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induced aseptic osteolysis
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First People’s Hospital of Lianyungang), Lianyungang, China, 2Department of Geriatrics, Jinling
Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China, 3Department of
Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
Joint replacement surgery is the most effective treatment for end-stage arthritis.

Aseptic loosening caused by periprosthetic osteolysis is a common complication

after joint replacement. Inflammation induced by wear particles derived from

prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone

marrow-derived macrophages and their fusion-derived osteoclasts play a key

role in this pathological process. Researchers have developed multiple

intervention approaches to regulate macrophage/osteoclast activation. Aiming

at wear particle-induced periprosthetic aseptic osteolysis, this review separately

discusses the molecular mechanism of regulation of ROS formation and

inflammatory response through intervention of macrophage/osteoclast

RANKL-MAPKs-NF-kB pathway. These molecular mechanisms regulate

osteoclast activation in different ways, but they are not isolated from each

other. There is also a lot of crosstalk among the different mechanisms. In

addition, other bone and joint diseases related to osteoclast activation are also

briefly introduced. Therefore, we discuss these new findings in the context of

existing work with a view to developing new strategies for wear particle-

associated osteolysis based on the regulation of macrophages/osteoclasts.
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Abbreviations: ALP, alkaline phosphatase; Col1, collagen 1; Era, estrogen receptor a; FNC: few-layered

Nb2C, a new type of antioxidant; FYN, tyrosine kinase; ICA, icariin; MM-Exos, macrophage membrane

encapsulated urine-derived stem cell-derived exosomes; NRF2, nuclear factor erythroid derived 2-related

factor 2; OCN, osteocalcin; OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor kappa-B

ligand; ROS, reactive oxygen species; TAB3, transforming growth factor-b (TGF-b)-activated kinase 1

(TAK1)-binding protein 3; TBHQ, tert-butylhydroquinone, an NRF2 agonist; TYMP, thymidine

phosphorylase; UHMWPE-ALN, UHMWPE loaded with alendronate sodium.
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1 Introduction

Total joint replacement, which includes hip, knee, shoulder, and

ankle replacements, is one of the most effective surgical procedures

used by orthopedic surgeons to treat end-stage joint disease. Census

data show that the number of total hip arthroplasty (THA) and

primary total knee arthroplasty (TKA) in the U.S. will increase from

498,000 and 1.065 million in 2020 to 1.429 million and 3.416

million in 2040, respectively. The Australian Orthopedic

Association survey found that the 19-year survival rates for total

THA and TKA were 87.8% and 91%, respectively (1). Although

significant improvements have been made in surgical methods and

prosthetic design, periprosthetic osteolysis (PPO) and prosthetic

loosening (PL) due to various reasons are important reasons for

long-term surgical failure. By 2060, revisions of THA and TKA are

expected to reach 110,000 and 253,000 cases in the U.S, respectively

(2). However, revision surgery takes a physical and emotional toll

on patients and increases economic pressure on families, society,

and the healthcare system. As the life expectancy of joint

replacement patients increases, the service life of artificial joints

becomes more and more important, accordingly, the prevention of

PPO will become an effective treatment for PL. At present, there is

no effective drug for the prevention and treatment of PPO in

clinical practice.

Mechanical factors and/or biological responses are the two

main causes of AL. According to the presence or absence of

microbial infection, PL can be divided into infectious loosening

and aseptic loosening. Osteolysis caused by wear particles falls into

the latter category. In the following sections, non-sterile osteolysis

will be briefly discussed. Biological responses induced by wear

particles released by artificial joint components at the bone-

implant interface are key factors leading to the progression of

PPO and PL (3, 4). The material of the wear particles is metal

(titanium), alloy (cobalt chromium molybdenum), bone cement,

polyethylene or ceramic (5), and the size varies from submicron to

hundreds of microns. Although the material of joint prosthesis has

been iterated several times, traditional ultra-high molecular weight

polyethylene (UHMWPE) has been the main component of joint

prosthesis due to its low cost, good biocompatibility, low coefficient

of friction, along with high compressive and impact strength.

Millions of joint replacements worldwide still contain UHMWPE

(6, 7). There is currently no material that does not generate wear

debris, and the challenge of wear debris-related biological responses

is ongoing. Studies have shown that wear particles with a diameter

of 0.1-2.0mm are the most biologically active triggers for

inflammatory responses (8). Periprosthetic membrane (PM),

formed at the bone-prosthesis interface after joint replacement, is

primarily a dense collagen network formed by fibroblasts, in which

immune and nonimmune cells contribute to the long-term

homeostasis of periprosthetic tissues through inflammatory

responses, angiogenesis, collagen deposition, and fibrous tissue

remodeling. After phagocytosis of wear particles, macrophages,

osteoblasts, osteoclasts, and fibroblasts in PM release a variety of

inflammatory factors, such as tumor necrosis factor (TNF)-a,
interleukin (IL)-1b and IL-6, which expand the inflammatory

storm. These cells secrete proinflammatory mediators and
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chemokines, including tumor necrosis factor-a (TNF-a),
macrophage colony-stimulating factor (M-CSF), IL-1b, IL-6, IL-
17a, prostaglandin E2 (PGE2), vascular endothelial growth factor

(VEGF), and RANKL further promote osteoclast formation,

differentiation, and maturation, shifting bone metabolic

homeostasis to osteolysis, which ultimately leads to periprosthetic

bone resorption and osteolysis (9–11). During this pathological

process, upregulation of receptor activator of nuclear factor kappa-

B ligand (RANKL) and inhibition of osteoprotegerin (OPG)

accelerate osteoclast maturation and bone resorption (12).

