< 0.0001. (I) The sensitivity of two mitophagy-related NSCLC subtypes to vincristine is shown in box plots with IC50 values on the y-axis. P-values
were estimated by Wilcoxon rank-sum test. ***P < 0.0001. (J) The sensitivity of two mitophagy-related NSCLC subtypes to gemcitabine is shown in
box plots with IC50 values on the y-axis. P-values were estimated by Wilcoxon rank-sum test. ***P < 0.0001.
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cell proliferation, apoptosis, DNA repair, cell cycle control, and

transcriptional regulation. Research has shown that knocking down

CSNK2A1 in KRAS (G12C) mutant lung cancer cells reduced cell

proliferation, inhibited Wnt/b-catenin signaling, and enhanced the

anti-proliferative effects of MEK inhibitors on KRAS (G12C)

mutant lung cancer cells (49). UBB is a gene that encodes

ubiquitin B, a protein involved in the ubiquitin-proteasome

system. Ubiquitin is overexpressed in NSCLC, and targeting UBB

and UBC genes in NSCLC H1299 cells to inhibit ubiquitin

expression leads to suppressed cell growth. Furthermore,

inhibiting ubiquitin expression has been observed to increase

cellular radiosensitivity (50). Therefore, these mitophagy-related

genes played a crucial role in the development and progression of

NSCLC, and they may have c l in ica l s ignificance as

potential biomarkers.

Our research classified NSCLC patients into two subtypes based

on the expression of MRGs, and there were significant differences in

MRGs expression between the two subtypes. The overall expression

of MRGs in Cluster 2 was significantly higher than in Cluster 1.

Among the six featured genes, PINK1, MAP1LC3B, and UBB

exhibited significantly higher expression in Cluster 1, while SRC

and CSNK2A1 showed significantly higher expression in Cluster 2.

Studies have shown a significant correlation between elevated

PINK1 expression and postoperative chemoresistance in lung

adenocarcinoma (51). This is consistent with our analysis of

chemotherapy sensitivity in the two subtypes. Cluster 1,

characterized by high PINK1 expression, exhibited poorer

chemotherapy sensitivity than Cluster 2. Furthermore, Cluster 2

had a higher proportion of patients in tumor stages T2–T3 andM1–

M2, and survival analysis indicated that Cluster 1 had significantly

better overall survival compared to Cluster 2. Additionally, our

prediction model, constructed based on MRGs expression,

demonstrated significantly higher prediction performance for

Cluster 2 with overall higher expression compared to Cluster 1.

The tumor microenvironment, particularly the immune

microenvironment, plays a crucial role in the recurrence and

metastasis processes of NSCLC. It imposes significant limitations

on the efficacy of immunotherapy and chemotherapy (52, 53). The

infiltration of immune cells plays a significant role in the

progression, metastasis, and immune escape of NSCLC (54). Our

research identified significant differences in immune cell infiltration

between healthy individuals and patients with NSCLC. Specifically,

the infiltration proportions of mast cells, B cells, and M1

macrophages were significantly increased in NSCLC patients.

Furthermore, the different subtypes of NSCLC exhibited

variations in the proportions of immune cell infiltration. Cluster 2

had a notably higher proportion of infiltrated mast cells, dendritic

cells, and neutrophils. In contrast, Cluster 1 showed higher

infiltration proportions of monocytes, NK cells, and resting CD4

T cell memory. Mast cells serve as biomarkers and critical

determinants of cancer treatment response, and in lung cancer,

mast cell density is associated with angiogenesis and poor prognosis

(55, 56). In addition, studies have found that neutrophils promoted

cancer angiogenesis by releasing vascular endothelial growth factor

(VEGF) and other pro-angiogenic factors. Neutrophils are the

pr imary source of VEGFA express ion in the tumor
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microenvironment of NSCLC (57). These findings are consistent

with our results, as patients in Cluster 2 with high overall expression

of mitophagy exhibited a poorer prognosis. Based on the evaluation

of immune cell infiltration using MCPcounter, we found that

Cluster 1 exhibited a significantly higher abundance of T cells

than Cluster 2. In addition, immune checkpoint analysis revealed

higher expression levels of immune checkpoints on T cells in

Cluster 1 compared to Cluster 2. These results suggested that

patients in Cluster 1 would benefit more from immunotherapy

than patients in Cluster 2. Furthermore, our analysis based on the

TIDE algorithm, which predicts the efficacy of immunotherapy, also

showed that Cluster 1 patients were more suitable for

immunotherapy than Cluster 2 patients.

