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Diabetes mellitus is a metabolic disease that is characterized by chronic

hyperglycemia due to a variety of etiological factors. Long-term metabolic stress

induces harmful inflammation leading to chronic complications, mainly diabetic

ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy.

With diabetes complications being one of the leading causes of disability and

death, the use of anti-inflammatories in combination therapy for diabetes is

increasing. There has been increasing interest in targeting significant regulators

of the inflammatory pathway, notably receptor-interacting serine/threonine-

kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as

drug targets for managing inflammation in treating diabetes complications. In this

review, we aim to provide an up-to-date summary of current research on the

mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal

in chronic inflammation and immunity, in relation to diabetic complications which

may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors

as anti-inflammatory therapeutic agents for diabetic complications.

KEYWORDS

diabetes, diabetic complications, inflammation, regulatory cell death, receptor
interacting protein kinase
1 Introduction

Diabetesmellitus (DM) is characterized bymetabolic dysregulation resulting from impaired

insulin secretion and/or insulin resistance (1). The consequential increased insulin resistance

and disrupted glucose metabolism lead to chronic inflammation (2). Epidemiological findings

imply that patients with type 2 diabetes showcase higher levels of acute phase reaction products

and inflammatory mediators within their bloodstream (3). It has long been objectively

recognized in clinical medicine that salicylic acid-based anti-inflammatory drugs can lower

blood glucose levels (4). Basic medical research has found that inflammatory cytokines may
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impair insulin signaling due to “cross-talk” (5). Indeed, all the research

findings till now has shown that pancreatic islets of T2DM patients

exhibit detectable tissue inflammation which is accompanied by

increased expression of inflammatory factors and immune cell

infiltration. These are hallmark features of chronic inflammation,

which leads to gradual progression of pathological fibrosis (6–9). The

chronic low-grade inflammatory state is considered a crucial

mechanism in the advancement of diabetic complications, including

diabetic ophthalmopathy, diabetic cardiovascular complications, and

diabetic nephropathy.

NF-kB pathway, which is the activation of inflammasome and cell

death is thought to regulate the inflammation responsible for diabetic

complications (10–12). NF-kB is a crucial moderator of the innate

immune system and is instrumental in maintaining the normal

physiological functions of the body. In response to inflammation,

the body triggers a natural immune response, whereby immune-

responsive cells release inflammatory agents whose transcription

depends on NF-kB activation (13, 14). Rupture of necrotic or

apoptotic cells causes the release of molecules of Damage-

Associated Molecular Pattern (DAMPs). These substances are

released into the interstitial space of cells or the blood circulation

after rupture or necrosis of autologous cells, and are recognized as

danger signals by receptors. This recognition leads to stimulation of

the immune system, which results in inflammation (15, 16).

Inflammasomes are crucial centers of innate immunity that

facilitate the secretion of pro-inflammatory cytokines and regulate

the inflammatory response via interactions with other cells (17). Both

RIPK1 and RIPK3 are closely linked to these regulatory processes and

are considered a highly promising target. Inhibiting their kinase

activities has shown efficacy in treating several animal models of

human diseases (18–21). The promising potential of RIPK1 inhibitors

in treating autoimmune diseases, inflammation, acute illnesses (such

as severe novel coronavirus pneumonia sepsis), and a range of other

conditions has led to great anticipation for their development (22, 23).

While it is increasingly acknowledged that diabetes is an

autoinflammatory condition and its complications stem from a

prolonged low-grade inflammatory state, the development of drugs

targeting RIPK1 and RIPK3 to alleviate diabetic complications remains

inadequate. Since overactivation of RIPK1 and RIPK3 can lead to

harmful inflammatory responses and tissue damage, understanding the

precise mechanisms of RIPK1 and RIPK3 regulation of inflammation

and the development of selective inhibitors are of utmost importance

for the treatment of diabetes complications (19, 24). Therefore, this

review firstly examines the primary inflammatory mechanisms of

diabetic complications and highlights the intricate and crucial

functions of RIPK1 and RIPK3 in these mechanisms. Subsequently,

this paper provides a concise summary of the latest research on the

relationship between diabetic complications and RIPK1 and RIPK3 and

additionally explores potential issues and drug development targets.
2 Structure and function of
RIPK1 and RIPK3

Receptor-interacting protein kinases RIPK1 and RIPK3 are key

protein kinases in the organism involved in a wide range of
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biological processes. Overexpression or aberrant function of

RIPK1 and RIPK3 has been shown to correlate with the onset

and progression of many diseases, ranging from inflammatory

responses to neurodegenerative diseases and tumors.

Structure is the basis of a protein’s function, and different

structural domains enabling different functions for RIPK1 and

RIPK3. Three structural domains can be identified for RIPK1: the

N-terminal kinase domain, the intermediate structural domain and

the C-terminal death domain (DD) (25). The N-terminal kinase

domain of RIPK1 plays a crucial role in RIPK1-dependent apoptosis

and necroptosis, with its kinase activity being essential (26).

Caspase-8, a crucial apoptotic protein, induces apoptosis through

the cleavage of RIPK1 at D324 and the suppression of RIPK1

activation (25).

The intermediate structural domain of RIPK1 is involved in

regulating NF-kB signaling (27, 28). RIPK1 can undergo

ubiquitination on various residues within its structural domain,

leading to the formation of complex I, which serves as a critical

scaffold (29). Hai-Bing Zhang’s team discovered that the

intermediate structural domain in RIPK1 holds a Lys377

polyubiquitination site, which is essential for building the NF-kB-
activated IKK kinase complex (30). This complex can undergo

ubiquitination by E3 ubiquitin ligases, including inhibitor of

apoptosis 1 (cIAP1) or cIAP2 (31–33). The Lys377 residue

facilitates transforming growth factor-b-activated kinase 1

(TAK1) activation by serving as a binding hub for downstream

signals (e. g. NF-kB) through recruitment of the K63 ubiquitin-

binding proteins TAK1-binding protein 2 (TAB2) or TAB3. This, in

turn, promotes TAK1 activation (34, 35). Activated TAK1 mediates

inhibitory phosphorylation of RIPK1 through activation of IkB
kinase and MAPK. This leads to activation of the NF-kB pathway,

promoting survival signaling (35, 36).