Macrophages are key cells in specific innate immune responses

(13). Osteoclasts formed by the fusion and differentiation of

macrophages are known as master bone sculptors and are the

only and powerful osteolytic effector cells. Inflammatory effects

mediated by macrophages play a pivotal role in the development of

PPO and AL. Therefore, it is of great clinical significance to

elucidate the molecular mechanism of macrophages in aseptic

osteolysis and to explore potential strategies for the treatment and

prevention of PPO.
2 Macrophages

Tissue-resident macrophages (TRM) are distributed in various

organs, such as Kupffer cells in the liver; microglia in the central

nervous system; Langerhans cells in the skin; bone marrow

macrophages and osteoclasts in the bone and alveolar

macrophages, which are sentinels of the immune system (14–18).

Macrophages maintain bone tissue homeostasis through

osteoimmunology regulation (13). Although macrophages,

osteoblasts, osteoclasts, fibroblasts, and dendritic cells are

involved in wear particle-induced PPO, monocyte-macrophage

immune surveillance, phagocytosis and antigen presentation

considered primary and crucial (13, 19, 20). Continuously

produced wear particles on the bone-prosthesis interface are

phagocytized by bone marrow-derived macrophage (BMDMs),

exerting innate immunity (nonspecific immunity), which on the

one hand leads to increased expression of cytokines (TNF-a, IL-1,
IL-6 and TNFSF15), reactive oxygen species (ROS) and proteases,

on the other hand, activates the pro-inflammatory M1 phenotype

and osteoclasts (21–24). The result is osteolysis around the

prosthesis, the destruction of the bony structure supporting the

prosthesis, and eventual loosening of the prosthesis. However,

the molecular mechanisms by which macrophages recognize wear

particles and subsequently induce an inflammatory response have

not been fully elucidated. Current studies have revealed that NF-kB
signaling pathway is one of the key pathways (25, 26). Thus,

regulating the upstream and downstream molecules of the NF-kB
signaling pathway is considered to be an important target for the

prevention and treatment of PPO (27).
3 Osteoclasts

As the rigid structure responsible for movement, protection and

support of vital organs, bones are dynamic organs. Bone
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homeostasis is maintained by the coordination among osteoblasts,

osteocytes and osteoclasts. Osteoblasts derived from the

mesenchymal lineage secrete a large amount of bone matrix

proteins to form a mineralized network, and the osteoblasts

encapsulated in it evolve into terminally differentiated osteocytes.

Osteoclasts are also members of the myeloid system, which

precisely complete bone resorption by tightly attaching to the

bone surface and secreting acids as well as proteases. An actively

resorbing osteoclast possesses a unique cytoskeletal organization,

the actin ring, that forms a bone resorption lacuna in a sealed area

(28). Under normal physiological conditions, osteoclasts are critical

for maintaining calcium homeostasis, a bone matrix of proper

strength and bone remodeling. In addition, osteoclasts promote

endochondral bone growth by removing calcified cartilage beneath

the growth plate. Stimulatory signals, however, lead to abnormal

activation of osteoclasts, leading to pathological bone loss. Several

types of pathological osteolysis have been described below.

Monocyte-macrophage fusion forms multinucleated giant cells,

which are precursors of osteoclasts. Macrophage CSF (M-CSF), also

known as CSF-1, is a dimeric glycoprotein that plays an important

role in the proliferation and division of monocytes. CSF-1 is a key

factor in osteoclastogenesis, which can promote the expression of

receptor activator of nuclear factor kappa B (RANK), a TNF

receptor family member, in osteoclast precursors (29, 30).

Intriguingly, RANKL is responsible for the fusion of osteoclast

precursor cells and differentiation to the osteoclast lineage. RANKL,

a membrane-bound and soluble TNF family member, can be

produced by a variety of cells, including adipocytes, B and T

lymphocytes, chondrocytes, as well as vascular endothelial cells

(31). The combination of RANKL and RANK activates NF-kB and

mitogen activated protein kinase (MAPK) pathways through TNF

receptor-associated factor 6 (TRAF 6), which activate activator

protein 1 (AP-1), a key molecular for initiation of nuclear factor

of activated T cells c1 (NFATc1) transcription (32, 33). NFATc1 is a

master transcription factor in osteoclastogenesis (34). However,

increased transcription of NFATc1 is not sufficient to effectively

promote osteoclast formation. Downregulation of inhibitory signals

including IRF-8, BCL-6 and MAFB is also critical (35). These

negative regulators are repressed by BLIMP1. Thus, increased

expression of BLIMP1 can promote osteoclast activation (36). In

addition to NFATc1, other osteoclast-related genes, such as

Dcstamp, VA TPase d2, Acp 5, MMP9 and c-Fos, are activated

upon RANKL/RANK binding to accelerate osteolysis of osteoclasts

(37, 38). Osteoprotegerin (OPG), a soluble extracellular protein, is a

soluble decoy receptor that can bind to RANKL to inhibit all its

known functions (39, 40). The imbalance of RANKL/OPG is an

important mechanism leading to bone loss. Therapies that

antagonize RANKL, such as the anti-RANKL antibody

denosumab, are an effective way to treat osteolytic diseases (41).

Wear particles around the prosthesis stimulate macrophage fusion

and differentiation into osteoclasts. RANKL produced by

inflammatory cells competes with OPG produced by osteoblasts

to bind to RANK on the surface of monocyte-macrophages, thereby

initiating osteolysis (42, 43).

The current research on the mechanism of macrophages/

osteoclasts in wear particle-induced aseptic osteolysis mainly
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focuses on three types of mechanisms, namely RANKL/MAPKs/

NF-kB pathway, reactive oxygen species/antioxidation and

inflammation. These three types of mechanisms will be discussed

separately below, nevertheless, they are not independent molecular

mechanisms (Figure 1).
4 Inhibiting RANKL/MAPKs (ERK, JNK
and p38)/NF-kB pathway

NF-kb is a ubiquitous transcription factor that is directly

involved in cytoplasmic/nuclear signal transduction and has

direct regulatory effects on osteoclast activation, inflammation

and PPO (44–46). Osteoclast differentiation is essentially

controlled by the RANKL, mainly via NF-kB and NFATc1.

