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Significance: This review discusses the coronavirus disease 2019 (COVID-19)

pathophysiology in the context of diabetes and intracellular reactions by

COVID-19, including mitochondrial oxidative stress storms, mitochondrial

ROS storms, and long COVID.

Recent advances: The long COVID is suffered in ~10% of the COVID-19

patients. Even the virus does not exist, the patients suffer the long COVID for

even over a year, This disease could be amitochondria dysregulation disease.

Critical issues: Patients who recover from COVID-19 can develop new or

persistent symptoms of multi-organ complications lasting weeks or months,

called long COVID. The underlying mechanisms involved in the long COVID

is still unclear. Once the symptoms of long COVID persist, they cause

significant damage, leading to numerous, persistent symptoms.
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Future directions: A comprehensive map of the stages and pathogenetic

mechanisms related to long COVID and effective drugs to treat and prevent it

are required, which will aid the development of future long COVID

treatments and symptom relief.
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1 Introduction

Coronavirus disease 2019 (COVID-19) was first reported in

Wuhan, China, in late December 2019. After the emergence of

SARS-CoV-2 infections in December 2019 (1), the detailed

symptoms were introduced in February 2020 by Huan et al. (2),

Chen et al. (3), and Chan et al. (4). Lu et al. (5) concluded that the

2019-nCoV was a new human-infecting beta-coronavirus,

sufficiently differing from SARS coronavirus (SARS-CoV). The

COVID-19 pandemic has spread in the whole world. Yang et al.

(6) compared the time course of the 2003 SARS pandemic and the

2020 novel coronavirus epidemic in China; the two diseases

followed a similar course of events, although the number of cases

was relatively limited in China during the 2003 SARS pandemic–the

pneumonia outbreak associated with a new coronavirus of probable

bat origin (7). SARS-CoV 2, Pangolin-CoV, SARS-CoV, Middle

East respiratory syndrome CoV, and Bat-CoV viruses evolve

quickly (8, 9). The first symptom reported for COVID-19 was

pneumonia (10). This represents COVID-19 infection started from

a respiratory tract infection that included fever, dizziness, and

cough (11). Several variants of COVID-19, namely Alpha, Beta,

Gamma (12), Delta (12–14), and Omicron (15, 16), have resulted in

subsequent outbreaks in many countries worldwide. Despite

improvements in the management of COVID-19, severe infection

cases and COVID-19-related fatalities still occur. Presumed

hospital-related transmission of COVID-19 was suspected in 41%

of patients, 26% of patients received ICU care, and mortality was

4.3% (17). In addition, there is substantial concern regarding a

complication known as long COVID-19.

Sudreres et al. (18) analyzed data from 4,182 COVID-19 cases

and reported that the number of long COVID-19 cases was 558

(13.3%) participants reporting symptoms lasting ≥28 days, 189

(4.5%) for ≥8 weeks, and 95 (2.3%) for ≥12 weeks. They also

reported that long COVID is characterized by symptoms of fatigue,

headache, dyspnea, and anosmia and is likely associated with factors

such as increasing age, increasing body mass index, and female sex

(18). Moreover, patients experiencing more than five symptoms

during the first week of illness were more likely to experience long

COVID (odds ratio = 3.53 [2.76–4.50]) (18). A recent report by the

Center for Disease Control and Prevention (CDC) National Center

for Health Statistics (19), announced that new data from the
02
Household Pulse Survey indicate that more than 40% of adults in

the United States reported having COVID-19 in the past. Nearly

one in five of those (19%) are currently still having symptoms of

long COVID. These findings highlight the importance of

investigating the cause of long COVID and developing

potential treatments.

In this review, we focus on long COVID, a pathophysiological

condition characterized by the recurrence of symptoms weeks or

months after traces of the COVID-19 virus disappear. Despite

abundant data on long COVID, its underlying causes and

effective treatments remain unknown. This review focuses on the

underlying cause of long COVID and its occurrence, providing

essential insights into understanding long COVID.
2 COVID-19 and diabetes mellitus

2.1 The influence of DM on COVID-
19 infection

Following the declaration of COVID-19 as a worldwide

pandemic, patients with COVID-19 and DM were more likely to

develop severe or critical disease conditions with more

complications. The results of the meta-analysis showed that DM

seemed to contribute to an increased mortality risk among

hospitalized patients with COVID-19 compared to those without

DM (Table 1, Supplementary Figure 1) (20–26). Hussain et al. (20)

reported a significantly higher risk of intensive care unit (ICU)

admission in patients with COVID-19 and DM compared to those

without DM, with a pooled risk ratio of 1.88 (1.20–2.93%), p <

0.006, as well a significantly higher mortality risk, with a pooled risk

ratio of 1.61 (95% confidence interval: 1.16−2.25%), p = 0.005.