The C-terminal DD structural domain of RIPK1 heterodimerizes

with the death structural domains of TNFR1, TRADD, and FADD.

Additionally, it homodimerizes with itself, ultimately promoting the

formation of death receptor signaling complex II. This leads to the

activation of the N-terminal kinase domain and the promotion of

necrotic apoptosis (29, 37, 38). DAMPs released through necrotic

apoptosis establish feed-forward amplification loops via NF-kB-
dependent production of inflammatory cytokines, thus further

amplifying the inflammation and forming the cycle (39–41).

RIPK3 comprises an N-terminal structural domain of kinase

and RHIM. The kinase activity of RIPK3 is linked with necroptotic

apoptosis. Wang’s group demonstrated that RIPK3 undergoes

autophosphorylation at residue S227 and binds to MLKL (42),

forming a stabilizing complex that ultimately results in necrotic

cell death through the creation of a cleavage pore in the plasma

membrane. Another domain, the receptor-interacting protein

kinase homotypic interaction motif (RHIM), is present in both

RIPK1 and RIPK3 and serves a vital function. The RHIM enables

interaction among RIPK1 and RIPK3 and facilitates transduction

downstream signal for inflammation and cell death by allowing

binding to various cellular junctions (43–45). For instance, as

early as 2012 (46), research revealed that ZBP1 (Z-DNA binding

protein 1; also known as DAI or DLM1) could trigger necrotic

apoptosis via homotypic interaction between RHIM and RIPK3.
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As research progressed, the structure of ZBP1 was thoroughly

detailed, revealing the presence of two RHIM structural domains;

however, only one of the domains was found to be functional (47).

The functional RHIM interacts with RIPK1 and RIPK3 to trigger

the transduction of inflammatory signal. In this process, RIPK1

and RIPK3 act as scaffolds and are not associated with kinase

activity or cell death (48). In both ZBP1 and TLR adaptors, RHIM

is also the primary mode of TRIF signaling (26, 49). And following

these receptors and associated adaptors, RIPK1 employs various

mechanisms to regulate different modes (50), including activation

of NF-kB in complex I bound to TNFR1, which is independent of

kinase function, and maintaining balanced control of

inappropriate activation of RIPK3 and caspase-8 (26, 50, 51).

However, the full understanding of how RIPK1 balances the

signaling of these various factors is still lacking. It is already

known that the RHIM structural domain shared by RIPK1 and

RIPK3 may serve as an integrator of the pro-death upstream

signaling facilitated by TRIF and regulate the unnecessary

activation of RIPK3 by ZBP1 (24, 25, 49).

The varied functions of RIPK1 and RIPK3 can be simply

categorized into two roles: a scaffolding role and a kinase role.

Interestingly, the scaffolding effect does not align completely with

the kinase action of the process. In RIPK1, its scaffolding function

controls pro-survival signaling and pro-inflammation, while the

kinase function regulates cell death. RIPK3 exhibits similarity to

RIPK1 in that the process of scaffolding is linked with pro-

inflammatory signaling, while the state of kinase activity is linked

with necrotic apoptosis. However, current research on RIPK1

inhibitors focuses primarily on its kinase activity, with even fewer

investigations on RIPK3 inhibitors and drugs specifically targeting

the role of the scaffold have yet to be developed. If using kinases like

TAK1 and TBK1 as drug targets for the regulation of RIPK1 and

RIPK3, it is important to consider their impact on RIPK1 and

RIPK3. Therefore, further advancement of studies on the role of the

RIPK1 and RIPK3 scaffolds is urgently needed. Coupled with the

fact that the structure of RIPK lends itself to the development of

pharmacologically specific small molecule inhibitors, more in-depth

studies could help physicians tailor specific targeted inhibitors to

the risk of progression of each patient, making precision medicine

a reality.
3 Role of RIPK1 and RIPK3 in the
regulation of inflammation

RIPK1 and RIPK3 play a significant role in the transduction of

repetitive signal within the body’s inflammatory response and are

instrumental in regulating and activating multiple signaling

pathways. RIPK1 and RIPK3 activate inflammation-related

pathways like NF-kB, leading to the production of inflammatory

factors and responses (52–54). Furthermore, both RIPK1 and

RIPK3 have been linked to the activation of the NLRP3

inflammasome and are also implicated in the production of the

pro-inflammatory cytokine IL-1b (55, 56). Recent studies have

shown that both RIPK1 and RIPK3 play a role in the regulation

of cell death pathway selection and balance. Moreover, RIPK1 has
Frontiers in Immunology 03
been found to activate numerous cell death pathways, like apoptosis

and necroptosis, in response to external stimuli (25, 57).
3.1 Role of RIPK1 and RIPK3 in NF-kB
signaling pathway

NF-kB signaling pathway comprises receptor and receptor-

proximal signaling interface proteins, IkB kinase complexes, IkB
proteins, and NF-kB dimers (57). These proteins function as

transcription factors that form dimers and regulate the expression

of genes encoding acute phase response proteins, cytokines,

immunomodulatory molecules, and cell adhesion molecules,

among others (58–60). NF-kB is involved in various biological

processes, including immune and inflammatory responses, as well

as tumorigenesis, through the regulation of gene expression (61,

62). Numerous extracellular stimulatory signals, such as pro-

inflammatory cytokines, physicochemical stimuli, LPS, and

others, can activate the NF-kB signaling pathway (63, 64). Here

we will use TNF-a, a classical pro-inflammatory cytokine, as

an example.

Nutritional overload in peripheral metabolic tissues results in

the production of TNF-a, which bind to TNFR1 and activate pre-

assembled TNFR1 trimers, prompting the formation of complex I

(65–69). The membrane complex I, also referred to as TNF receptor

signaling complex (TNF-RSC), is composed of TNFR1 associated-

death domain (TRADD), TNFR1 associated-factor 2 (TRAF2),

RIPK1, cellular inhibitor of apoptosis proteins 1 (cIAP1), cIAP2,

and linear ubiquitin chain assembly complex (LUBAC) (70).