Exosomes and non-coding RNA (non-coding RNA, ncRNA)

have great potential in promoting bone repair, remodeling and

regulating bone metabolism (47, 48). Exosomes are bilayered lipid

vesicles with a diameter of 50-150 nm produced by the shedding of

intracellular compartments or plasma membranes, and carry out

signal transduction between cells. For example, miR-214-3p-

enriched exosomes derived from osteoclasts inhibit osteoblast

bone formation after being taken up by osteoblasts (47). Due to

the multiple advantages of exosomes, including lower

immunogenicity, wide range of sources, and easy uptake,

exosomes have also been extensively studied in the field of

osteolysis. Transforming growth factor-b (TGF-b)-activated
kinase 1 (TAK1)-binding protein (TAB) 1, TAB2, and TAB3 are

all necessary for NF-kB activation. TAB1 binds to the N-terminus

of TAK1, whereas TAB2 or TAB3 binds to the C-terminus of TAK1.

TAB3 can activate NF-kB through a TRAF6-TAK1-dependent

pathway (49, 50). B Pan et al. (51) unmasked that macrophage-

derived Exos enriched for miR-3470b rescued Ti particle-induced

osteoclast differentiation by targeting TAB3 to inhibit NF-

kB pathway.

Bulk RNA sequencing (RNA-seq) has become a powerful

weapon for current researchers by identifying novel genes and

elucidating their involvement in related signaling networks in

orthopedic diseases (52). Since stimulated macrophages expressed

gene signatures of rheumatoid arthritis, GMatsumae et al. (53) used

RNA-seq analysis to identify 12 target molecules that were highly

expressed in rheumatoid arthritis. The results of osteoclast

di fferent iat ion experiments indicated that thymidine

phosphorylase (TYMP) had the highest potential to induce

osteoclast differentiation. Strikingly, the increased expression of

TYMP in periprosthetic tissue and serum of patients with aseptic

loosening further confirmed its potential role as an osteoclastic

factor. In a model of cranial osteolysis, TYMP induced bone

resorption lesions comparable to RANKL. TYMP induces

osteoclasts through the integrin-FYN signaling pathway, thereby

activating MAPK and NF-kB signaling pathways. Oral

administration of the FYN kinase inhibitor saracatinib could

significantly alleviate osteolysis induced by UHMWPE particles.

Icariin (ICA), a flavonoid compound with estrogen-like

properties, can antagonize RANKL and estrogen deficiency-

induced osteolysis (54–56). Previous studies demonstrated that
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ICA not only promoted MC3T3-E1 differentiation and

mineralization through estrogen receptor-mediated ERK and JNK,

but also prevented bone loss caused by estrogen deficiency via

activating STAT3 (55, 57, 58). ICA delayed the progression of

osteolysis and decreased the expression of TNF-a, IL-1b, and IL-6

in a wear particle-induced calvarial osteolysis model (59). In order to

better simulate the actual clinical situation, G Fu et al. (60) extracted

and prepared lipopolysaccharide-free wear particles from discarded

CoCrMo femoral head implants in clinical revision patients by

manufacturing high-vacuum three-electrode direct current. The

wear particles and ICA were used in vivo and in vitro experiments,

and the results suggested that ICA could significantly reduce the

protein expression levels of p-IKKb, p-p65 and p-IkBa, and promote

the expression of phospho-ERa Ser118 and phospho-ERa Ser167

proteins. In addition, ERa translocated from the cytoplasm to the

nucleus, thereby inhibiting the translocation of P65 to the nucleus.

ICA also reversed the expression of TNF-a and IL-6 mediated by

wear particles through the NF-kB signaling pathway (60). Recent

findings suggested that piperlongumine inhibited osteoclast

formation and bone resorption by repressing the activation of

MAPKs (ERK, JNK, p38) and NF-kB induced by RANKL as well

as downregulating the expression of NFATc1 protein (61). Herein,

inhibition of the RANKL/MAPKs (ERK, JNK, and p38)/NF-kB
pathway in macrophages/osteoclasts is considered a promising

approach for the prevention and treatment of PPO.
Frontiers in Immunology 04
5 Anti-oxidation and hindering
ROS formation

It is well established that the proper intensity of redox reactions

is critical to the homeostasis of various organs, including the skeletal

system (62, 63). Under normal physiological conditions, an

appropriate level of ROS acts as a second messenger of cell signal

transduction to facilitate the maturation of osteoclasts (64).

However, oxidative stress leads to enhanced osteoclast activation

(64, 65). Wear particles stimulate the local immune-inflammatory

response, activate and recruit macrophages to produce excess ROS

containing unpaired electrons, such as hydroxyl radicals, hydrogen

peroxide, superoxide anion, hydrogen peroxide superoxide anion,

singlet oxygen and hydroxyl radicals (66). During inflammation,

ROS maintain M1 macrophage polarization (67). Studies have

identified that ROS enhances osteoclast differentiation through

NF-kB and MAPK pathways (64). RANKL induces increased

ROS production in BMDMs through the TRAF6/Nox1 signaling

pathway. Accumulated ROS on the one hand oxidizes tyrosine

phosphatases, thereby inducing MAPK phosphatase (MKPs)

