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Background: Little is known on how metabolic reprogramming potentially

prompts transition of activated and resting CD4+ memory T cells infiltration in

tumor microenvironment of gastric cancer (GC). The study aimed to evaluate

their interactions and develop a risk model for predicting prognosis in GC.

Methods: Expression profiles were obtained from TCGA and GEO databases. An

immunotherapeutic IMvigor210 cohort was also enrolled. CIBERSORT algorithm

was used to evaluate the infiltration of immune cells. The ssGSEA method was

performed to assess levels of 114 metabolism pathways. Prognosis and

correlation analysis were conducted to identify metabolism pathways and

genes correlated with activated CD4+ memory T cells ratio (AR) and prognosis.

An AR-related metabolism gene (ARMG) risk model was constructed and

validated in different cohorts. Flow cytometry was applied to validate the effect

of all-trans retinoic acid (ATRA) on CD4+ memory T cells.

Results: Since significantly inverse prognostic value and negative correlation of

resting and activated CD4+ memory T cells, high AR level was associated with

favorable overall survival (OS) in GC. Meanwhile, 15 metabolism pathways

including retinoic acid metabolism pathway were significantly correlated with

AR and prognosis. The ARMG risk model could classify GC patients with different

outcomes, treatment responses, genomic and immune landscape. The

prognostic value of the model was also confirmed in the additional validation,

immunotherapy and pan-cancer cohorts. Functional analyses revealed that the

ARMG model was positively correlated with pro-tumorigenic pathways. In vitro

experiments showed that ATRA could inhibit levels of activated CD4+ memory T

cells and AR.
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Conclusion:Our study showed that metabolic reprogramming including retinoic

acid metabolism could contribute to transition of activated and resting CD4+

memory T cells, and affect prognosis of GC patients. The ARMG risk model could

serve as a new tool for GC patients by accurately predicting prognosis and

response to treatment.
KEYWORDS
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Introduction

Gastric cancer (GC) is a malignancy ranking among the world’s

top five most common cancers, and is one of the three leading

cancer-related deaths globally (1, 2). In recent years, various

measures have been taken worldwide to reduce morbidity and

mortality as part of public health policies (3). Great efforts have

been made in early diagnosis and treatment of the disease with

middle and late stages, resulting in declines for both parameters in

several developed countries (4). However, the reduction in GC

incidence remains insignificant in several countries including Latin

America, Asia, and Eastern and Central Europe (5). The number of

early-stage GC patients tends to increase and patients with

advanced stage experience a poorer prognosis (6).

After years of intensive research, the direction of malignancy

research has evolved from the simple study of tumor cells

themselves to a complex ecological network that extends from

within the tumor to the whole body, called the tumor

microenvironment (TME) (7). TME refers to tumor cells

consisting of extracellular matrix (ECM), stromal cells, and

immune and inflammatory cells (8). The components of this

ecological network interact and influence each other, as immune

cells occupy a very important position (9). In previous studies

exploring immune cells, some specific types such as CD8+ T cells,

regulatory T cells (Treg cells) and macrophages were once the hot

spots of research (10–12). However, recent research has shown that

CD4+ T cells, particularly CD4+ memory T cells, are crucial for the

immunotherapy-induced tumor regression (13).

Metabolic reprogramming, a frequent term for a collection of

aberrant metabolism pathways seen in cancer cells with a high

level of proliferation, stands as a sign of malignancy (14, 15). The

interaction of metabolic reprogramming with TME and its role in

GC have received increasing attention in recent years (16, 17).

Reprogrammed energy metabolism, on the one hand, affects the

course of GC and helps to create an immunological milieu that

promotes tumors (18). On the other hand, aberrant signaling

pathways or trophic competition in TME may result in

phenotypic reprogramming of metabolic and functional

changes in tumor-infi l trating immune cells , and then

compromise the therapeut i c e ff ec t iveness o f cancer

immunotherapy (19).
02
Metabolism is critical for the differentiation and effector

functions of T cells, but aerobic glycolysis in cancer cells limits

glucose consumption of T cells, thereby inhibiting their functions

(20). Simultaneously, cellular metabolism (particularly lipid

metabolism) is responsible for the development, survival, and

effector activities of T cells, which also improves tumor

immunotherapy (16, 21). It may become more important to

explore how the TME of GC can be altered from the perspective

of metabolic reprogramming to find new therapeutic targets as well

as mechanisms of action, and subsequently identify new immune

checkpoint modulators.