TRADD and RIPK1 are recruited to the intracellular death

domain (DD) of activated TNFR1 through their respective DD

structural domains to initiate formation of complex I (71, 72). In

complex I, TRADD recruits the E3 ubiquitin ligase IAPs and then

adds the K63 ubiquitin chain to RIPK1 (20).

RIPK1 serves as a crucial bridging protein in the classical NF-kB
signaling pathway by enlisting the IKK complex, which comprises

IKKa, IKKb, and IKKg, via its binding to IKKg (also referred to as

NEMO), an indispensable regulator of NF-kB signaling (31, 73, 74).

Direct mediation of IKK complex activation occurs through an

oligomerization- or ubiquitination-dependent mechanism of IKKg
(26, 75). The IKK complex, once activated, phosphorylates the IkB
protein. As a result, phosphorylated IkB undergoes both

ubiquitination and proteasomal degradation, thus releasing the

NF-kB/Rel complexes (27, 76). The NF-kB/Rel complex is

activated through post-translational modifications such as

phosphorylation, acetylation, and glycosylation. Once activated, it

is translocated into the nucleus and binds to target genes, thereby

promoting transcription and increased expression of inflammatory

mediators, including chemokines and cytokines (77–80) (Figure 1).

Appropriate responses from NF-kB are vital for the survival of

cells, thereby promoting immunity by regulating the expression of

genes associated with inflammation and neutralizing the cytotoxic

effects of TNF-a (51, 81). During chronic diabetes, however,

persistent hyperglycemia causes elevated blood levels of advanced

glycation end products (AGEs). Subsequently, AGEs induce

activation of IkB kinase (IKKb), facilitate phosphorylation- and
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ubiquitination-mediated proteasomal degradation of the Ikb
protein inhibitor by binding with RAGE, and consequently

prompt the release of NF-kB (82–84). The activated master

transcription factor NF-kB moves to the nucleus and enhances

the expression of different inflammatory cytokines (IL-1b, IL-6,
TNF-a), which can lead to insulin resistance. This is a critical

process where the ubiquitination scaffolding of RIPK1 plays a

crucial role. RIPK1-deficient mice experience systemic multiorgan

inflammation and typically die soon after birth (82, 85, 86).

Early studies on RIPK3, which has the same origin with RIPK1,

concentrated on inducing cell death and activating NF-kB, but the
findings were perplexing, for RIPK3 hindered the activation of NF-

kB by both Toll-like Receptor 3 (TLR3) and the TLR4 signaling

adapters TRIF and TNFR1 (86, 87). However, other studies have

shown increased NF-kB activation after RIPK3 enhancement,

leading to speculation that RIPK3 may not significantly

contribute to NF-kB activation (88). However, subsequent

research indicated that phosphorylation and degradation of IkBa,
induced by tumor necrosis factor, TLR2, and TLR4, remained

unaltered in cells with double knockout of RIPK3 (88–91). The

expression of tumor necrosis factor, IL-6, and IL-1b induced by

endotoxin decreased in double knockout RIPK3 mice. Moreover,

LPS-induced phosphorylation and degradation of IkBa remained

normal in double knockout RIPK3 bone marrow-derived

macrophages (BMDMs) (92). However, the RelB-p50

heterodimer’s nuclear translocation was significantly hindered,

while that of other NF-kB subunits remained unaffected (93). The

findings indicate that although RIPK1 promotes the early

phosphorylation and degradation of IkBa, RIPK3 controls the

activation of NF-kB in a cell type-dependent manner downstream
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of IkBka. Thus, while RIPK1 and RIPK3 frequently work together

to induce cell death, they regulate the activation of NF-kB separately

through different mechanisms. Additional all-encompassing

proteomic analyses investigating the molecular interactions linked

to RIPK1 and RIPK3 are necessary to unveil further mechanistic

details of these regulations.

Furthermore, prior research has demonstrated that signal

transduction of RAGE/NF-kB additionally triggers the

development of NLRP3 inflammasome. In human monocytes,

lipopolysaccharide signaling through TRIF activates the NLRP3

inflammasome, which recruits RIPK1, FADD, and caspase-8 to

trigger K+-non-efflux-dependent NLRP3 activation (18, 94).

Notably, in mice bone marrow stromal cells, TLR4 activation

alone directly stimulates NLRP3 inflammasome activity mediated

by RIPK1, RIPK3 and caspase-8 and is independent of cell death

(95, 96). NLRP3 inflammasome respond to cellular stress signals

and participate in the maturation and secretion of the critical

cytokines, IL-1b and IL-18, leading to inflammation (97–100).

Given the complex regulatory mechanisms involved, it would be

reasonable to take the view that inhibiting the kinases RIPK1 and

RIPK3 could modulate NLRP3 inflammasome levels through the

cell death pathway. Necrotic apoptosis releases DAMPs, which

activate NLRP3, leading to intracellular potassium loss. This, in

turn, results in NLRP3 cleavage, activating caspase-1 and IL-1b and

triggers a complex network of cellular responses that cause local and

systemic inflammation (9). The latest studies indicate that

intravenous immunoglobulin (IVIg) is capable of regulating the

expression and activation of NLRP3 inflammasomes by reducing

RIPK1 levels. Therefore, the inhibition of RIPK1 can help to reduce

inflammation by regulating inflammasomes. However, due to the
FIGURE 1

Mechanism of NF-kB activation by RIPK1. TNF-a binds to the membrane receptor TNFR1 and recruits TRADD, TRAF2, cIAP1/2 and RIPK1 to initiate
the formation of complex I, which is composed of the ubiquitin chain assembly complex LUBAC and the E3 ubiquitin ligase. In complex I, LUBAC
works with the E3 ubiquitin ligase to add the K63 ubiquitin chain to RIPK1, which binds to NEMO and recruits the IKK complex, activating the IkB
protein and releasing NF-kB. Subsequent translocation of NF-kB to the nucleus promotes the transcription of pro-inflammatory genes and increases
the expression of cytosolic inflammatory mediators.
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complexity and variety of cell types found in the human body,

further experiments are necessary to confirm the utility of

RIPK inhibitors.
3.2 Role of RIPK1 and RIPK3 in cell death

Cell death runs through the life activities of multicellular

organisms, and countless diseases of living organisms arise from

abnormal cell death, whether in excessive or inadequate amounts

(101, 102). Regulatory cell death is a multifaceted process. With the

development of the research, various modes of regulatory cell death

have been identified, mainly categorized as apoptosis and necrotic

apoptosis based on their effects. As previously mentioned, complex

I activates NF-kB and supports cell survival. However, its short

lifespan quickly transforms into the transition of the secondary

cytoplasmic complex II, which regulates cell death. The different

forms of complex II direct the cell towards different pathways of

death (29, 37, 38).