inhibition and activation of MAPKs (68). On the other hand, it

promotes the homodimerization of LC8, leads to the dissociation of

LC8 and IkBa, and then increases the phosphorylation and

degradation of IkBa, consequently, promoting the nuclear

translocation of NF-kB dimer (69, 70). Accordingly, reducing and
FIGURE 1

Inhibits osteoclast activation by regulating RANKL/MAPKs (ERK, JNK and p38)/NF-kB, ROS and inflammation pathway. Macrophage-derived
exosomes enriched in miR-3470b inhibit NF-kB pathway by targeting TAB3. TYMP promotes osteoclast differentiation by activating integrin-FYN,
thereby initiating MAPK and NF-kB signaling pathways. ICA promotes the expression of p-IKKb, p-p65 and p-IkBa through ERa, and inhibits TNF-a
and IL-6. ERa translocates from the cytoplasm to the nucleus thereby inhibiting the translocation of P65 to the nucleus. FNC inhibits p65, p38 and
JNK phosphorylation by reducing the expression of ROS. MM-Exos reduce the production of ROS and inflammatory factors (IL-6 and TNF-a) as well
as promote the expression of OCN. TBHQ activates NRF2, which on the one hand inhibits osteoclast differentiation by reducing the accumulation of
ROS and inflammatory factors (TNF-a and IL-1b), on the other hand promotes osteoblast Col1, OPN, Bcl-2, along with BAX inhibition. Pt@ZIF-8@La
scavenges ROS to impede p-Akt and reduce the phosphorylation and degradation of IkBa, while downregulating the levels of IL-1b and TNF-a.
Identically, it hinders the expression of RANKL and increases the levels of OPG and osteogenic factors. ALN from UHMWPE-ALN not only reduces
the expression of TNF-a, IL-6 and IL-1b, but also promotes the expression of osteoblast ALP and OPG, and inhibits RANKL. 3-MA or LY294002
reduces the activation of inflammatory factors (TNF-a, IL-1b and IL-6) and osteoclasts by inhibiting autophagy.
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scavenging excess ROS to inhibit osteoclast activation is a realistic

strategy to alleviate wear particle-induced aseptic osteolysis.

ROS scavenging depends on antioxidant enzymes such as

superoxide dismutase (SOD), peroxidase (POD) and catalase

(CAT) (71, 72). Nuclear factor-erythroid 2 related factor 2

(Nrf2), a redox-related transcription factor, promotes the gene

express ion of mult iple ant ioxidant enzymes through

translocation to the nucleus (73–75). Previous study has

suggested that Nrf2 deficiency in BMDMs leads to ROS

accumulation and exacerbated osteolysis (76). Targeting Nrf2

has been unmasked to effec t ive ly inhib i t os teoc las t

differentiation and bone resorption (77–79). Enhancing

endogenous antioxidants to reduce ROS and the downstream

molecules formation may effectively counteract the adverse

effects of wear particles.

Oxidative stress inhibits the osteogenic effect of osteoblasts

and promotes the formation of osteoclasts (63). Nrf2, a key

regulator of oxidative stress, not only regulates the transcription

of antioxidant enzymes, including glutathione reductase, SOD,

glutathione oxidase and CAT, etc., but also inhibits the

inflammatory response of macrophages by blocking the

transcription of pro-inflammatory cytokines (80–83). J Dong

et al. (84) found that metal wear particles significantly inhibited

the expression of NRF2 during the process of calvarial osteolysis.

In mice with NRF2 gene (Nfe2l2) knockout, the expressions of

NFATc1 and cathepsin K (CTSK) in osteoclasts were enhanced

after Ti particle stimulation, simultaneously, collagen 1 (Col1),

Osteopontin (OPN) and apoptotic proteins were increased in

osteoblasts. Compared with the more severe osteolysis caused by

Nfe2l2 knockout, the NRF2 agonist tert-butylhydroquinone

(TBHQ) could block ROS accumulation and effectively correct

the effects of NRF2 deficiency on osteoclasts and osteoblasts,

thereby reversing metal particle-induced inflammation and

oxidative osteolysis.

Although Exos have made important progress in skeletal

diseases and spinal cord injuries (85, 86), which show great

promise in the field of tissue damage repair and regeneration,

their clinical applications are still limited. Exosomes lack tissue

and organ targeting and are easily phagocytized by immune cells

such as macrophages. Encapsulating drugs through the macrophage

membrane can avoid being cleared by the autoimmune system,

which has a higher target delivery efficiency for inflammatory

diseases (87–89). Some scholars have found that macrophage

membrane-encapsulated urine-derived stem cell-derived

exosomes (MM-Exos) can be targeted and delivered to the

osteolytic zone, which can not only promote the osteogenic

differentiation of bone marrow-mesenchymal stem cells (BMSCs),

but also inhibit ROS, RANKL, IL-6 and TNF-a production, thereby

attenuating UHMWPE-induced osteolysis (90). By providing

immune camouflage to Exos to enhance delivery efficiency, it

provides a new drug delivery system for the treatment of

inflammatory diseases, including osteolysis.

K Sun et al. (91) developed a new antioxidant, few-layered Nb2C

(FNC), based on ternary metal carbide/nitride, which reduced

cytokine production and inhibited osteoclastogenesis by

adsorbing ROS. FNC was able to inhibit the phosphorylation of
Frontiers in Immunology 05
NF-kB p65, p38 and JNK, but not ERK(1/2), after LPS or RANKL

stimulation. Although the conclusion may support that FNC

regulated inflammation (IL-1b and IL-6 involved) or bone

resorption through NF-kB and MAPKs signaling pathways, the

authors did not interfere with this target and further confirm it.

A bimetallic organic framework (Pt@ZIF-8@La) loaded with

platinum (Pt) nanozyme with ROS scavenging and anti-

inflammatory capabilities as well as osteogenic active element

lanthanum (La) was constructed for Ti-induced calvarial

osteolysis model. Pt@ZIF-8@La exhibited strong ROS scavenging

ability both in vivo and in vitro. On the one hand, Pt@ZIF-8@La

inhibited the p-Akt of RAW 264.7 cell line to rescue the

phosphorylation and degradation of IkBa, and decreased the

expression levels of NO, IL-1b, and TNF-a. On the other hand,

while increasing the expression of OPG and the ratio of OPG/

RANKL in MC3T3-E1 cells, it also promoted the expression of

osteogenesis-related genes ALP, RUNX2, Osterix and OCN (92). It

seems to be an effective way to promote the osteogenic effect of

osteoblasts while inhibiting the oxidative stress and inflammatory

factors mediated by osteoclast ROS.
6 Inhibiting inflammation

Wear particle-induced inflammation is the central process in

osteolysis and aseptic loosening. Toll-like receptors (TLRs) not

only recognize exogenous pathogen-associated molecular

patterns (PAMPs), but also detect endogenous products

associated with inflammation, such as heat shock proteins,

high mobility base box (HMGB) 1, fibronectin Protein and

Hyaluronic Acid. Adenosine triphosphate (ATP) and ROS can

further activate NLRP3, a member of the nucleotide-binding

oligomerization domain (NOD)-like receptor (NLRs) family,

which intensifies and perpetuates the process of inflammation

(93–95).