Shang et al. (21) reported that these patients had higher and more

severe COVID-19 infection rates than those without DM, at 21.4%

and 10.6%, respectively (p < 0.01), and were associated with an

increased mortality risk (28.5 vs. 13.3%, respectively; p < 0.01; odds

ratio: 2.14). Based on the data in Table 1, an in silico analysis of the

overall meta-analysis results was performed. The forest plot of the

pooled case mortality ratio in patients with COVID-19 and DM is

shown in Supplementary Figure 1. Among a total of 4,450,522

patients with COVID-19, the average mortality ratio for patients
frontiersin.org
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with DM was 1.67 on average (Table 1) (20–26). Moreover,

hyperglycemia strongly predicts poor prognosis in patients with

COVID-19 (27). Paul et al. (28) discussed the effects of oxidative

stress management on alleviating COVID-19 symptoms in patients

with DM as a comorbidity. It is considered that both COVID-19

and DM are oxidative diseases, so the patients receive oxidative

stress synergistically.
2.2 DM and long COVID

Steenblock et al. (29) suggested the increased risk for people

with diabetes in the acute phase of COVID-19, and this patient

group seemed to be more often affected by long COVID and

experience more long-term consequences than people without

diabetes. However, the mechanisms behind these discrepancies

between people with and without diabetes concerning COVID-19

are not entirely understood yet (30). Furthermore, Xie et al. (31)

examined the risk of diabetes following COVID-19 infection and

described that In the post-acute phase of the disease (in long

COVID phase). Xie and Al-Aly compared with the contemporary

control group, people with COVID-19 exhibited an increased risk

of incident diabetes (31). Rizvi et al. (32) suggested that COVID-19

virus directly attacks the beta cells of islets by binding with ACE2.

The other factors of overactivated inflammation, such as elevation

in neutrophils, IL-6, and CRP, and imbalanced immunoreaction,

such as reduction in lymphocytes, monocytes, CD4+ and CD8+ T
Frontiers in Immunology 03
cells cause insulin insufficient synthesis and systemic insulin

resistance. These situations cause impaired glucose regulation and

new-onset diabetes (32). Bramante et al. (33) described that

outpatient treatment with metformin reduced long COVID

incidence by about 41%, with an absolute reduction of 4.1%,

compared with placebo. Overall, 93 (8.3%) of 1126 participants

reported receipt of a long COVID diagnosis by day 300. The

cumulative incidence of long COVID by day 300 was 6.3% (95%

CI 4·2-8·2) in participants who received metformin and 10.4% (7.8-

12.9) in those who received identical metformin placebo (hazard

ratio [HR] 0.59, 95% CI 0.39-0.89; p=0·012). Metformin has clinical

benefits when used as outpatient treatment for COVID-19 and is

globally available, low-cost, and safe.

V’kovski et al. (34) described an essential understanding of

SARS-CoV-2 infection throughout the intracellular viral life cycle.

Mitochondria could be involved in the intracellular viral life cycle.
3 Prognosis for severity of COVID-19

The prognosis of severe COVID-19 cases is essential. Rizzi et al.

(35) summarized the most promising biomarkers to predict the

severity of COVID-19. Those are IP10 (36), Gas6 (37–39), serum

SARS-CoV-2 nucleic acid (RNAaemia) (40), and Calcitonin Gene-

Related Peptide (CGRP) plasma levels (41). Chen et al. (40) described

that RNAaemia is closely related to IL-6. Therefore, IL-6 could also be

an essential factor in predicting the severity of COVID-19.
TABLE 1 Total numbers of patients, infection rate, infection rate (DM), infection rate (COVID-19), intensive care unit (ICU) admission rate, case
mortality ratio (DM vs. others) of patients with COVID-19 and diabetes mellitus (DM) in seven aricles (20–26) and the average 1.67.