Apoptosis is the-earliest-discovered regulated form of cell death

that can be triggered by TNF-a through an exogenous pathway or

by mitochondrial effectors via an endogenous pathway (103, 104).

Caspases are crucial proteins that drive apoptosis. Complex IIa is

the cytoplasmic complex consisting of FADD and caspase-8. The

activated caspase-8 in complex IIa initiates the apoptotic program

via a cascade reaction and cleaves necrotic mediators, including

RIPK1 and RIPK3, among others (18, 25, 29). Caspase-8 cleavage of

RIPK1’s C-terminal agonist domain at residue D324 is a crucial

mechanism for inducing apoptosis and preventing both RIPK1

activation and necrotic apoptosis (105–107).
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When caspase-8 activation is inhibited, RIPK1 is able to

dimerize through its C-terminal DD, ultimately resulting in the

activation of RIPK1 as well as the formation of complex IIb. This

complex includes FADD, caspase-8, RIPK1, RIPK3, and MLKL (18,

29, 102). Subsequent ubiquitination of RIPK1 within complex IIb

facilitates the activation of RIPK3 and MLKL. Additionally, RIPK3,

which shares the same RHIM Domain as RIPK1, forms a

necrosome with RIPK1 via a homotypic interaction, also referred

to as complex IIc (18, 29). RIPK3 oligomers recruit MLKL to

necrosomes, leading to its oligomerization (108). Oligomerized

MLKL translocate to the plasma membrane through the Golgi-

Microtubule-Actin pathway (109). and forms clusters of pores with

tight junction proteins or modulates ion channel flux to induce

necrotic apoptosis (Figure 2).

It should be noted that while RIPK1 in most cases is generally

accepted as the upstream kinase of RIPK3, some research has

demonstrated that RIPK3 can trigger necrotic apoptosis without

reliance on RIPK1. Furthermore, this effect has been observed in

cases where there is an overexpression of RIPK3 (15, 110–112).

Necrotic apoptosis is generally considered as a significant

contributor to cell death and inflammation in numerous

pathological contexts (112–115). For example, the important role

of cell death in driving inflammation is provided by mutation of the

proline-serine-threonine phosphatase-interacting protein 2 gene in

mice (Pstpip2cmo), which causes inflammatory lesions in the bones

and various degrees of skin and paw inflammation that closely

resemble chronic recurrent multifocal osteomyelitis in humans

(116). Necrotic and apoptotic cells display enlarged and swollen

organelles along with early plasma membrane damage, leading

eventually to rupture (115). The rapid loss of integrity of the
FIGURE 2

Mechanism of RIPK1 and RIPK3 in apoptosis and necroptosis. TNF-a binds to the membrane receptor TNFR1, recruiting TRADD, TRAF2, cIAP1/2 and
RIPK1, initiating the formation of pro-survival complex I. Caspase-8 is activated and RIPK1 and TRADD in complex I bind to FADD, forming complex
II a with activated caspase-8, promoting apoptosis. When caspase-8 activation is inhibited, RIPK1 and RIPK3 interact via RHIM isoforms, recruiting
MLKL and forming complex II b, leading to necroptosis.
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plasma membrane leads to the release of DAMPs, which include IL-

1a, HMGB1, and uric acid (117, 118). Since this type of

inflammation is not associated with pathogen infection, it is

known as aseptic inflammation. Like pathogen-induced

inflammation, danger-associated molecular patterns (DAMPs)

have the ability to activate both immune cells (such as

neutrophils, macrophages, and dendritic cells) and nonimmune

cells (like endothelial cells and fibroblasts) (119). These activated

cells release numerous cytokines and chemokines, resulting in the

recruitment of inflammatory cells and the activation of an adaptive

immune response (120).
3.3 Role of RIPK1 and RIPK3 in
inflammatory crosstalk

Although we have separately discussed regulatory cell death and

the NF-kB pathway, but in fact these two processes they often work

together. Infection, injury, and stress can lead to cytokine

production to prime response by directly inducing regulatory cell

death and triggering immune cell activation, leading to cytokine

production (121). Dead cells initiate adaptive immunity by

providing antigenic and inflammatory stimuli to dendritic cells

(DCs). The DCs then activate CD8 T cells through a process called

antigenic cross-stimulation (121).

However, Malek’s team discovered that the release of

inflammatory mediators, including DAMPs, from dead cells was

inadequate for initiating CD8 T cell crossover, and that successful

crossover initiation required RIPK1 signaling and NF-kB to induce

transcription within the dead cells (122). To orchestrate the

adaptive immune response, inflammatory and cell death signaling

pathways work together (123, 124). Receptors that elicit necrotic

apoptosis also effectively induce NF-kB (51, 125), The effector

molecule RIPK1 has been identified as a crucial mediator in

regulating cellular activity and inflammation through the

formation of common modules, complex I and complex II.

Overall, complex I promotes survival, complex IIa triggers

apoptosis, and complex IIb induces necrosis. The type of complex

II (either a or b) and caspase-8 status (either activated or inactivated)

determine the mode of cell death, which can either be apoptosis or

necrotic apoptosis. As a shared constituent of individual complexes,

RIPK1 integrates different signals from external sources, including

cytokines, growth factors, and pathogens, and regulates cellular

behavior. Inflammatory cytokine production involves signaling

through the TNF receptor (TNFR) superfamily and innate immune

signal transduction through pattern recognition receptors (PRRs).