Alendronate sodium hydrate (ALN), an inhibitor of farnesyl

diphosphate synthase, is a commonly used anti-osteoporosis drug

in clinical (96). Y Liu et al (97). loaded alendronate sodium on

critical size UHMWPE (UHMWPE-ALN), and used alginate-

coated beads as a cell reactor to co-culture cells and UHMWPE-

ALN wear particles. On the one hand, the release from

UHMWPE-ALN particles inhibited the expression of TNF-a,
IL-6, IL-1b inflammatory factors and the proliferation of

RAW264.7, on the other hand, it promoted the osteogenesis of

osteoblasts and the level of OPG and down-regulated RANKL

gene expression. Unfortunately, the author did not conduct the

necessary confirmation through animal experiments. Although

this drug-loading method provides a new idea for the treatment of

PPO, the stability of drug release and the negative effects of long-

term drug effects are issues that need to be considered in

clinical applications.

Autophagy, as a highly conserved process of self-degradation

and energy dynamic cycle unique to eukaryotic cells, plays an

important role in PPO (98). However, autophagy is a double-

edged sword, which may bring different results at different stages

of PPO development and in different cells (98). W Chen et al. (99)
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found that Ti particle-induced osteoclastogenesis and decreased

expression of TNF-a, IL-1b and IL-6 could be alleviated by

inhibiting autophagy (3-MA, LY294002 or knocking out Atg5

gene). Relevant literatures are summarized in Table 1.
7 Other forms of osteolysis mediated
by macrophages/osteoclasts

In addition to wear particle-induced aseptic osteolysis, abnormal

activation of osteoclasts is also closely related to a variety of other

bone diseases, including osteoporosis, primary and metastatic bone
Frontiers in Immunology 06
tumors, rheumatoid arthritis, and bone infection. The following will

briefly introduce these types of osteolysis.
7.1 Osteoporosis

Osteoporosis is a systemic disease characterized by bone loss,

decreased bone density, and microarchitectural deterioration of bone

tissue, leading to an increased risk of fracture (32, 100). It is estimated

that in the United States, more than 25 percent of women over the age

of 65 have osteoporosis, compared with 5 percent of men (101). In

China, the prevalence of osteoporosis in women over 50 years old is

29.13% (102). The pathogenesis is usually due to a combination of
TABLE 1 Experimental study of macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis.

Intervention
target/
agents

Key Mole-
cules or
Pathways

Animal
model

Cell model Molecular mechanism Ref

Macrophages-
derived exosomes

TAB3, NF-kB
signaling

Calvarial
osteolysis
induced by Ti
particles

Macrophages stimulated by Ti
particles co-cultured with
osteoclasts and osteoblasts
respectively

Exosomal miR-3470b inhibits osteoclast differentiation by
targeting TAB3/NF-kB.

51

TYMP FYN, c-Myc,
P65, RELB,
MEK1/2,
ERK1/2, NF-kB

Calvarial
osteolysis
induced by
UHMWPE or
TYMP

Macrophages stimulated by
UHMWPE

TYMP promotes osteoclast differentiation by activating
integrin-FYN, thereby initiating MAPKs and NF-kB signaling
pathways.

53

Icariin NF-kB, Era,
TNF-a, IL-6

Calvarial
osteolysis
induced by
CoCrMo

BMDMs stimulated by
CoCrMo

ICA alleviates osteolysis and inflammatory factors through
ERa-mediated NF-kB signaling pathway.

60

FNC ROS, p65, p38,
JNK

Calvarial
osteolysis
induced by
UHMWPE

BMDMs stimulated by M-CSF
and RANKL

FNC inhibits osteoclast activation and osteolysis by reducing
ROS generation. NF-kB and MAPKs signaling pathways may
be involved.

90

MM-Exos ROS, RANKL,
IL- 6, TNF- a

Calvarial
osteolysis
induced by
UHMWPE

RAW264.7 stimulated by
UHMWPE and RANKL

MM-Exos can be targeted and enhance the effect of exosomes.
MM-Exos not only inhibits osteoclastogenesis by reducing
ROS, IL-6 and TNF-a, but also promotes the expression of
osteogenic OCN.

89

NRF2 ROS, IL-1b,
TNF-a, Bcl-2,
BAX, OPN,
Col1

Calvarial
osteolysis
induced by Ti
particles or Co-
particles

Osteoclast (from BMDMs
stimulated by M-CSF and
RANKL) and osteoblasts
stimulated by Ti particles

Deletion of NRF2 promotes osteoclast differentiation and
inhibits osteogenesis of osteoblasts. TBHQ enhances the anti-
osteolytic effect of NRF2 by blocking ROS accumulation.

83

Pt@ZIF-8@La ROS, IL-1b,
TNF-a, OCN
RUNX2, OPG,
Osterix,

Calvarial
osteolysis
induced by Ti
particles

RAW264.7 and MC3T3-E1
stimulated by Ti particles

Pt@ZIF-8@La scavenges ROS to relieve inflammation of RAW
264.7 and promote the ratio of OPG/RANKL in MC3T3-E1
cells and osteogenic effect.

91

UHMWPE-ALN TNF-a, IL-6,
IL-1b

Not implemented RAW264.7 stimulated by
UHMWPE

ALN released from UHMWPE-ALN wear particles inhibits
the expression of TNF-a, IL-6, and IL-1b and promotes
RAW264.7 apoptosis, while promoting osteoblast OPG and
down-regulating RANKL.