This research used bioinformatics models to assess CD4+

memory T cells in GC patients and investigated the connection

between metabolic reprogramming and the activated CD4+

memory T cells ratio (AR). The study also delved into the roles

and potential functions of the risk model developed from

metabolism-related genes in GC and pan-cancer. Furthermore, we

also explored the effect of retinoic acid metabolism pathway (one of

the significant metabolism pathways) on the transition of AR in GC

patients. The results will contribute to the development of precise

therapeutic strategies for patients with GC.
Materials and methods

Datasets and case sources

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) was used to retrieve RNA sequence,

mutation, copy number variations (CNV), and clinical data. The

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/) database’s public microarray dataset and related clinical

information for GC patients were located and downloaded. Age,

gender, pathological TNM stage, and survival statistics were all

included in the clinical data. Three GEO datasets (GSE84437,

GSE57303 and GSE62254) and the TCGA-STAD dataset were

selected and merged into one cohort for further analysis. As

external validation, another GEO dataset (GSE15459) was used. The

collection matrix documents and records tables for the microarray

platform can be downloaded from the GEO website. Data have been

preprocessed to exclude samples without complete clinical data.
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https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2023.1275461
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1275461
Estimation of immune cell type scores

The TCGA and GEO datasets were derived from multiple

studies spanning different cell lines and platforms, with batch

effects and noise. Therefore, the four datasets were co-normalized

into one cohort using combat normalization in the “sva “R package.

To measure the extent of immune cells in GC patients, we

transferred standardized quality articulation information with

standard comments to the CIBERSORT entry (https://

cibersort.stanford.edu/). In the subsequent Kaplan-Meier (K-M)

analysis, only samples with total CD4+ memory T cells (resting

CD4+ memory T cells plus activated CD4+ memory T cells) > 0

were included. AR was defined as the activated CD4+ memory T

cells ratio, with the formula: activated CD4+ memory T cells/total

CD4+ memory T cells *100%.
Identification of metabolism pathways
affecting AR and construction of the
predictive model

The 114 metabolism pathways and metabolism-related genes

associated with these pathways were collected from the previous

literature (22). We calculated the enrichment scores of metabolism

gene sets by single-sample gene set enrichment analysis (ssGSEA)

with the R package “GSVA” (23). By Cox regression and Pearson

correlation test, pathways significantly correlated with resting CD4+

memory T cells, activated CD4+ memory T cells, AR, and

prognostic correlation (P < 0.05) were screened. A venn diagram

was used for determining prognostic and AR related intersection

pathways. The AR-related metabolism gene (ARMG) prediction

model was constructed by further downscaling the relevant genes

through LASSO-Cox regression, and we generated ARMG risk

score using the following algorithm: ARMG risk score = S Cox

coefficient of gene Xi × scale expression value of gene Xi. Cytoscape

was used to established protein-protein interaction (PPI) networks

among ARMGs.
Predictive validity of the ARMG model

Excluding cases with incomplete clinical data, the predictive

validity of the ARMG risk score was validated in the training cohort.

K-M curves were applied to compare overall survival (OS)

differences according to the risk score, and PCA were used to

verify group clarity. Besides, ROC curves compared ARMG risk

score with AUC values for clinical variables. In all cohorts, we

conducted univariate Cox regression (uniCox) and multivariate

Cox regression (multiCox) analysis to ascertain if the ARMG risk

score was an independent prognostic predictor. Then, based on

numerous clinical characteristics, we conducted a classification

study to determine whether the ARMG risk score maintained its

capacity to predict outcomes across various subgroups. Specifically

about OS at 1, 3, and 5 years, the nomogram was created to offer

valuable clinical forecasts for GC patients, including the ARMG risk
Frontiers in Immunology 03
score and other clinicopathological traits. The established clinical

dependability was then validated using a decision curve analysis

(DCA). Additionally, we externally validated the OS in GSE15459.
Immunotherapy and chemotherapy
sensitivity prediction

The IMvigor210CoreBiologies package in the R program

contains immunotherapy cohort data for urothelial bladder cancer

(BLCA) is retrieved from the IMvigor210 database (http://research-

pub.gene.com/IMvigor210Core Biologies/packageVersions/) (24),

and was used to predict immunotherapy sensitivity for validation

of ARMG risk score subgroups. Additionally, immunophenotype

scores (IPS) (25) and tumor immune dysfunction and exclusion

(TIDE) (26) were evaluated in GC patients to predict immunotherapy

response. The half-maximal inhibitory concentration (IC50) from

Cancer Genome Project (CGP) was calculated by the R package

“pRRophetic” to assess response to chemotherapeutic agents. The

sensitivity of chemotherapeutic agents among different risk groups

was also analyzed in the Cellminer database (https://

discover.nci.nih.gov/cellminer/home.do).
Multi-omics analysis and functional
analysis of ARMG risk score

The “maftools” package was used to construct the mutation

annotation format (MAF) to compare the mutational profile of GC

patients among various risk groups. The ARMG risk score, tumor

mutation burden (TMB) scores, and the differences in OS between

different subgroups were examined. In addition, the level of

immune cell infiltration and immune checkpoints (ICP) in

different subgroups were compared. We examined the correlation

among ARMG model and cancer stem cell (CSC) scores, TME, N6-

methyladenosine (m6A) related-, and cuproptosis related-genes.

The enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways in both groups were

evaluated with the ‘clusterProfiler’, ‘org.Hs.eg.db’, ‘enrichplot’

packages. The enriched biosynthetic pathways and processes with

P < 0.05 and FDR q < 0.05 were considered statistically significant.
Pan-cancer analysis of ARMG risk score

The pan-cancer study was performed based on the UCSC Xena

(https://xena.ucsc.edu/) database’s genomic information for 33

different cancer types, including single nucleotide variation (SNV)

and CNV data together with associated clinical information. We

investigated the expression distribution of the prediction model in

each cancer type. K-M curves were used to validate the predictive

validity of the model in each cancer type in terms of OS, DFS, and

PFS, and the correlation with clinical parameters. In addition, we

validated the correlation of ARMG risk score with TMB, MSI,

neoantigens, and immune microenvironment from a pan-cancer

multi-omics perspective.
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Ethics statement and sample sources

Patients provided written informed consent for this study,

which was authorized by ethics review committee in The First

Affiliated Hospital of Nanjing Medical University (Ethics Approval

No. 2022-SRFA-086). Six peripheral blood samples were collected

from GC patients with advanced stages before initial treatment.

These six patients were excluded from autoimmune system diseases

and had no history of surgery, chemotherapy, radiotherapy or

immunotherapy. Similarly, peripheral blood was collected as a

control group from six healthy individuals who underwent a well-

established routine examination to exclude malignancies, immune

system and metabolic disorders. Peripheral venous blood drawn

with EDTA anticoagulation before treatment was subjected to

isolate mononuclear cells (PBMC), using the Ficoll-Hypaque

gradient centrifugation method.
Flow cytometry analysis

The cell suspensions were co-cultured with all-trans retinoic acid

(ATRA, 10nM) or NC for 72 hours. Both groups were treated with the

following particular antibodies for 30 minutes at room temperature:

FITC anti-human CD3 (catalog no. 300305, Biolegend, USA), APC

anti-human CD45RA (catalog no. 304111, Biolegend, USA), PE anti-

human HLA-DR (catalog no. 307605, Biolegend, USA), PerCP/

Cyanine5.5 anti-human CD4 (catalog no. 300529, Biolegend, USA).

All samples were analyzed using a BD Biosciences Influx cell sorter.

We counted CD3+CD4+CD45RA-HLA-DR+ cells to estimate levels of

activated memory CD4+ T cells, and subtracted these values from total

memory CD4+ T cells (CD3+CD4+CD45RA-) to quantify resting

memory CD4+ T cells (27).
Statistical analysis

The data are processed, analyzed, and presented using R

language (version 4.1.2) and its pertinent packages. A two-sided

P < 0.05 was considered significant. The mean and standard

deviation (SD) are used to express all flow cytometry data. One-

way analysis of variance (ANOVA) was used for the statistical

analysis, and GraphPad Prism was used to process and analyze the

data (version GraphPad Prism 9).
Results

Prognostic significance of CD4+ memory
T cells in GC

The main workflow of this study is shown in Figure 1. Using the

CIBERSORT algorithm, this study evaluated the infiltration levels

of 22 immune cell types in GC samples and assessed their

prognostic significance using the univariate Cox regression

analysis (Figure 2A). Meanwhile, we found that resting CD4+
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memory T cells and activated CD4+ memory T cells had opposite

effects on OS. Specifically, lower levels of resting CD4+ memory T

cells and higher levels of activated CD4+ memory T cells were

associated with better prognosis (P < 0.05, Figure 2A). Therefore,

we speculated that resting and activated CD4+ memory T cells were

negatively correlated. The Pearson correlation curve (Figure 2B)

validated the hypothesis, suggesting the possible transition of CD4+

memory T cells between the two states. Therefore, we further

examined how AR affected prognosis. The result demonstrated

that AR was significantly correlated with OS (P < 0.001, Figure 2C),

and higher AR indicated better prognosis.
Construction of ARMG risk model

To investigate the metabolism pathways involved in transition

of resting and activated CD4+ memory T cells, we examined the

correlation between CD4+ memory T cells and 114 metabolism

pathways. A total of 49 metabolism pathways were simultaneously

correlated with CD4+ memory T cells and AR, of which 14 were

positively and 35 were negatively correlated with AR (Figure 3A).

On the other hand, Cox regression analysis screened 50 metabolism

pathways significantly associated with OS of GC (Figure 3B), of

which 43 were associated with favorable outcomes and 7 with

unfavorable OS. To study the metabolism pathways associated

with both AR and prognosis, we intersected the four conditions

that were positively or negatively associated with AR and prognosis.

The Venn diagram showed that there were 12 pathways positively

associated with both AR and favorable prognosis, and 3 pathways

including retinoic acid metabolism pathway were negatively

associated with AR and exhibited poor prognosis (Figure 3C).