Depending on the stimulus and environment, IAPs may ubiquitinate

RIPK1, leading to inflammatory signal transduction via NF-kB,
inhibiting RIPK3 necrosis-inducing complex formation, or

inhibiting RIPK1/inflammatory pathways triggered by RIPK3

complex activation (57, 126, 127). Simultaneously activated

immune cells produce cytokines that stimulate inflammation by

activating pro-inflammatory genes. Additionally, they initiate

regulated cell death, which closes a loop and amplifies the

inflammatory response (Figure 3).
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3.4 Progress in RIPK inhibitor development

As far back as 1876, researchers discovered that anti-

inflammatory treatments provided benefits for diabetes, including

the improvement of blood sugar in diabetic patients with the use of

sodium salicylate (128). More than a century later, Shoelson and

colleagues demonstrated that inhibition of the NF-kB pathway

mediates this antidiabetic effect (129). NF-kB functions as a

primary transcription factor in the upregulation of RAGE,

inflammatory cytokines, and associated insulin resistance genes,

and inhibition of NF-kB may be an effective treatment for diabetic

complications (82). Blocking pro-inflammatory cytokines has been

employed to treat other cytokine storm-related diseases, though

with varied success. This underscores the limited comprehension of

the underlying mechanisms (130). Currently, the primary objective

of inflammation-targeted therapy against NF-kB is to hinder its

activity. This can be achieved by inhibiting the phosphorylation of

the IkBa protein to prevent its ubiquitination and degradation, or

by hindering the DNA-binding activity of NF-kB (130). Similar to

the mixed success of drugs blocking proinflammatory cytokines like

TNF-a (131). Considering that NF-kB plays a crucial role in

mediating normal immune response, inhibiting its function

comes with the risk of inhibiting immune response while also

reducing inflammation, how to balance this relationship is a

major challenge in drug development. Thus, targeting the

development of specific small molecules meticulously is necessary

to ensure the vision of effective therapy.

Recent researches indicate that the upstream activating proteins

of NF-kB, namely RIPK1 and RIPK3, have significant roles in

immunity and inflammation. RIPK inhibitors have exhibited anti-

inflammatory potential by obstructing inflammatory signal

transduction. Developing highly selective inhibitors that target

RIPK1 may offer innovative solutions for treating a broad range

of diseases, including neurological disorders, inflammatory diseases,

tumors, and sepsis (132–136). Therefore, a combination of

inhibitors targeting RIPK1 and RIPK3 and hypoglycemic drugs

may increase effectiveness in treating diabetes mellitus (137–139).

It has been proved in experiments that Nec-1, Nec-1s, and

GSK872 are inhibitors that target RIPK1 and RIPK3 for treating

inflammatory diseases, such as inflammatory response syndrome,

diabetic ophthalmopathy, atherosclerosis, pancreatitis, nonalcoholic

fatty liver disease, and ischemia-reperfusion injury of the brain, heart,

and kidneys. These essential proof-of-concept studies have steered

the development of RIPKs in pharmaceutical companies towards

antagonists for clinical trials. Harris et al. disclosed in early 2016 that

a superb benzoxazinone-like lead compound, which inhibits RIPK1,

was discovered in a DNA-encoded compound library (GSK481)

(140). After one year, they published another article on the

optimization of GSK481 for acquiring a clinical candidate

compound (GSK2982772) and presented its outstanding features

(141). GSK2982772 specifically binds to RIPK1 and efficiently

blocks TNF-dependent cellular pathways, including NF-kB and

necrotic apoptosis-inducing inflammatory pathways. As a new anti-

inflammatory compound, it reduces the spontaneous production of

cytokines in ulcerative colitis tissues. Due to its favorable
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physicochemical properties and ADMET, it is anticipated to be a low-

dose oral drug. The compound is undergoing Phase II clinical trials

for the treatment of plaque psoriasis, rheumatoid arthritis, and

ulcerative colitis. Phase I clinical trials for inflammatory bowel

disease have been completed. Pharmaceutical companies, including

GlaxoSmithKline, Sanofi, and Denali, are currently prioritizing the

development of drugs that inhibit RIPK1. Table 1 presents the

pertinent developments in this area.

In conclusion, NF-kB and its associated kinases RIPK1 and

RIPK3 hold potential as specific targets for chronic immune-related

illnesses. However, due to the multifaceted role of NF-kB, targeting
it may result in unintended repercussions, ultimately leading to a

high incidence of side effects. Instead, utilizing the more nuanced

RIPK1 inhibitors may be a better approach to targeting

inflammation-related signals. Additionally, RIPK1, comprised of

multiple structural domains (including the RHIM structural

domain, DD structural domain, and kinase activity domain),

coordinates cell death and innate immunity signals to orchestrate

adaptive immunity. Currently, there are no effective inhibitors of

RIPK3 in clinical trials. However, as noted previously, RIPK3

functions independently of RIPK1. Therefore, targeting other

elements, such as specific downstream effector RIPK3, in the

development of RIPK1 inhibitor medications could potentially

enhance the drug’s therapeutic effectiveness in certain cases.

Currently, the kinase activity of RIPK3 remains poorly

understood, and development of drugs targeting RIPK1 holds

more promise.
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The development of RIPK1 inhibitors has primarily targeted its

kinase active site, including the ATP binding site and hydrophobic

pocket, with limited attention given to its scaffolding role. As a

result, exploring and targeting scaffolding proteins at the

intersection of cell death and host defense pathways may present

novel therapeutic avenues for immunotherapy research.
4 Role of RIPK1 and RIPK3 in diabetic
complications

The development of diabetic complications, including

ophthalmopathy, cardiovascular complications, and nephropathy,

is closely linked to the chronic low-grade inflammatory state caused

by diabetes mellitus (142–144). Chronic hyperglycemia and insulin

resistance result in the release of inflammatory catalysts and

activation of immune cells, subsequently contributing to the onset

and sustainability of the inflammatory response (145). Controlling

the inflammatory response is crucial for preventing and treating

diabetes-associated inflammatory complications.
4.1 Role of RIPK1 and RIPK3 in diabetic
retinopathy

Diabetic retinopathy (DR) is a specific microvascular

complication of diabetes mellitus that occurs in about one third
FIGURE 3

RIPK1 and RIPK3’s complex crosstalk in inflammation. TNF-a binds to the membrane receptor TNFR1 and recruits TRADD, TRAF2, cIAP1/2 and RIPK1
to initiate complex I formation. RIPK1, which is involved in complex I formation, is a key protein in both complex IIa and complex IIb. Ubiquitination
of RIPK1 plays an essential role in NF-kB signaling. Caspase-8, when activated, forms complex IIa with RIPK1, leading to apoptosis, whereas inhibition
of caspase-8 promotes necrotic apoptosis by forming complex IIb. RIPK3 can also independently induce the formation of inflammasome.
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of patients with DM, and with the incidence of DM increasing every

year, DR has become a major cause of vision loss in the general

population, along with blindness in patients with DM (146).

