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Editorial on the Research Topic

Structural modeling and computational analyses of immune
system molecules
Immune system genes have evolved to cope with harmful environmental agents and to

control self-injury, tasks that have been primarily performed by the T and B cell

lymphocytes. In medullary thymus epithelial cells, the expression of the autoimmune

regulator (AIRE) gene during the negative selection permits the expression of thousands of

tissue-specific genes, allowing the elimination of selfreactive T cells (negative selection), the

survival of non-self-reactive T cells (positive selection), and the generation of T regulatory

cells (Santos et al.). These essential processes in T cell development are possible through the

specific interactions between T cell receptors (TCRs) and major histocompatibility

complex (MHC) receptors at the surface of thymocytes (1). Notably, infectious,

autoimmune and cancer disorders have been associated with particular MHC class I or

class II molecules, due to the differential peptide presentation capacity of different MHC

allotypes. Considering the enormous polymorphism of MHC molecules in worldwide

populations and the even greater diversity of peptides to be presented by these molecules,

the study of the peptide-MHC binding has direct impacts on disease association, vaccine

development, and transplantation. To handle the enormous diversity of potential antigens,

somatic rearrangement of genes encoding both TCRs and B cell receptors (BCRs, or

antibodies) permits these immune system cells to specifically recognize antigens, and

perform effector functions against environmental agents (2). In turn, the specificity of these

interactions is driven by structural features of these immune system molecules, and the

structural characterization of these molecular complexes will be the key for several

biomedical applications. However, experimental methods for protein structure

determination cannot be deployed at the scale needed to study this diversity. Therefore,

there is a constant need for reliable computational approaches to enable structural

modeling and analysis of immune system molecules and macromolecular complexes. In
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this context, computational methods for modeling the 3D structure

and dynamics of protein/protein and protein/peptide interactions

(1–5), together with deep-learning algorithms (6, 7), have been

developed and deployed to study how such diversity can influence

immune responses. In this Research Topic, we present new

computational strategies to broaden the understanding of these

critical immune system molecules.

For instance, Santos et al. leveraged the analysis of protein/

protein and protein/peptide interactions to understand the

pathogenesis of the autoimmune polyendocrinopathy candidiasis

ectodermal dystrophy (APECED), which is primarily caused by the

AIRE SAND domain G228Wmutation (Figure 1). They studied the

interaction of the whole SAND domain with the SIRT-1 molecule,

an important component of the AIRE complex. The results from

structural modeling, molecular docking, and molecular dynamics of

both the AIRE wild type G228 (glycine) and the AIRE mutant

W228 (tryptophan) showed that this mutation negatively

influenced the AIRE-SRT-1 interaction. The mutation impairs the

downstream activation of the RNA polymerase II, which is

responsible for the promiscuous tissue expression required for the

negative selection in the thymus. To validate the in silico results, the

authors performed an elegant in vitro study using surface plasmon

resonance, coupling the 211-230 residues of the SAND domain with

the SIRT-1 protein, showing similar results. Noteworthy, the

validation of in silico studies, whenever possible, should be

provided by a complementary strategy (e.g., in vitro, in vivo, and

functional studies), as reported here.

Also focused on protein/peptide interactions, Marzella et al.

developed the PANDORA generic pipeline to model the 3D

structures of peptides displayed by both class I and class II MHC

molecules. Based on experimentally-determined structural

templates from an extensive reference database, this friendly and

freely-available algorithm uses anchor restraints to enable fast and

accurate modeling of MHC-bound peptides. In parallel, Ochoa et al.

developed the PanMHC-PARCE protocol to engineer peptides that
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can simultaneously bind to several class II MHC molecules,

envisaging applications for the development of vaccines and

immunotherapies with broader population coverage. The authors

used this approach to improve the binding affinity of a Plasmodium

vivax epitope towards multiple MHC molecules, and confirmed the

predicted enhanced binding capacity experimentally. Additionally,

the authors validated their engineered peptides by immunizing mice

and observing interferon-g production in vivo.

Going beyond epitopes recognized by T cell receptors in the

context of the MHC molecules, the interactions between B cell

receptors (antibodies) and their targets were studied by Tran et al.

These large protein/protein complexes pose several computational

challenges for modeling, regarding their size, the flexibility of the

interacting surfaces, and the low resolution of available

experimental data. To overcome these challenges, the authors

revisited the hydrogen-deuterium exchange mass spectrometry

(HDX-MS) methodology, which has been used for epitope-

mapping of antibodies (8). The authors addressed the HDX-MS

limitations, especially the peptide resolution, proposing that

computational simulation of HDX-MS-generated data combined

with protein docking will be able to overcome these limitations.

Although the determination of antibody specificity is far from

exhibiting a complete resolution, the computational strategy used

by the authors represents an additional step to solve the

interpretation of this complex protein/protein interaction. Rather

than studying these large antigen/antibody complexes, Cohen et al.

focused on single heavy chain camelid antibodies (nanobody), as a

cost-effective highly stable substitute for full-length antibodies.

Considering that the nanobody domain presents long CDR3

loops, lacks the light chains, and can be administered by

aerosolization, nanobodies may define antibody specificity and

may be used as a therapeutic agent.

Taken together, this series encompass both specific contributions,

as well as broader insights into the future of computational modeling

for immunological applications. The specific contributions include i)
FIGURE 1

Close-up view of the molecular interactions between the mutant AIRE SAND domain (surface in red) and SIRT1 protein (depicted in dark grey) after 1
microsecond of molecular dynamics simulation. The mutated W228 residue within the AIRE SAND domain is prominently featured (side chain
colored in red/blue), showing its proximity to the SIRT1’s catalytic H363 residue (side chain colored in blue/green). The relative positions of the
W228 and H363 residues underscore the altered interaction dynamics between the mutant AIRE and SIRT1, as compared to the wild-type complex.
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the application of bioinformatics approaches to understand the

diversity of the immune system molecules (Marzella et al., Ochoa

et al., Tran et al., Cohen et al.), ii) the understanding of the disease

pathogenesis (Santos et al.), iii) improvement of tools to validate in

silico studies (Santos et al., Ochoa et al.), iii) new tools for pMHC

modeling (PANDORA) and engineering (PanMHC-PARCE)

(Marzella et al., Ochoa et al.), and the use of nanobodies to

discriminate T/B cell epitopes (Cohen et al.). More broadly, these

studies demonstrate the strength of integrative approaches

combining experimental methods with computational approaches,

to complement each other when dealing with complex systems such

as those involved in immune responses (9). Further advances in this

interface may improve vaccine development (10), predict disease

pathogenesis, susceptibility and morbidity, and provide strategies to

ameliorate disease treatment.
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