Total no.
of patients

Infection
rate (DM)

Infection rate
(COVID-19)

ICU admission
rate ratio (DM
vs. Others)

Case mortality ratio (MR;DM vs.
others)
95% confidence interval (CI)

Reference

23,007 patients
15% (95% CI:
12−18%), p
< 0.0001

1.88 (1.20−2.93), p
= 0.006

Ratio: 1.61
(95% CI: 1.16−2.25), p = 0.005

Hussain et al.,
2020 (20)

31,067 patients
DM 21.4%, Non-
DM 10.6% (p
< 0.01)

Ratio: 2.21
(95% CI: 1.83−2.66, I2 50%), p < 0.01
(28.5% vs. 13.3%), P < 0.01

Shang et al.,
2020 (21)

45,775 hospitalized
COVID-19 patients

20% (95% CI:
15.0–25.0; I2
= 99.3%)

Ratio: 1.82 (95% CI: 1.25−2.39), DM 20.0% (95%
CI: 15.0–26.0; I2 96.8%), Non-DM 11.0% (95% CI:
6.0–16.0; I2 99.3%)

Saha et al.,
2021 (22)

18,506 patients 20% Ratio: 1.65 (95% CI 1.35−1.96; I2 77.4%), p < 0.001
Palaiodimos
et al.,
2021 (23)

35,486 patients 17[15;19]%
5867 deaths (16.53%),
Ratio: 1.85 (95% CI: 1.36−2.51) p < 0.01

Corona et al.,
2021 (24)

25,934 patients
16.9% (n
= 4381)

Ratio: 1.83 (95% CI: 1.61 - 2.05), (DM vs. Non-
DM: 22.14% vs. 12.81%) p < 0.05

Gupta et al.,
2021 (25)

4,270,747 COVID-19
patients and
43,203,759 controls.

Ratio: (risk ratio, 1.66; 95% CI 1.38; 2.00) p
< 0.0001

Ssentonga
et al.,
2022 (26)

Total
4,450,522 patients

Average of DM
patients with
COVID-19: 18.9%

Average ratio of mortality ratio for DM
patients: 1.67
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4 COVID-19 virus influences
mitochondria of the infected patient

Jackson et al. explained the mechanisms of SARS-CoV-2 entry

into host cells; the binding of the spike (S) protein to its receptor,

angiotensin-converting enzyme 2 (ACE2), and subsequent

membrane fusion (42). It is shown that an association with

COVID-19 causes redox imbalance or oxidative stress (43, 44).

Viral infections alter mitochondrial dynamics at various levels and

impact mitochondrial functioning (45). Upon SARS-CoV-2 entry,

the RNA genome is released, and translated, and the resulting

structural and non-structural proteins interact with mitochondrial

components. Then, SARS-CoV-2 escape from mitochondria-

mediated innate immune response and establish its infection (46).

SARS-CoV-2 may manipulate mitochondrial function indirectly,

first by ACE2 regulation of mitochondrial function, and once it

enters the host cell, open-reading frames (ORFs) such as ORF-9b

can directly manipulate mitochondrial function to evade host cell

immunity and facilitate virus replication and COVID-19 disease.

Manipulation of host mitochondria by viral ORFs can release

mitochondrial DNA (mtDNA) in the cytoplasm, activate

mtDNA-induced inflammasome, and suppress innate and

adaptive immunity (47). The viruses may induce mtDNA

degradation, alter mitochondrial metabolic pathways, impact

mitochondria l membrane potent ia l , and modi fy the

mitochondrial intracellular number and distribution, thereby

influencing apoptosis, mitochondrial homeostasis, or evade

mitochondrial antiviral signals (48–50). Ajaz et al. investigated

functional mitochondrial changes in live peripheral blood

mononuclear cells (PBMCs) from patients with COVID-19 and

subsequent changes in the inflammatory pathways. They

demonstrated mitochondrial dysfunction, metabolic alterations

with an increase in glycolysis, and high levels of mitokine in

PBMCs from patients with COVID-19. They found that levels of

fibroblast growth factor 21 mitokine correlate with COVID-19

disease severity and mortality (51)..