Correlation analysis between AR and 303 genes derived from

the 15 pathways was additionally performed to identify AR-related

metabolism genes. A total of 216 ARMGs were subjected to lasso

regression analysis to screen genes for construction of ARMG risk

model. And 43 genes with 18 risk factors and 25 protective

molecules were finally identified (Figures 3D–F). All the 43

ARMGs had significant interactions with at least one other gene

(Figure 3G). A PPI network diagram of their interactions was

presented in Figure 3H. In addition, these 43 genes had

significant expression differences between normal and tumor

samples in the TCGA-STAD dataset (Figure S1A) and showed

varying levels of CNV gain and loss (Figure S1B). The chromosomal

loci and the tumor mutation load of these genes were shown in

Figures S1C, D.
Validation of the predictive power of
ARMG risk model

To verify the predictive validity and associated characteristics of

the ARMG risk model, we calculated the ARMG risk score

according to the formula and divided GC patients into high- and

low-risk groups in the training cohort. The results showed that

patients with high risk scores had significantly worse OS than those

with low risk scores (P<0.001, Figure 4A), with a significantly
frontiersin.org
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increased risk of death (Figures 4B–D). Using PCA analysis, we

observed a distinct clustering of patients based on their risk scores

(Figure 4E). In addition, ROC curves showed (Figure 4F) that the

risk score might be superior to other clinical characteristics (Age,

gender and stage) to predict clinical outcomes (AUC=0. 704), which

was also verified by the DCA curve (Figure 4G). The risk scores also

differed in patients with different clinical characteristics, with

younger and advanced stage patients exhibited higher risk scores

(Figure S2A, C). For clinical application, we set up a nomogram by

combining risk score with age, gender, and stage (Figure 4H) to

assess 1-, 3-, and 5-year survival for individual patients. The risk

score was proved to be an independent prognostic factor

(Figures 4I, J). Besides, the sankey diagram demonstrated the

correlation between activated CD4+ memory T cells, resting CD4+

memory T cells, AR and risk score with clinical characteristics and

outcomes. It showed that GC patients with lower AR levels tended

to be classified in the high-risk group with advanced stage and high

risk of death (Figure 4K).

The association of the ARMG risk score and survival outcomes

was further supported with the external cohorts (GSE15459 and

IMvigor210). Each patient’s risk score was calculated according to the

same formula. Based on the optimum cut-off values, patients were

separated into high- and low-risk groups. In both cohorts, K-M
Frontiers in Immunology 05
survival curves revealed a significant OS difference across the two

groups. Results indicated that the high-risk group experienced

significantly worse outcomes than the low-risk group (Figures 4L,

M). The IMvigor210 cohort also revealed that the high-risk group

exhibited a relatively higher proportion of non-responders to

immunotherapy compared to the low-risk group (Figure 4N).

While the risk scores in immunotherapy-responsive patients were

lower than non-responders with borderline significance (Figure 4O).

These findings collectively suggested that risk scores computed

through the risk model containing 43 genes hold a strong

prognostic value and effectively stratified GC patients into high-

and low-risk groups. Compared to other clinical features, this model

also exhibited more reliable predictive validity in terms of

monitoring patients ’ survival and guiding subsequent

treatment decisions.
Predicting response to immunotherapy and
chemotherapy with the ARMG risk model

To fully clarify the differences between the immunotherapy

responses of patients in different risk groups, we investigated the

distinctions of TIDE and IPS score between the high- and low-risk
FIGURE 1

The workflow of the study.
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groups. The TIDE score (Figure 5A) and the immune dysfunction

score (Figure 5B) were at critical values between the high- and low-

risk groups. But to the immune exclusion score, there was

significant difference between the two groups (Figure 5C). In all

these scores above, the high-risk group scored higher than the low-

risk group. The non-responders to immunotherapy had higher

ARMG risk scores than responders, which was consistent with

the result predicted from IMvigor210 cohort (Figure 5D). It could

be seen through the IPS score that there was a difference between

the high- and low-risk groups in response to immune checkpoint

therapy in PD-1 positive patients, regardless of CTLA4 negative or

positive (Figures 5E–H). Similarly, the high-risk group had higher

IPS scores. This reflected that the risk score model could predict not

only the prognosis of GC patients, but also their immune response

and guide the choice of regimen for immune checkpoint therapy.

Similarly, we also applied CGP and Cellminer databases to

predict chemotherapy sensitivity between different risk groups.

Axitinib, imatinib, and lapatinib had significantly higher IC50

values in the low-risk group (Figures 5I–K), while cisplatin and

docetaxel did not differ significantly (Figures 5L, M). Camptothecin,

doxorubicin, paclitaxel had significantly higher IC50 values in the

high-risk group (Figures 5N–P). And the analysis of risk-

chemotherapy drug correlation in the Cellminer database revealed

that the effects of most chemotherapeutic drugs were negatively
Frontiers in Immunology 06
correlated with risk scores, while zoledronate and Irofulven were

positively correlated with risk scores (Figure S3).
Genomic, immune and functional
landscape of GC patients with different
ARMG risk scores

Comparing the frequency of mutations in the high- and low-

risk groups, we found that the low-risk group had a higher

frequency of mutations for the majority of genes than the high-

risk group did (Figure 6A). In addition, TMB differed significantly

between the high- and low-risk groups, with the low-risk group

owning a significantly higher TMB than the high-risk group

(Figure 6B). The spearman correlation test also revealed a

significantly negative correlation between TMB and risk scores

(Figure 6C). We further investigated the possible differences in

survival between patients with high and low TMB. OS considerably

outperformed low TMB group in the high TMB group (Figure 6D).