96

3-MA, LY294002,
Atg5 gene
knockout

TNF-a, IL-1b,
IL-6

Calvarial
osteolysis
induced by Ti
particles

RAW264.7 stimulated by
RANKL

Inhibition of autophagy alleviates osteoclast activation. 98
frontier
ALP, alkaline phosphatase; BMDMs, bone marrow derived macrophages; Col1, collagen 1 ; Co-particles, cobalt-chromium-molybdenum alloy particles; Era, estrogen receptor a ; FNC, few-
layered Nb2C, a new type of antioxidant; FYN, tyrosine kinase; ICA, icariin; MM-Exos, macrophage membrane encapsulated urine-derived stem cell-derived exosomes; NRF2, nuclear factor
erythroid derived 2-related factor 2; OCN, osteocalcin; OPG, osteoprotegerin; Pt@ZIF-8@La, platinum@zinc imidazolium zeolite framework-8@lanthanum; RANKL, receptor activator of
nuclear factor kappa-B ligand ; ROS, reactive oxygen species; TAB3, transforming growth factor-b (TGF-b)-activated kinase 1 (TAK1)-binding protein 3; TBHQ, tert-butylhydroquinone, an
NRF2 agonist ; Ti, titanium; TYMP, thymidine phosphorylase; UHMWPE, ultra-high molecular weight polyethylene ; UHMWPE-ALN, UHMWPE loaded with alendronate sodium.
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abnormal osteoclast activation and osteoblast dysfunction. Estrogen

has an antagonistic effect on osteoclasts. Ovary secretion of estrogen

decreases in postmenopausal women, leading to hyperactivation of

osteoclasts. Therefore, selective estrogen receptor modulators

(SERMs), such as raloxifene and strontium ranelate, can exert

estrogen receptor-mediated bone protection (103, 104). However,

studies have also found that exogenous estrogen intake is a potential

cause of breast cancer and other tumors (105). The most important

treatment for osteoporosis is to block the occurrence and cell function

of osteoclasts. In addition to estrogens, bisphosphonates and RANKL

inhibitors are also being developed. The application of these drugs

will inevitably bring certain side effects. For example,

bisphosphonates can cause hypocalcemia, osteonecrosis of the jaw,

and atrial fibrillation (106, 107). Denosumab, a human anti-RANKL

antibody, potently blocks the interaction between RANK and its

ligands to inhibit bone resorption, but long-term use can lead to

infection, rash, and atypical femoral fractures (108, 109). Due to the

long half-life of Denosumab and the need for parenteral

administration, Morikawa N et al. (110) developed a new oral

small molecule RANKL signal transduction inhibitor, AS2690168,

which can simultaneously reduce RANKL-induced NFATc1 mRNA

expression in RAW264 cells, inhibit parathyroid hormone-stimulated

calcium release from the skull of mice, and alleviate the decline in

femoral BMD in ovariectomized rats.

Some scholars have also found that multiple histone

deacetylases and histone acetyltransferases are expressed during

osteoclast differentiation, which are considered potential targets for

the treatment of osteoporosis (111, 112). In recent years, a series of

new drugs have been applied to inhibit osteoclast differentiation and

anti-osteoporosis in LPS-induced mouse calvarial bone loss model

and ovariectomy (OVX)-induced osteoporosis model. For example,

Saikosaponin D, the active extract of Bupleurum bupleuri, decreases

the expression of genes related to osteoclast differentiation and

function, including VA TPase d2, Dcstamp, acp5 and c-Fos (113).

Another small molecule compound extracted from natural plants,

methyl 3,4-dihydroxybenzoate (MDHB), can promote Nrf2

expression by reducing ubiquitination-mediated proteasomal

degradation of Nrf2 and reducing ROS levels, thereby inhibiting

RANKL-induced activation of MAPK and NF-kB pathways (114).

Tetrandrine inhibits osteoclast bone resorption by enhancing the

ubiquitination degradation of TNF-related apoptosis-inducing

ligand (TRAIL) and inhibiting the phosphorylation of p38, p65,

JNK, IKBa and IKKa/b (115). Ceritinib is used to treat anaplastic

lymphoma kinase (ALK)-rearranged non-small cell lung cancer,

which inhibits RANKL-induced phosphorylation of Akt and p65 in

osteoclast and improves trabecular bone loss in OVX-mice (116).

Collectively, these newly developed drugs inhibit osteoclast mainly

through ROS, MAPK, and NF-kB pathways.
7.2 Bone tumor

Osteolytic bonemetastases are common in solid tumors, including

lung and breast cancer, and are one of the direct causes of death (117).

About 30-40% of patients with non-small cell lung cancer develop

bone metastases, and even more than 90% in prostate cancer (118,
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119). PTHrP, IL-11, IL-6, and TNF-a secreted by tumor cells induce

hyperactivation of osteoclasts, giving preference to osteolysis over

osteogenesis (120). Although prostate cancer bone metastasis

ultimately manifests as an osteogenic effect, accumulating evidence

suggests that accelerated bone resorption induced by osteoclasts is the

key to tumor bone metastasis (121–123). Drugs targeting osteoclast

inhibition, such as bisphosphonates and Denosumab, have been tried

for the treatment of osteolytic bone tumors, while clinical benefits are

limited by high cost, side effects and little long-term benefit (124, 125).

Multiple myeloma (MM) is characterized by malignant clonal

expansion of plasma cells, and osteolytic destruction is a classic

hallmark. Osteolytic lesions occurred in more than 80% of patients,

accompanied by hypercalcemia, pathological fractures, bone pain

and spinal cord compression, which seriously threatened the life of

patients (126). Increased osteoclast-mediated bone resorption is

accompanied by decreased osteoblast-mediated bone formation in

patients with multiple myeloma (127), the molecular mechanism of

which has not yet been elucidated.

Cystatin M/E (CST6), a cysteine protease inhibitor, belongs to

the type 2 cystatin family and inhibit Cathepsin B (CTSB),

Cathespin L (CTSL) and Legumain (LGMN) proteases (128).