Mitochondria appear to be important in COVID-19

pathogenesis because of its role in innate antiviral immunity, as

well as inflammation (52). Mitochondrial antiviral signaling protein

(MAVS) is an innate immune adaptor on the outer mitochondrial

membrane that acts as a switch in the immune signal transduction

response to viral infections. Increased aerobic glycolysis provides

material and energy for viral replication upon viral infection. MAVS

is the only protein specified downstream of retinoic acid-inducible

gene I (RIG-I) that bridges the gap between antiviral immunity and

glycolysis. MAVS binding to RIG-I inhibits MAVS binding to

Hexokinase (HK2), thereby impairing glycolysis (53). In contrast,

excess lactate production inhibits MAVS and the downstream

antiviral immune response, facilitating viral replication (53, 54).

SARS-CoV-2 RNA enters macrophages, MAVS and mitofusin 1

and 2 causing mitochondrial dysfunction and the subsequent

increase in ROS generation and mt-DNA into the cytosol. This

causes the activation and recruitment of NLR family pyrin domain

containing 3 (NLRP3). Wu et al. have reported that MAVSmediates

NF-kB and type I interferon signaling during viral infection and is
Frontiers in Immunology 04
also required to activate the NLR family pyrin domain containing 3

(NLRP3) that triggers an immune response (55).. Apoptosis-

associated speck-like protein containing a caspase recruitment

domain (ASC) protein (56), and Caspase-1, which assemble to

create the NLRP3 inflammasome (57). The activated NLRP3

inflammasome cleaves the cytokines Pro-IL-1B and Pro-IL-18

into their mature and biologically active forms (IL-1B and IL-18),

thus exacerbating the inflammation state (58). Moreno Fernández-

Ayala suggested that chronic inflammation caused by

mitochondrial dysfunction is responsible for the explosive release

of inflammatory cytokines causing severe pneumonia, multi-organ

failure, and finally death in COVID-19 patients (59).

SARS-CoV-2 enters the cells, and the RNA and RNA transcripts

capture the mitochondria, and disrupt the mitochondrial electron

transport chain (60). Prasada Kabekkodu et al. suggested that SARS

CoV proteins localize in the mitochondria, increase reactive oxygen

species (ROS) levels, perturbation of Ca2+ signaling, changes in

mtDNA copy number, mitochondrial membrane potential (MMP),

mitochondrial mass, and induction of mitophagy (61). Guarnieri

et al. suggested that after the COVID-19 virus infection, there was a

systemic host response followed by viral suppression of

mitochondrial gene transcription and followed by induction of

glycolysis (62). Even when the virus was cleared, mitochondrial

function in the heart, kidney, liver, and lymph nodes remained

impaired, leading to severe COVID-19 pathology (62). Miller et al.

reported that SARS-CoV-2 did not dramatically regulate (1)

mtDNA-encoded gene expression or (2) MAVS expression, and

(3) SARS-CoV-2 downregulated nuclear-encoded mitochondrial

(NEM) genes related to cellular respiration and Complex I (63).

Bhowal et al. reported that open reading frames (ORFs) of COVID-

19, ORF-9b, and ORF-6 impair MAVS protein and suppress innate

antiviral response activation (64).

Duan et al. found significant changes in mitochondrion-related

gene expression, mitochondrial functions, and related metabolic

pathways in patients with COVID-19, analyzing RNA-sequencing

dataset of lung tissue and blood from COVID-19 patients (65).

Yang et al. exhibited that SARS-CoV-2 membrane protein (M

protein) could induce mitochondrial apoptosis pathway via B-cell

lymphoma 2 (BCL-2) ovarian killer (BOK) without BAK and BAX,

thus exacerbating SARS-CoV-2 associated lung injury in vivo (66).

5 Long COVID

5.1 Long COVID as a well-
developed feature

COVID-19 is a significant pandemic resulting in substantial

mortality and morbidity worldwide. Of the individuals affected,

approximately 80% had mild-to-moderate disease, and among

those with severe disease, 5% developed critical illness (67). A few

of those who recovered from COVID-19 developed persistent or

new symptoms lasting for weeks or months; this is called “long

COVID,” “long haulers,” or “post-COVID syndrome” (68, 69).