Combining TMB and risk score analysis (Figure 6E) revealed that

patients with high TMB and low risk scores had the best OS while

those with low TMB and high risk scores had the worst OS.

The model also differed in their correlation with tumor

stemness, with no significant correlation with DNAss (Figure
B C

A

FIGURE 2

(A) Forest plot showing prognosis-related immune cells screened using the testing cohort and K-M curves showing prognostic differences in the
expression of two types of CD4+ memory T cells. (B) Resting CD4+ memory T cells are negatively correlated with the expression of activated CD4+

memory T cells. (C) The level of AR also showed significant differences in prognosis, with patients with high AR having better OS.
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S4A) but a significant negative correlation with RNAss (Figure

S4B). To investigate the variations in the immunological

microenvironment between various risk categories, we found that

stroma score and estimate score were both positively correlated with

the risk scores, while immune score negatively correlated with the

risk scores (Figures 6F–H). There was also a varying degree of

variation in risk scores between different tumor immune subtypes

(Figure S4C), as well as between different immune cells (Figure

S4D) and immune functions (Figure S4E). We also analyzed risk

scores and the 43 genes that comprise the model in relation to

immune checkpoints (Figure S4F), m6A-related genes (Figure S4G),

and cuproptosis-related genes (Figure S4H). These genes were

closely associated with all of the above genes to varying degrees.

We used seven algorithms to analyze immune cell infiltration

between high- and low-risk groups and found that levels of

activated CD4+ memory T cells were higher in the low-risk

group, while levels of resting CD4+ memory T cells was higher in

the high-risk group (Figure 6I). GO and KEGG analyses (Figures 6J,
Frontiers in Immunology 07
K) of the main enriched pathways and functions of the model

revealed that pathways were enriched in the WNT signaling

pathway, basal cell carcinoma and myocardial disease

signaling pathways.
Pan-cancer analysis of ARMG risk model

In order to assess the overall efficacy of the model in pan-cancer,

pan-cancer cohort from TCGA was enrolled and analyzed. The

levels of the model were firstly evaluated and found to be varied

across different cancer types (Figure 7A). The model’s prognostic

predictive ability was assessed for each cancer type using Cox

regression analysis, specifically for OS (Figure 7B), DFS

(Figure 7C), and PFS (Figure 7D). The risk model consistently

provided predictive viability for three clinical outcomes in ACC,

KICH, KIRC, KIRP, LGG, PAAD, STAD, and UCEC. Additionally,

K-M curve analysis of OS showed significant differences in 20 types
B

C

D

E

F G H

A

FIGURE 3

(A) Pearson correlation test screened 49 metabolism pathways associated with resting CD4+ memory T cells, activated CD4+ memory T cells and
AR. (B) Screening of 50 metabolism pathways with prognostic relevance using testing cohort. (C) Venn diagrams showed that 3 metabolism
pathways were negatively associated with AR and had a poor prognosis, and 12 metabolism pathways were positively associated with AR and had a
good prognosis. (D) The change curve of penalty term. (E) The path change chart of the regression coefficient. (F) 43 metabolism-related genes
were screened for use in constructing the model, and the forest plot shows the hazard ratio of the genes. (G) Correlations between 43 genes and
the metabolism pathways that interact with each other. (H) PPI network of the 43 genes in the model, the higher the number of connected nodes,
the deeper the color of the nodes.
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of cancers. Notably, the low-risk group had better OS compared to

the high-risk group in most types of cancers except for DLBC,

KICH, OV, and UCS (Figure S5).

Correlation analysis between clinical stages and risk score

revealed a positive relationship in BLCA, BRCA, KIRP, SKCM,

TGCT, and THCA (Figure 7E). Treatment response analysis

(Figure 7F) demonstrated the predictive validity of risk score in
Frontiers in Immunology 08
ACC, KICH, KIRP, PAAD, and PRAD. In these cancers, higher risk

scores were associated with poorer treatment response (PD+SD)

compared to the group with an objective response (PR+CR).

Additionally, ARMG risk scores varied depending on the patient’s

gender and age in some cancer types (Figures S6A, B).