CST6 is considered a tumor suppressor due to its epigenetic

silencing in tumors along with inhibition of cancer cell

proliferation and metastasis (129). Study has implied that MM

cells secrete CST6 to block RANKL-induced osteoclast maturation

by inhibiting cathepsin-mediated cleavage of NF-kB/p100 and

TRAF3, thereby alleviating bone loss in MM patients (130).

Furthermore, breast cancer cell-derived CST6 enters osteoclasts

through endocytosis and upregulates the hydrolysis substrate of

CTSB, SPHK1, by inhibiting CTSB. Sphingosine kinase 1 (SPHK1)

inhibits RANKL-induced p38 activation, thereby hindering

osteoclast maturation and breast cancer bone metastasis (129).

More and more researches have revealed that the expression of

CST6 can prevent bone metastasis of tumors (129, 131).

Accordingly, CST6 is considered to be a new type of anti-

resorptive agent for the treatment of osteoclast-mediated osteolysis.

Increasing evidences imply that cargoes of extracellular vesicle

(EV), such as microRNAs, can serve as “messengers” for

communication between tumor cells and osteoclasts. Prostate

cancer cell-derived miR-378a-3p-enriched EVs are taken up by

macrophages, and miR-378a-3p promotes nuclear translocation of

Nfatc1 by inhibiting Dyrk1a, thereby accelerating osteolysis (132).

Sclerostin, a small glycoprotein encoded by the Sost gene, is secreted

mainly by osteocytes and is essential for osteoblast development

(133). Sclerostin also plays an important regulatory role in bone

formation and bone resorption (134). Intriguingly, sclerostin and

RANKL secreted by osteocytes are significantly elevated in circulating

serum of multiple myeloma patients (135). The study has unmasked

that 2-deoxyD-ribose derived from myeloma cells promoted the

expression of major histocompatibility complex class II

transactivator (CIITA) in osteocytes through the STAT1/IRF1

signaling pathway. CIITA induces hyperactivation of osteoclasts by

increasing the secretion of osteolytic cytokines by osteocytes through

acetylation of histone 3 lysine 14 in the promoters of TNFSF11

(encoding RANKL) and SOST (encoding sclerostin) (136). Inhibition

of sclerostin expression significantly reduces osteolytic bone lesions in
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a mouse model of myeloma (134). Consequently, therapeutic

targeting of anti-sclerostin has also been attempted for the

treatment of osteoclast-associated osteolytic diseases. However, the

mechanism by which osteocytes secrete osteolytic cytokines under

the stimulation of tumor cells remains to be elucidated.
7.3 Rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease common in

women, with an incidence of about 1% (137). Long-term chronic

inflammation leads to osteoclast activation and degeneration of

cartilage and bone tissue. During the pathological process of the

disease, the release of RANKL by activated lymphocytes induces

osteoclast activation and the release of TNF-a and IL-6 (138).

Another autoimmune disease, psoriatic arthritis (PsA), has a similar

cellular mechanism (139). Study has exhibited that CD83 can reduce

the expression levels of RANKL, OC-Stamp, MMP9, IL-1b and IL-6

by inducing the downstream of the signaling cascade to bind to the

toll-like receptor 4/(TLR4/MD2) receptor complex, thereby inhibiting

osteoclast formation and preventing arthritic bone erosion (140).
7.4 Bacterial infection of bone

Just as its name implies, aseptic osteolysis is defined first by

absence of evidence of clinical or microbial infection and second by

compliance with clinical symptoms and radiographic evidence (141,

142). Despite significant advances in medicine to combat infection,

bone infection remains a formidable threat in orthopedic surgery. In

the United States, there are about 10,000-20,000 cases of joint

replacement infection and 30%-42% of fracture-related infections

each year, and the most important pathogen is Staphylococcus aureus

(143, 144). The clinical outcome of infection is mostly surgical failure

and revision surgery with a high recurrence rate.

The molecular mechanism of bone infection-mediated osteolysis

remains to be elucidated. Existing evidence shows that macrophages

are the first line of defense against pathogens, while neutrophils are

the main executors of the innate immune response to bacteria. When

anti-inflammatory M2 macrophages are activated by pattern

recognition receptors (PRRs), PRRs recognize bacterial pathogen-

associated molecular patterns (PAMPs), leading to macrophage M1

polarization (145, 146). Macrophages secrete chemokines TNFa, IL-
1b, and CXCL1 to recruit and activate neutrophils (147–149).

RANKL released by neutrophils can promote osteoclastogenesis

(150). Simultaneously, macrophages that phagocytize wear particles

increase the release of pro-inflammatory factors, accelerating

osteoclast activation and osteolysis.

The essential role of osteocytes in bacterially induced osteolysis

depends on the regulation of RANKL release. PAMPs increase the

release of RANKL by activating the myeloid differentiation primary

response 88 (MYD88) pathway in osteocytes. Inhibition of MYD88

blocks calvarial osteolysis induced by PAMPs and resist alveolar

bone resorption induced by oral Porphyromonas gingivalis (Pg)

infection. Mechanistically, MYD88 promotes phosphorylation of

CREB and STAT3, thereby increasing RANKL release from
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osteocytes (151). As a pleiotropic cytokine, the role of IL-27 in

bacterial infection remains controversial. Exogenous IL-27

administration for Staphylococcus aureus-infected osteomyelitis

not only induces accumulation of pro-inflammatory IL-17-

producing RORgt+ neutrophils, leading to reduced abscess

formation, but also inhibits RANKL-induced osteoclast activation

to relieve osteomyelitis osteolysis (152). It has also been confirmed

in multiple studies that IL-27 can directly inhibit rank-induced

osteoclastogenesis and reduce bone loss (153–158). Macrophages

are the host cells of M. tuberculosis infection and the innate

immune cells of the host responsible for killing and clearing M.

tuberculosis (159). STAT1 and CXCL10 are involved in M1-

macrophage polarization and contribute to osteolysis and bone

remodeling during extrapulmonary tuberculosis infection (160). In

addition, osteopetrosis, a congenital generalized abnormal

development of bone structure, is caused by defects in the

production of osteoclast factors (161). There is currently no

effective treatment for osteopetrosis, although bone marrow

transplants and cord blood transfusions hold promise. Notably,

the regulation of osteoclasts may provide new therapeutic strategies.
8 Disscussion

Total joint arthroplasty (TJA) is the most appropriate way to treat

end-stage arthritis, although surgical methods and implanted materials

are constantly evolving, aseptic PPO and PL, mainly mediated by wear

particles, are the most common causes of TJA failure reason (162).