Microglia are resident macrophages in the retina that can

monitor their surroundings and maintain tissue homeostasis by

dynamically changing their morphology and function in response

to changing cellular microenvironment (147). In DR, microglia

proliferate and migrate from the inside of retina to the outside,

secreting a variety of inflammatory cytokines, leading to increased

vascular permeability, and causing intraretinal fluid accumulation

and disruption of the blood-retinal barrier (147). Indeed, elevated

chemokines and cytokines can be detected in the serum, vitreous,

retina and atrial fluid of patients with DR, and inhibition of these

inflammation-associated factors may be beneficial in halting

angiogenesis and neurodegeneration in DR (148).

Upon recognition of hyperglycemia-generated DAMPs,

microglia recruit RIPK1 as a cell death complex (26). RIPK1

mediates both its own activation and necroptosis. TNF-a released

by activated microglia further activates the TNF-a-RIPK1-NF-kB
signaling pathway to promote its transcription, leading to increased

expression of IL-6 and IL-8 and activation of caspase-1 (149). In
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diabet ic mouse model , act ivated caspase-1 promotes

neovascularization with new vessels sprouting from the optic

nerve head and small veins in the mid-peripheral retina

(150).These vessels eventually bleed into the vitreous cavity due

to fibrotic/glial cell vitreoretinal adhesion and traction, ultimately

leading to retinal detachment, making RIPK1 a very important

source target (151). In addition, in the vitro studies have shown that

endothelial cell apoptosis and necroptosis increase in response to

inflammatory cytokine stimulation, further leading to the release of

DAMPs and promoting the inflammatory cycle (18, 152, 153).

Necroptosis is cell death dependent on the activity of RIPK1 and

RIPK3 kinases, and inhibition of RIPK1 and RIPK3 effectively

reduces necroptosis. Inhibition of RIPK1 and RIPK3 affects the

developmental progression of retinopathy in animal models of

diabetes. In addition, Kate E. Lawlor et al. proved that RIPK3

directly regulates NLRP3 inflammasome activation in macrophages,

but the exact mechanism involved is still unclear and further studies

are needed to explore the possibility of RIPK3 as a therapeutic target

for DR (154).

Inhibition of pro-inflammatory molecules has been confirmed

to attenuate diabetes-induced vascular and neurodegenerative
TABLE 1 Ongoing and completed clinical trials for RIPK inhibitors.

Compound Target Phase Disease Result
Clinical
trial

identifier

GSK2982772

RIPK1 1 Healthy adult
Sixty-five healthy subjects were enrolled. Two serious adverse events of 60mg b.i.d.
were herpes zoster. Common drug-related adverse events were nasopharyngitis and

headache.

NCT03590613
(complete)

RIPK1 2
Ulcerative
colitis, UC

Twelve patients. 60mg was administered twice daily. Adverse events were mild, mainly
headache.

NCT02903966
(complete)

RIPK1 1
Inflammatory
bowel disease,

IBD

Seventy-nine patients. Adverse events of moderate intensity, the most common adverse
events were contact dermatitis and headache

NCT02302404
(complete)

RIPK1 1
Autoimmune
disease, AID

Forty-five subjects.
NCT03266172
(complete)

RIPK1 2
Rheumatoid
arthritis, RA

Fifty-two patients were enrolled. Adverse events were mild to moderate, related to
arthralgia, headache, and peripheral swelling. One treatment-related adverse event was

severe visual impairment and retinal vein thrombosis

NCT02858492
(complete)

RIPK1 2 Psoriasis
Sixty-five patients were enrolled. Two adverse events were verified in the 60mg bid and

60mg tid.bid groups
NCT02776033
(complete)

SAR443122

RIPK1 2
Systemic lupus
erythematosus,

SLE
* NCT04781816

RIPK1 1
Corona Virus
Disease 2019,
COVID-19

C-reactive protein level in 68 hospitalized adult patients with severe coronavirus
disease 2019

NCT04469621
(complete)

SAR443820 RIPK1 1
Healthy

Chinese and
Japanese

*
NCT04982991
(complete)

SAR443060

RIPK1 1
Amyotrophic
lateral sclerosis,

ALS

Fifteen patients with ALS. Adverse events were well tolerated. The most common
emergent adverse events were medical device site irritation and catheter site related

reactions.
NCT03757351

RIPK1 1
Alzheimer’s
disease, AD

Sixteen patients were enrolled. Adverse events were well tolerated, and the most
common TEATs were confusion, headache, and procedural pain.

NCT03757325
(complete)
Search ClinicalTrials.gov and the Clinical Trials Register for a list of all identifiable completed or ongoing clinical trials.
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disease in animal models of DR (155), and studies using anti-

inflammatory agents such as salicylates or minocycline in patients

with DR have further demonstrated that modulation of the

inflammatory response may be beneficial in preventing long-term

irreversible vascular and neuronal damage (156–158). Rosenbaum

et al. demonstrated that Nec-1 treatment prevents retinal cell death

in a rat model of retinal ischemia, suggesting that RIPK1 is a

promising target for DR (159). However, we have discussed that

inflammation responds differently in different immune cells, so

more research is needed to determine the precise molecular

mechanisms and functions of each type of inflammatory cell in

the pathogenesis and development of DR. It may pave the way for

targeted drugs.
4.2 Role of RIPK1 and RIPK3 in diabetic
cardiovascular disease

It is widely accepted that hyperglycemia is not inherently

frightening for patients with diabetes; rather, what causes concern

is the multitude of morbidity and mortality complications

associated with the disease. Among these complications,

cardiovascular complications, to which atherosclerosis (AS) is

identified as the primary pathological mechanism contributing,

are the primary cause of death in diabetic patients (160, 161).