In addition, we analyzed the correlation of the model with TMB

(Figure 8A), MSI (Figure 8B), and neoantigens (Figure 8C) in pan-
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FIGURE 4

(A) Kaplan-Meier plots of overall survival between high- and low-risk groups in the testing group by the log-rank test. (B–D) The distribution of risk
scores, the survival status of patients, and the expression level in screening single gene. (E) PCA plot of the risk scores. (F) ROC curve analysis of the
independent prognostic factors. (G) DCA of the risk score. (H) Nomogram of GC patient OS combining the risk score and the clinicopathological
variables. (I, J) Independent prognostic analysis of the model showed that risk score was an independent predictor. (J) Sankey diagram showing
correlation of two CD4T cells, AR, risk score, clinical grade, and prognosis. (K) Risk scores were validated in the external dataset GSE15459, and low-
risk OS was better than high-risk patients. (L) Risk scores were validated in the IMvigore210 database, and low-risk OS was better than high-risk
patients. (M) Percentage of predicted immunotherapy responses within different risk groups in the IMvigore210 database. (N, O) Differences in risk
scores between patients who respond and those who do not respond to immunotherapy.
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cancer. Risk score showed the strongest negative correlation with

TMB, MSI and neoantigens in UCEC, the strongest positive

correlation with TMB in KIRC, with MSI-H in DLBC, and with

neoantigens in THCA. Meanwhile, in STAD, both TMB and MSI-H

showed significant negative correlation with risk score.

We further investigated the correlation between risk score and

immune cell infiltration of each cancer type. In BRCA, KIRC, KIRP,

and STAD, both resting and activated CD4+ memory T cells were

significantly associated with risk scores. Consistent with our

previous inferences, risk scores in STAD were positively

correlated with resting CD4+ memory T cells, and negatively

correlated with AR and activated CD4+ memory T cells. What’s

interesting is that in KIRP, this phenomenon is exactly the opposite

of that in STAD (Figure 8D).
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The correlation between the risk score and metabolism

pathways showed that retinoic acid metabolism is positively

correlated with the model in most cancer types (Figure 8E).

Therefore, we chose this pathway for experimental validation.

Furthermore, we analyzed the correlation between the model and

14 cell death patterns (Figure 8F). We found that risk score was

significantly associated with different types of cell death in multiple

cancer types, demonstrating that risk score can influence tumor

prognosis by regulating cell death. Notably, in STAD, the risk score

was inversely associated with most types of cell death. The ARMG

risk score showed significantly posit ive relation with

immunoinhibitors TGFB1 and VTCN1, and was negatively

related with immunostimulators CD27, CD28, CD40LG, CD80,

ENTPD1 and ICOS in pan-cancer (Figure 8G). Correlational
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FIGURE 5

(A) Differences in TIDE scores between high- and low-risk groups. (B) Differences in immune dysfunction scores between high- and low-risk groups.
(C) Differences in immune function rejection scores between high- and low-risk groups. (D) Differences in risk scores between immunotherapy
responders and non-responders. (E–H) Difference in IPS score between high and low risk groups. (I–P) Differences between IC50 of chemotherapy
drugs between high and low risk groups.
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analysis with hallmark pathways revealed a positive association

between the risk score and pro-tumorigenic pathways that promote

cancer development and progression, including angiogenesis,

epithelial-mesenchymal transition, glycolysis, and hypoxia

pathways, as depicted in Figure 8H.
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Effect of all-trans retinoic acid on the
transition of CD4+ memory T cells

Given the pervasively positive correlation with risk scores across

different cancer types, we elected to investigate the effect of the
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FIGURE 6

(A) Waterfall plot showing the TMB landscape for high- and low-risk groups. (B) TMB differences between high and low risk groups. (C) Risk score is
negatively correlated with TMB. (D) OS differences between high- and low-TMB groups. (E) OS differences between the four groups (high-TMB
+low-risk, high-TMB+high-risk, low-TMB+low-risk, and low-TMB+high-risk). (F) Risk scores were positively correlated with stroma scores. (G) Risk
scores were negatively correlated with immune scores. (H) Risk scores were positively correlated with estimate scores. (I) Immune cell infiltration
was calculated between high- and low-risk groups by seven algorithms. (J) KEGG analysis of the ARMG model. (K) GO analysis of the ARMG model.
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retinoic acid metabolism pathway on transition of CD4+ memory T

cells. After addition of ATRA to enhance retinoic acid metabolism,

there was no statistical difference in the number of resting CD4+

memory T cells compared to those in NC group of GC patients. But

an upward trend of resting CD4+ memory T cells could be assessed

in five cases. On the other hand, both activated CD4+ memory T

cells and AR were significantly inhibited in the presence of ATRA.

This indicated that the conversion of resting CD4+ memory T cells

to activated CD4+ memory T cells was significantly suppressed after

retinoic acid metabolism pathway enhancement, thus leading to a

decreased AR in GC (Figure 9A). However, in contrast to the GC

patients, in the healthy individuals cohort, both resting and

activated CD4+ memory T cells increased after the addition of

ATRA, and the percentage of increase was dominated by the
Frontiers in Immunology 11
activated CD4 memory T cells, which led to an increase in

AR (Figure 9B).
Discussion

GC is a fatal disease with high heterogeneity in molecule and

phenotype, and it has a very special tumor microenvironment,

which is highly appropriate to promote tumor progression and

metastasis (28, 29). Consequently, there is an imperative need to

develop novel strategies to improve the survival rate of GC patients

(30). Immunotherapy has emerged as a promising approach for

various cancers, including GC (31). However, as our understanding

of GC immunogenomics deepens, we have gained insights into the
B
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A