Chemoresistance poses a major obstacle in the treatment of

NSCLC. Distinguishing individuals who would be sensitive to

chemotherapy could maximize the effectiveness of NSCLC

treatment. In our study, we performed chemosensitivity analysis

on patients with different subtypes of NSCLC using the Genomics

of Drug Sensitivity in Cancer (GDSC) database. We found that

patients in Cluster 2 with high expression levels of mitophagy

exhibited increased sensitivity to drugs such as paclitaxel, cisplatin,

and gemcitabine. The 2023 NSCLC-NCCN guidelines also

recommend the use of nivolumab plus platinum-based doublet

chemotherapy as a neoadjuvant systemic treatment regimen for

patients with resectable (tumor size ≥ 4 cm or positive lymph

nodes) NSCLC (58). Furthermore, research has indicated a

correlation between high PINK1 expression and poor response to

chemotherapy in NSCLC (51). These findings align with our results

of elevated PINK1 expression in Cluster 1, while Cluster 2 appeared

to be more responsive to chemotherapy. Our drug sensitivity

analysis provided new insight into the relationship between

mitochondrial autophagy and systemic treatment strategies

for NSCLC.

WGCNA was used to identify hub genes associated with each

subtype by screening for modules with the highest correlation. The

identified hub genes were then subjected to enrichment analysis

using the Metascape database. In Cluster 1, enrichment analysis

revealed pathways related to angiogenesis, cell migration, cell

adhesion, and endothelial development, indicating that patients in

this cluster may be more prone to tumor progression and migration.

We found that Cluster 2, characterized by high expression of

mitophagy, was associated with pathways related to cell cycle and

metabolism. Previous research has indicated that during mitophagy,

the activation of TBK1 mediated by PINK1 and Parkin led to

mitotic arrest, thereby influencing the cell cycle. On the other

hand, the loss of PINK1 and PRKN allows the cell cycle to

proceed (59), meeting the metabolic demands of the tumor and

promoting the progression of NSCLC. These findings are consistent

with our analysis, which showed poorer survival outcomes and

lower expression of PINK1 in Cluster 2.

Based on scRNA-seq analysis, we revealed a significant

correlation between MRGs and the immune microenvironment.

Autophagy has a dual role in cancer. Before tumor initiation, it

inhibits tumor development. However, once the tumor has started to

progress, autophagy promotes tumor growth in unfavorable

microenvironments (60, 61). Disruption of the immune system in
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NSCLC can lead to immune evasion, immune suppression, enhanced

inflammatory response, and resistance to immunotherapy. We

observed high expression of MRGs in both mast and T cells. In

addit ion, the inflammatory-related pathways such as

TNF_A_SIGNALING_VIA_NFKB, INFLAMMATORY_

RESPONSE, and APOPTOSIS were significantly enriched in mast

cells. Research has indicated that mast cells can release a substantial

amount of TNF-a (62), which can lead to direct cytotoxicity against

tumor cells. However, in other contexts, TNF-a promotes tumor

growth (63) and creates a tumor-supportive microenvironment,

ultimately facilitating tumor growth and progression. In addition,

differentially expressed genes between the high-scoring and low-

scoring groups of MRGs were enriched in pathways related to cell

signaling, cell-cell interactions, and immune regulation. The

enrichment of these pathways may result in various effects within

tumors, including enhanced immune regulation and inflammatory

responses, increased proliferation and survival signaling in tumor

cells, and enhancedmetastatic and invasive capabilities of tumor cells.

These effects have significant implications for tumor initiation and

progression and might provide targets for therapeutic intervention.

However, the specific impacts and mechanisms of these effects

require further research to enhance our comprehension.

The current study has certain limitations. First, this research is

retrospective rather than prospective, leading to incomplete data

information. Additionally, while we validated the feature genes and

confirmed our research findings, only three genes' expressions

(CSNK2A1, FUNDC1, and SRC) in tumor cells supported our

results. The prediction model based on these three genes did not

perform as well as the one based on six genes(SRC, UBB, PINK1,

FUNDC1,MAP1LC3B, and CSNK2A1). To bolster the validity of our

findings, an extension of the cell lines used is essential. Furthermore,

more in vitro studies are warranted for comprehensive validation.
5 Conclusion

Our study used machine learning to identify six mitophagy-

related feature genes, which may serve as prediction biomarkers for

NSCLC patients. Furthermore, based on these six feature genes,

unsupervised clustering classified NSCLC patients into two

subtypes. These subtypes exhibited significant differences in

prognosis, immune infiltration, and response to immunotherapy

and chemotherapy. Additionally, we conducted single-cell analyses

to explore the interaction between mitophagy and immunity in

NSCLC. This research provided novel insights into the relationship

between mitophagy and NSCLC and contributed to future

investigations in this field.
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