AS initiates with inflammatory effects on endothelial cells that

uphold the integrity and regular function of the arterial wall. The

elevated NF-kB pathway stimulates endothelial cells, which leads to

endothelial cell activation by inflammatory factors, such as TNF-a.
When the fine balance of endothelial cells is compromised,

monocytes adhere, and foam cells accumulate lipids. Low-density

lipoprotein (LDL) deposition oxidation is closely linked to AS.

Oxidized-LDL deposited in the endothelium induces RIPK3

expression in macrophages, promotes the phosphorylation of

both RIPK3 and MLKL, and causes necrotic apoptosis in

macrophages (108, 115, 162, 163). while the death of

macrophages significantly affects the formation of necrotic cores

and destabilization of plaques in advanced AS lesions (164, 165).

The necrotic core of the plaque is associated not only with

macrophages but also with vascular smooth muscle cells. These cells

play a role in the formation of vascular plaques during

atherosclerotic lesions. Adhesion of these cells to the

subendothelial space is associated with various cytokines. It is

well known that neutrophils in diabetic patients secrete higher

levels of cytokines and growth factors, such as TNF-a, IL-1b, and
IL-8, than in healthy individuals (166, 167). The harmful and

inflammatory impacts of TNF-a are primarily executed by

controlling the crucial transcription factor NF-kB. Endothelial
cells, triggered by TNF-a, display elevated RIPK1 levels to

promote inflammation that relies on NF-kB (168–170).

Inflammasome also contributes to initiating this process. For

instance, TNF-a can stimulate the synthesis of inflammasome,

including the pivotal NLRP3, by upregulating NLRP3 expression

in human vascular smooth muscle cells (171). Additionally

enhancing neutrophil migration to the inflammation site,

phagocytosis, cytosolic protease release, reactive oxygen species
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(ROS) production, and apoptosis are associated with increased

NF-kB activation and inflammatory cytokine production due to

ROS overproduction. Furthermore, inhibiting NF-kB may help

mitigate endocardial inflammation as well as the reorganization

of cell-substrate interactions (168–170). Indeed, NF-kB has a direct

impact on cell death, calcium management, cell attachment, and the

production of inflammatory proteins such as COX2 and iNOS.

Suppressing NF-kB prevents hypertrophy and heart failure in a

mouse model of pressure overload as well as after coronary artery

ligation (27, 172). Furthermore, RIPK3 has the capability to

produce mature IL-1b through its activation of the NLRP3

inflammasome, subsequently leading to the generation of an

inflammatory response (173).

The formation and expansion of necrotic cores within plaques

are significant factors in the pathology of unstable atherosclerotic

plaques (174, 175). Heng Chen et al.’s team demonstrated that

Arctiin protects the rat heart by reducing necrotic apoptosis

through scavenging ROS and restoring mitochondrial functions

(176). Based on bioinformatics data, it is suggested that Arctiin can

exert its anti-necrotic and apoptotic effects by directly targeting

RIPK1 and/or MLKL. Shizuka Koshinuma et al.’s experiments

perfusing guinea pig hearts demonstrate that concurrent

inhibition of necroptosis and apoptosis improves cardioprotection

(177). Therefore, the therapy of combining RIPK inhibitors with

standard statin presents an appealing option for preventing

cardiovascular complications associated with diabetes.

Additionally, RIPK inhibitors show the possibility in replacing

aspirin for preventing cardiac malignancies, contingent on

addressing the issue of hepatoxicity.
4.3 Role of RIPK1 and RIPK3 in diabetic
nephropathy

Diabetic nephropathy (DN) is a frequent and severe

complication of DM, marked by the reduction of GFR and the

elevation of urinary protein excretion. As DN advances, it may

result in serious complications like renal insufficiency,

hypertension, and cardiovascular disease, ultimately leading to

heightened all-cause mortality risk in patients. Additionally,

common symptoms of DN like edema, anemia, and fatigue

significantly impact patients’ daily lives. The disease’s progression

may require long-term dialysis or kidney transplantation, resulting

in repeated treatments, extended care, hefty financial burden, and

both physical and mental damage to patients.

Chronic inflammation in the kidney is a crucial pathological

mechanism that triggers DN. Although there is ongoing debate

regarding whether DN can be classified as an inflammatory

condition, mounting evidence suggests that persistent

inflammation of both circulatory system and renal tissue is a

significant physiological component of microangiopathy in DN

(178). In the prediabetic stage, it has been observed that there is a

significant increase in glomerular filtration rate along with

increased microproteinuria and C-reactive protein levels, which

indicates that the inflammation has appeared at this stage. The work

by Bohle’s team and subsequent research have confirmed
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macrophage infiltration in the renal tissues of diabetic patients. A

considerable number of recent studies further reveal the role of

inflammation and immune response in the development of DN.

The inflammation of DN is inherently linked with NF-kB, a
crucial and pervasive transcription factor that can be rapidly

activated by numerous inflammatory mediators found in DN

(179). including hyperglycemia, advanced glycation end products

(AGE), mechanical stress, ROS, inflammatory cytokines,

angiotensin II (Ang-II), and albuminuria (180). activated NF-kB
stimulates the transcription of pro-inflammatory cytokines,

chemokines, and adhesion molecules (181). The development of

drugs targeting the NF-kB pathway encounters many difficulties.

This is primarily due to the pathway’s complexity, which makes

drugs capable of easily causing harmful effects on other cells or

tissues, thereby posing greater risks and side effects. Nevertheless,

RIPK inhibitors, with their larger therapeutic window and fewer

side effects, exhibit potential for development. Man Guo et al.

created an in vitro cellular model to investigate the intervention

of high glucose levels by using normal rat renal tubular cells (NRK-

52E). Additionally, they utilized an in vivomouse model of DN and

found that Nec-1 and N-acetylcysteine (NAC) could improve renal

function by inhibiting RIPK1 (182). Therefore, RIPK1 and targeted

antioxidants may be a potential therapeutic target for DN.