FIGURE 7

(A) Expression of the ARMG model in pan-cancer. (B) Hazard ratio of the ARMG model for OS in pan-cancer. (C) Hazard ratio of the ARMG model
for DFS in pan-cancer. (D) Hazard ratio of the ARMG model for PFS in pan-cancer. (E) Differences in risk scores between clinical grades in pan-
cancer. (F) Differences in risk scores between treatment outcomes in pan-cancer. *p<0.05, **p<0.01, ***p<0.001.
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extensive heterogeneity of this disease. This highlights the necessity

for effective tools to identify new predictive biomarkers and enable

personalized therapy (32). Distribution of immune cell

subpopulations has been shown to predict tumor behavior (33),

as well as to influence treatment response (34). Therefore, we hope

to find predictive biomarkers by studying the characteristics of

immune cell infiltration in GC.

In the current study, we investigated the correlation between

immune infiltration and prognosis of GC patients using gene

expression profiles from the TCGA and GEO databases. We

discovered that prognosis was significantly associated with

activated CD4+ memory T cells: more infiltration of activated

CD4+ memory T cells predicted better prognosis. In contrast,

resting CD4+ memory T cells infiltration had the opposite

prognostic effect, and the levels of these two cell types exhibited a

negative correlation. This suggested the potential interconversion

between resting and activated CD4+ memory T cells. The

promotion of this conversion, leading to an increased AR, was
Frontiers in Immunology 12
linked to improved patient outcomes. The similar results could be

found in the previous study which demonstrated that high

abundance of CD4+ memory T cells was associated with better

survival in GC patients (35).

CD4+ memory T cells are a subset of antigen-specific CD4+ T

cells that persist after the primary T cells response’s expansion,

constriction, and memory phases (36–38). It has emerged as a

prognostic factor in various cancers, including kidney cancer (39),

lung cancer (40), pancreatic cancer (41) and breast cancer (42, 43).

Heightened memory after secondary antigen stimulation, CD4+ T

cells multiply and develop into specialized CD4+ T cells subsets that

are specific to pathogens (44, 45). For example, infiltration of

activated CD4+ memory T cells was noticeably higher in

colorectal cancer tissues compared to normal tissues (46). As one

of hallmarks of cancer, metabolic reprogramming plays a crucial

role in supporting the sustained growth of long-lived memory T

cells after immune response stimulation (47). Glucose metabolism

was reported to facilitate the proliferation, differentiation and
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FIGURE 8

(A) Distribution of correlation coefficients between risk scores and TMB in pan-cancer. (B) Distribution of correlation coefficients between risk
scores and MSI in pan-cancer. (C) Distribution of correlation coefficients between risk scores and neoantigen in pan-cancer. (D) Distribution of the
correlation between immune cells, AR and risk scores in pan-cancer. (E) Distribution of 15 metabolism pathways correlated with risk scores in pan-
cancer. (F) Distribution of 14 cell death-related pathways correlated with risk scores in pan-cancer. (G) Distribution of correlation between risk
scores and immune checkpoints in pan-cancer. (H) Distribution of correlation between risk scores and cancer-related pathways in pan-cancer.
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function of activated T cells (48). Additionally, the activation and

maintenance of homeostasis of CD4+ memory T cells are also

dependent on glucose uptake and glycolysis (49). The involvement

of glucose metabolism are also critical for the production of CD4+

memory T cells (50). Given these insights, we assumed that

metabolic reprogramming might influence the prognosis of GC

patients by affecting the transition of different states of CD4+

memory T cells.

We then screened 15 metabolism pathways (including the

retinoic acid metabolism pathway) that were associated with both

AR and prognosis to establish an ARMG risk model. We further

validated the model and demonstrated that the model was

independent, stable, and plausible for prognosis prediction of GC.

This inference was also confirmed in the external dataset. Moreover,
Frontiers in Immunology 13
the model provided a means to predict the response to

immunotherapy and the sensitivity to chemotherapeutic agents in

GC patients, facilitating the screening of chemotherapeutic agents

and determining the need for immunotherapy, which is widely used

in clinical applications.

The TMB landscape of patients with different risk scores can be

used for a more thoroughly clinical risk stratification of patients.

Existing research has consistently shown that patients with higher

TMB tend to have a more favorable prognosis (51). Our findings

align with previous research, revealing that the low-risk group,

characterized by lower ARMG risk scores, exhibited higher TMB.

Within this low-risk group, we observed higher mutation rates in

MUC16 and TTN compared to the high-risk group. Previous

reports indicated that MUC16 and TTN mutations could predict
B

A

FIGURE 9

Flow cytometry for detecting the number and proportion of CD4+ memory T cells and AR in peripheral blood of GC patients (n=6) with advanced
stages (A) and healthy individuals [n=6; (B)] after co-culture with ATRA.
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high TMB level and were correlated with favorable prognosis in

pan-cancer, including GC. Meanwhile, TTN mutation was

associated with better response to immune checkpoint blockage

in solid tumors (52, 53). Collectively, these findings provide insights

into the improved prognosis observed in GC patients with low risk

scores, shedding light on the potential role of TMB and specific gene

mutations in patient outcomes.