BMDMs, immune cells of the nonspecific innate immune response,

and osteoclasts differentiated and fused by BMDMs play a crucial role

in periprosthetic bone homeostasis. Phagocytosis of wear particles by

macrophages results in the release of proinflammatory cytokines,

growth factors, and chemokines. The inflammatory cascade

stimulates the maturation of osteoclasts and, meanwhile, inhibits the

osteoblast lineage (13). Therefore, the regulation of macrophage and

osteoclast function is a potential strategy to optimize the biological and

clinical outcomes of joint prosthesis implantation surgery. To date,

there are no approved pharmacological interventions that effectively

prevent particle-associated periprosthetic osteolysis. Although some

anti-osteoclast drugs, such as bisphosphonates, estrogens, and RANKL

inhibitors, have been developed, their therapeutic effects are

controversial (163, 164). For example, bisphosphonates are used in

anti-osteoporotic therapy, while macrophages exposed to zoledronic

acid polarize to an M1 pro-inflammatory phenotype, for this reason,

the use of bisphosphonates to treat wear particle-associated osteolysis is

not theoretically supported (165, 166). Currently, new ways to

modulate macrophage/osteoclast activity to replace existing therapies

are urgently needed.

The current research on the signaling pathways of macrophages

and osteoclasts mainly focuses on the formation of ROS and

inflammatory factors mediated by the RANKL/NF-kB/MAPKs

pathway. This is a classic signaling pathway that crosstalks with

various regulatory cell deaths, such as pyroptosis, autophagy,

pyroptosis, and ferroptosis. Many of these unknown mechanisms

remain to be elucidated may provide valuable strategies for

mitigating PPO. Exosomes can not only stimulate stem cell-like
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regenerative effects in damaged tissues, but also avoid the risks and

drawbacks associated with stem cell transplantation therapy (167, 168).

Some stem cell-derived exosomes can promote osteogenic

differentiation and inhibit the production of inflammatory factors

and osteoclast activation, which has great potential in preventing

PPO. Undoubtedly, the recognition and subsequent clearance of

exosomes by immune cells in the body is the biggest challenge for

the application of exosomes in vivo. Recently, research on biomimetic

drug delivery systems has attracted more and more attention.

Macrophage membrane-coated nanoparticles have high targeted

delivery efficiency and show good therapeutic effects on various

inflammatory diseases, including wear particle-induced periprosthetic

inflammation (88, 169). Currently, there are many types of

nanoparticles or drugs coated in macrophage membranes, for

example, lactose-acid nanoparticles (170), liposomes (169), poly

(lactic-co-glycolic acid) (88), nano-gemcitabine (171), magnetic

photothermal nanocomplexes (172), poly lactic-co-glycolic acid

nanoparticle vaccine carrying PilY1 Ep (173) and mesoporous silica

nanoparticles (174), etc. Macrophage membrane-coated drugs can

avoid being recognized and cleared by the immune system, thereby

enhancing the stability of drug release (175). Notably, protein

molecules on cell membranes may elicit an immune response. These

potential safety issues need to be addressed before their successful

application in clinical practice.

The constant renewal of materials, such as highly polished

cobalt chromium alloy and zirconia ceramics, to reduce the

generation of wear debris has achieved a certain effect.

Although the wear intensity is relatively reduced, osteolytic

wear particles are still unavoidable (176). The development of

biomaterials to suppress inflammatory responses and

osteoclastogenesis through prosthetic drug delivery provides

opportunities for the treatment of PPO. UHMWPE loaded

with antioxidant vitamin E can significantly reduce the

production of osteolytic cytokines TNFa, IL-1b, IL-6 and IL-8

by peripheral blood mononuclear cells, which reduces the

generation of wear particles of implants (43). In the coating on

the surface of the prosthesi s , such as ceramics and

hydroxyapatite, adding antibacterial drugs or metal ions can

enhance the antibacterial performance (177–179). Adding bone

morphogenetic protein-2 (BMP-2) to the coating can

significantly promote osteogenesis (180). Similarly, loading

prosthetic coatings with drugs that inhibit inflammation and

osteoclast activation may benefit from the same therapeutic strategy.

Despite current knowledge, wear particle-induced periprosthetic

osteolysis is an aseptic loosening, ie without evidence of clinical or

microbial infection. However, a large body of research evidence also

supports the role of bacteria in aseptic loosening (181–183).

Macrophages, foreign body giant cells, T cells, and B cells were also

present in the tissue surrounding the prosthesis during revision

surgery with a diagnosis of aseptic loosening. Some scholars believe

that wear-related inflammatory reactions, including sterility and

suppuration, are interrelated (184–186). The molecular mechanism

may involve the impact of wear debris on macrophages and

neutrophils impairing the ability of the innate immune system to

clear bacteria. In addition, wear particles destroy dendritic cells and T

lymphocytes of the adaptive immune response. Although the role of
Frontiers in Immunology 09
dendritic cells in the mechanisms of implant debris-induced

inflammation remains unclear, they are required for targeted

responses to infection in periprosthetic joints (187) In conclusion,

the combination of antibiotic drugs, anti-inflammatory drugs and

antioxidants to modify implanted prosthetic materials is a potential

strategy to reduce the risk of PPO (188, 189).

In summary, orthopedic surgeons must accurately implant

prostheses during joint replacement and continuously improve

surgical skills. Simultaneously, they also need to pay attention to

the outstanding problem of PPO, which leads to long-term failure of

surgery. Efficient regulation of macrophages and osteoclasts is a

promising way to treat wear particle-mediated PPO.
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