This conclusion is also corroborated by alternative studies that

identify necrotic apoptosis as a strongly inflammatory type of cell

death, which plays a significant role in the advancement of DN

(183). Yuyin Xu found that necroptosis might significantly

contribute to foot cell injury and depletion in diabetic neuropathy

by activating the RIPK1-RIPK3-MLKL signaling pathway. This was

observed through measuring necroptosis, apoptosis, and apoptosis

in foot cells in vivo and in vitro (184). Xian Wang and colleagues’

research on Paeoniflorin (PF) demonstrates that PF directly binds

and facilitates degradation of TNFR1 in podocytes (185), which, in

turn, prevents injury to foot cells in DN by regulating necrotic

apoptosis through the RIPK1-RIPK3 signaling pathway.

Many recent studies have reported that RIPK3 can

independently promote cytokine release and the formation of

inflammasome containing NLRP3 (186–188). Upon stimulation

by danger-associated molecular patterns, the Pyrin structural

domain of NLRP3 binds to apoptosis-associated speck-like

proteins that contain cysteine-rich domain recruitment structural

domains. These domains then bind to pro-caspase-1 via CARD-

CARD interactions, converting pro-caspase-1 to active caspase-1.

Meanwhile, pro-IL-1b is cleaved by inflammasome, resulting in the

maturation of IL-1b and subsequent inflammatory responses (189,

190). Thus, it is conceivable that RIPK3 could function as an

innovative target for inflammatory therapy in DN. Sadly, there

are no on-going initiatives for developing inhibitors that target

RIPK3 precisely, which exhibits potential as a research hotspot for

future immune drug and inflammatory therapy development.

Similarly, there are reports on the role of RIPK in necrotic

apoptosis, but few studies have directly explored the role of RIPK1

and RIPK3 in DN, and the relevant areas remain highly investigable.

Therefore, further research is necessary to investigate the precise role

of RIPK1 and RIPK3 in DN. Most known studies utilize acute injury

models with increased necrotic apoptosis. For instance, the RIPK1
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inhibitor Nec-1 can reduce renal ischemia and reperfusion injury as

well as sepsis-related acute kidney injury (191, 192). Lack of RIPK3

can protect against renal tubular injury in acute kidney injury

induced by sepsis (193, 194). Deletion of RIPK3 or MLKL can

hinder oxalate crystal-induced acute kidney injury and renal

damage in a mouse model of renal ischemia-reperfusion injury,

among other effects (195–197). However, further experiments with

chronic injury models are necessary to provide ample evidence

supporting the role of RIPK inhibitors for DN. Nonetheless, given

the inextricable link between necrotic apoptosis and the onset of

inflammation, it is reasonable to hypothesize that inhibitors of RIPK1

and RIPK3 could aid in controlling DN and may prove more effective

when used in conjunction with antihyperglycemic agents.
5 Conclusion

With the surge in the number of people suffering from the

disease, diabetes mellitus has become a major challenge in the field

of medicine and health. The current treatment model of type 2

diabetes mellitus is mainly based on lowering blood glucose, such as

interfering with intestinal glucose absorption and increasing glucose

utilization conversion in peripheral tissues, etc (198, 199). However,

the incidence of chronic complications of T2DM is still high, and

the effective effects of traditional drugs and the huge side effects of

new drugs have also been a difficult problem for clinical application,

so there is an urgent need of a new target drug based on the

molecular mechanisms of diabetic inflammation in an attempt to

radically reduce the harm of diabetic complications.

The pathological mechanism of diabetic complications cannot be

separated from inflammation, and the extensive roles of RIPK1 and

RIPK3 in NF-kB, necro-apoptotic pro-inflammatory pathways, and

inflammatory crosstalk demonstrate the potential of targeting RIPK1

and RIPK3 as a therapeutic for diabetic complications.With the current

enthusiasm of major pharmaceutical companies for RIPK1 inhibitors,

there is an urgent need to develop inflammation-targeting agents for

DM complications as soon as possible, based on existed clinical use.

However, it is important to point out that despite the anti-

inflammatory effects of RIPK inhibitors, the problems of RIPK1 and

RIPK3 being dependent on cell type has arisen in previous experiments

(198, 200–202). Therefore, further development and refinement of the

studies on human primary cells (especially human cells important for

inflammation) is necessary, and we need to conduct further studies on

the effects of RIPK inhibitors in general models of inflammation as

well. Diabetic complications are not confined to a single site, but often

involve the whole body, and more detailed studies on different cell

types will further reveal the complex interactions of these small

molecule antagonists in the inflammatory pathways associated with

diabetic complications, including TNFR1, MAPK and NF-kB
signaling. In addition, whether the role of drug development falls on

the kinase binding process of RIPK1 and RIPK3 or the scaffolding

structure of RIPK1 and RIPK3 is also worth discussing.

RIPKs form a convoluted and interconnected network of

signaling pathways. However, RIPK1 and RIPK3 have distinct

and interdependent inflammatory roles, thereby necessitating an

investigation into both pathways when signaling from small
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molecules or small interfering RNA to identify specific scenarios

where targeting either or both pathways could be advantageous. Are

these two inflammatory pathways of disparate significance in

distinct inflammatory scenarios? Do these pathways undergo

dissimilar alterations in diverse anatomical structures and cell

types, and what is the ideal dosage to attain an optimal outcome?

Furthermore, which pathway plays the leading role in influencing

biological outcomes? Do these pathways undergo dissimilar

alterations in diverse anatomical structures and cell types, and

what is the ideal dosage to attain an optimal outcome?

In conclusion, RIPK1/3 seems to be promising anti-

inflammatory targets for diabetic complications. Although many

RIPK1 inhibitors remain in early clinical phases, their toxicity and

off-target issues impede development, likely due to drug absorption

in the liver and RIPK1’s regulation of hepatocytes as a housekeeping

factor for homeostasis and inflammation (203). For this reason,

RIPK1 inhibitors are prone to hepatotoxicity. Learning from the

experience of terminated RIPK1 inhibitors, the key challenges for

future clinical development include tracking real-time activation or

necrosis biomarkers of RIPK1 in vivo and developing highly

specific, efficient, and safe small-molecule inhibitors of RIPK1. It

is hypothesized that RIPK3 signaling inhibitors may be more

suitable for specifically targeting inflammation-related signals,

which requires further demonstration through relevant studies for

drug development. It is hoped that these inhibitors will undergo

testing in patients with T2DM complications and be implemented

in clinical practices in the near future.
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