Nguyen et al. (70) reported the long-term persistence of dyspnea in

patients with COVID-19.
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Long COVID was defined by Crook et al. (71), and published on

May 5, 2020, in BMJ Opinion, where he shared his experience of

seven weeks on a “roller coaster of ill health” following COVID-19

(72). Long COVID is now recognized in the National Institute for

Health and Care Excellence guidelines on managing the long-term

effects of COVID-19 (73). Datta et al. (74) define patients with long

COVID or long haulers as individuals with ongoing symptoms of

COVID-19 that persist beyond four weeks from the initial infection.
5.2 Long COVID symptoms

Long COVID is a debilitating illness in at least 10% of severe

SARS-CoV-2 infections (75). COVID-19 is now recognized as a

multi-organ disease with a broad spectrum of manifestations. As for

post-acute viral syndromes, there is an increasing number of reports

of persistent and prolonged effects following acute COVID-19.

There are currently no validated effective treatments for long

COVID (75). Common symptoms of long COVID include

fatigue, shortness of breath, cough, joint pain, chest pain, muscle

aches, and headaches (76). Patient advocacy groups, many members

of which identify as long haulers, have contributed to recognizing

post-acute COVID-19 (77). In the absence of a virus in patients

after COVID-19 infection, long COVID causes symptoms similar to

those of myalgic encephalomyelitis/chronic fatigue syndrome (ME/

CFS) (78–80). Linhoff et al. reviewed recent data on Long-COVID

and Long-COVID-related fatigue (LCOF), focusing on cognitive

fatigue (81). Regarding long COVID pathological co-factors, Bellan

et al. (82) described that the condition of proinflammatory

cytokines in patients can be essential. Explanations for “long

COVID” include immune imbalance, incomplete viral clearance,

and potentially even mitochondrial dysfunction (83). Of note,

oxidative stress might be an underlying cause of long COVID (84).
Frontiers in Immunology 05
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Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, and

arginine were identified as the most relevant metabolites for

distinguishing long COVID patients even two years after acute

COVID-19 infection (85). Long COVID causes mitochondrial

dysfunction, redox state imbalance, impaired energy metabolism,

and chronic immune dysregulation.

Carpenè et al. (86) demonstrated that blood lactate levels were

higher in severe cases of non-survivor patients with COVID-19

than in non-severe survivor cases, as shown in Supplementary

Figure 2 (87–96). Figure 2 shows the blood lactate levels in

coronavirus disease 2019 (COVID-19) survivors vs. non-survivors

taken from the results of references 87-96, suggesting that the blood

lactate levels in COVID-19 non-survivors are significantly higher

than the survivors. The results of Supplementary Figure 2 show that

in long COVID patients, intracellular energy production tends to

use glycolysis rather than using mitochondrial oxidative

phosphorylation. The meta-analysis showed that lactate

dehydrogenase (LDH) was also increased in patients with

COVID-19 and associated with relatively poor outcomes (97).

Lactate dehydrogenase is markedly elevated in plasma and

strongly associated with mortality in severe COVID-19 (98). This

finding is consistent with the potential explanations for “long

COVID,” which include mitochondrial dysfunction (83). Vitamin

D is an immunomodulatory hormone with proven efficacy against

various upper respiratory tract infections; it can inhibit

hyperinflammatory reactions and accelerate the healing process in

affected areas, especially lung tissue. Moreover, vitamin D

deficiency is associated with the severity and mortality of

COVID-19 cases, with a high prevalence of hypovitaminosis D

found in patients with COVID-19 and acute respiratory failure (76).

Antonelli et al. (99) described that among Omicron cases, 4.5% of
FIGURE 1

Timelines of long COVID. Long COVID-19 is defined as persistent symptoms and or delayed or long-term complications beyond 4 weeks from the
onset of symptoms. (Figure 1 adapted from BioRender).
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people experienced long COVID, whereas 10.8% experienced long

COVID following Delta variant infection. Hernández-Aceituno

et al. (100) described that the ongoing symptomatic COVID (4–

12 weeks), post-COVID-19 (> 12 weeks with symptoms), and long

COVID cases were less frequent in Omicron cases, compared with

Alpha or Delta cases. These findings suggest that patients infected

with the Omicron variant are less likely to experience long COVID.