Our model also owned good predictive validity in pan-cancer.

However, it’s noteworthy that in a few cancer types, high risk scores

were unexpectedly associated with better prognosis. This intriguing

observation can be attributed to the inherent heterogeneity among

different tumor types, each characterized by unique immune

microenvironments and mechanisms of action. We therefore

explored the different degrees of correlation between risk scores

and the presence of immune cells in pan-cancer. And the 15

metabolism pathways we screened were correlated inextricably

with risk scores in pan-cancer. Among them, the retinoic acid

metabolism pathway was positively correlated with the model

indicating that the role between this pathway and the model is

consistent and stable in most cancer types. This also predicted that

enhanced metabolism of retinoic acid could lead to reduced AR.

Thus, to verify the role of retinoic acid metabolism pathway on AR,

we conducted in vitro experiments using flow cytometry to detect

different states of CD4+ memory T cells in presence of ATRA. The

results were consistent with our hypothesis, as addiction of ATRA

led to a decrease in both activated CD4+ memory T cells and AR. In

the healthy individuals cohort, the addition of ATRA caused the AR

to show the opposite trend, which may be due to the difference

between the immune microenvironment in normal subjects and

that in GC patients, which precisely indicateed that our prediction

model presented specificity in GC patients. As to why this

phenomenon is presented in the healthy individuals cohort and

how it behaves in other cancer types, further studies are still needed.

Vitamin-like A is a retinol derivative that is necessary for

epithelial differentiation and healthy embryonic development

(54). ATRA, a biologically active metabolite of vitamin-like A, has

shown significant promise in various malignancies, including

epithelial carcinoma, precancerous lesions, and acute

promyelocytic leukemia (APL) (55). The compound has been

used in chemoprevention and differentiation therapy for several

cancers, and has shown good efficacy in combination with

pembrolizumab for metastatic melanoma (56). However, in GC,

from the perspective of immune modulation, ATRA was shown to

reduce the capacity of T cells to kill cancer cells by upregulating the

expression of PD-L1, reducing the anticancer effects of PD-L1

antibodies, and reducing T cells activation in vivo (57), which is

different from the effects of ATRA reported in other types of cancer

(58). In our study, we further demonstrated that the retinoic acid

metabolism pathway was negatively correlated with AR and that

enrichment of the pathway leaded to downregulation of AR, which

in turn might cause malignant progression of GC as well as poor

prognosis. Though the mechanism of AR inhibition by ATRA is not

yet clear, we could reasonably infer that inhibition of the retinoic
Frontiers in Immunology 14
acid metabolism pathway could effectively improve the prognosis of

patients with advanced GC. Future research will likely focus on the

development of retinoic acid inhibitors as potential therapeutic

agents in GC. In addition, the use of ATRA in combination with

chemotherapeutic agents or immune checkpoint inhibitors for the

treatment of malignant tumors has been clinically tested in many

cancer types, but the applicability of this study to GC patients may

also provide a reference.

It was known that cells maintain their physiological

homeostasis in a normal or stress-challenged (injury or infection,

etc.) state through different cell death pathways. Both programmed

and non-programmed cell death are involved in this process,

suppressing or promoting tumors, partly depending on changes

in the TME (59). Our study found that the model was richly

associated with cell death pathways in most cancer species. In

GC, most types of cell death were negatively correlated with the risk

score. This demonstrated that increased AR could act as a cancer

suppressor and improve prognosis by activating cell death, which

might be focus for future research. In addition, the different

associations between immune checkpoints and risk scores

contribute to the different predictive effects of AR on prognosis in

pan-cancer. Immune cells, immune checkpoints and metabolism

pathways interact with each other through different pathways to

have a comprehensive effect on cancer, resulting in different

prognostic effects.

However, there are still some limitations in this study. Firstly,

our analysis data came from public databases and lacked detailed

treatment information. Secondly, multiple metabolism pathways

were involved in the model, among which only retinoic acid

metabolism pathway was validated with clinical samples. Further

validation of other metabolism pathways and their roles in other

types of cancer should be conducted in the future. Finally, the

sample size of the experiment is small, and we will consider

increasing the sample size and apply more experimental methods

for further validation.
Conclusions

We performed an in-depth bioinformatics analysis of the role of

CD4+ memory T cells in GC and the mechanisms by which

metabolic reprogramming affects the states of CD4+ memory T

cells. Metabolism pathways associated with AR were screened after

integrating prognostic information, and a predictive model was

constructed using these associated genes. The ARMG risk model

could consistently and independently predict prognosis in GC

patients, with better prognosis in the low-risk group. The

prognostic value of the model was validated in an external

dataset. In addition, the retinoic acid metabolism pathway,

which is relevant in most types of cancer, was screened for

validation in the ensuing pan-cancer analysis, and these results

provided new insights into GC evolution and the development

of immunotherapy.
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