Antonelli et al. (99) also described that after infection with

Omicron or Delta variants, less than three months after vaccination,
Frontiers in Immunology 06
the long COVID odds ratio increases compared to the “3 to 6

month” and “prior to 6-month” groups. Vaccinated individuals are

occasionally diagnosed with COVID-19, which is known as a

breakthrough SARS-CoV-2 infection (BTI). Al-Aly et al.

(30) showed that in long COVID, six months after infection,

people with BTI exhibited a higher risk of death and incident

post-acute sequelae, including cardiovascular, coagulation,

hematologic, gastrointestinal, kidney, mental health, metabolic,

musculoskeletal, and neurologic disorders. These results were

consistent when compared against the historical and vaccinated

controls. Long COVID is a debilitating syndrome that often

includes persisting respiratory symptoms and, to a lesser degree,

abnormalities in lung physiology (100). Respiratory features of long

COVID may decrease over time, yet resolution is not achieved in

all cases.

We have previously published that impairments of the electron

transport chain and mitochondrial DNA damage increase ROS

production, and so-called mitochondria caused oxidative damage

(101). COVID-19 might influence mitochondrial function and

induce mitochondrial damage, especially in the mitochondrial

electron transport chain, and may cause mitochondrial

oxidative damage.

Emerging evidence suggests that COVID-19 highjacks

mitochondria of immune cells replicates within mitochondrial

structures, and impairs mitochondrial dynamics, leading to cell

death. Increasing evidence suggests that mitochondria from

COVID-19-infected cells are highly vulnerable, and vulnerability

increases with age (102). The relationship between long COVID

and mitochondria has been focused on. First, after infection of

COVID-19, the localization of the virus should be focused. Wu et al.
FIGURE 2

Lactate levels in coronavirus disease 2019 (COVID-19) survivors vs.
non-survivors. Bar graph shows mean lactate levels in COVID-19
survivors (red bar) and non-survivors (blue bar). The blue dot is an
outlier. Remended from Carpenè et al. (2021) (86) the and articles
87–96.
FIGURE 3

Schematic representation of COVID-19 phenomena and symptoms, and long COVID characteristics.
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performed computational modeling of SARS-CoV-2 viral RNA

localization across eight subcellular organelles: endoplasmic

reticulum (ER) membrane, Nuclear lamina, Mito matrix, Cytosol,

Nucleolus, Nucleus, Nuclear pore, and Mitochondria outer

membrane. We compare hundreds of SARS-CoV-2 genomes to

the human transcriptome and other coronaviruses and perform

systematic sub-sequence analyses to identify the responsible signals.

Using state-of-the-art machine learning models, we predict that the

SARS-CoV-2 RNA genome and all sgRNAs are the most enriched

in the host mitochondrial matrix (103). Interestingly, Padhaan et al.

described that the severe acute respiratory syndrome coronavirus 3a

protein activates the mitochondrial death pathway through p38

MAP kinase activation in 2008 (104). Cumpstay proposed the anti-

ROS agents as the treatment tool against COVID-19, a redox

disease (105). Chen et al. proposed possible pathogenesis and

prevention of Long COVID considering SARS-CoV-2-induced

mitochondrial disorder (106). Therefore, the most likely COVID-

19 goes to mitochondria after the infection into the cells of the host

patients and the severe ROS generation from mitochondria that

destroys mitochondria and mitochondrial DNA, consequently less

oxidative phosphorylation and shift to glycolysis, long

COVID symptoms.

In conclusion, we summarized the mode of spread, clinical

symptoms, infection route, and intracellular signaling of COVID-

19, as well as the combination of COVID-19 and diabetes, COVID-

19 intracellular invasion, including mitochondrial oxidative stress,

mitochondrial ROS storm that destroys mitochondria and electron

transport chain (ETC), and causes long COVID (summarized in

Figure 3). We highlight that the mitochondria might be involved in

the pathogenesis of long COVID and symptom manifestation. A

comprehensive map of the stages and pathogenetic mechanisms

related to the disease and effective drugs to treat and prevent long

COVID are urgently required, warranting further investigation on

long COVID treatments and symptom relief strategies.
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