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Targeted therapies are the state of the art in oncology today, and every year new

Tumor-associated antigens (TAAs) are developed for preclinical research and

clinical trials, but few of them really change the therapeutic scenario. Difficulties,

either to find antigens that are solely expressed in tumors or the generation of

good binders to these antigens, represent a major bottleneck. Specialized

cellular mechanisms, such as differential splicing and glycosylation processes,

are a good source of neo-antigen expression. Changes in these processes

generate surface proteins that, instead of showing decreased or increased

antigen expression driven by enhanced mRNA processing, are aberrant in

nature and therefore more specific targets to elicit a precise anti-tumor

therapy. Here, we present promising TAAs demonstrated to be potential

targets for cancer monitoring, targeted therapy and the generation of new

immunotherapy tools, such as recombinant antibodies and chimeric antigen

receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural

Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types.

Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2,

describing their origin as well as their current and potential use as disease

biomarker and therapeutic target in a diversity of tumor types.
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1 Introduction

Immunotherapy, cell therapies, and vaccines are areas of active research and

development aimed at harnessing the body’s immune system to fight diseases including

cancer and infectious diseases. Antigens play a crucial role in these therapies as they elicit

an immune response which leads to the activation and targeting of immune cells against

specific disease-associated targets.
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Tumor-associated antigens (TAAs) are structures expressed by

tumor cells that are recognized by the immune system as foreign

(1). These antigens can be used as targets for cancer

immunotherapies such as adoptive cell transfer (ACT) or cancer

vaccines (2, 3). With the growth of technological development and

new research techniques every year new TAAs are being developed

in order to reach preclinical research and clinical trials, but few of

them actually change the therapeutic landscape. Difficulties either

to find antigens that are solely expressed in tumors or the

generation of good antibodies or specific molecules that recognize

these TAAs represent a major bottleneck.

Basic research in specialized cellular machineries such as post-

translational modifications (PTMs) and differential splicing is a

good source of neo-antigen expression (4–6). Post-translational

modifications (PTMs), including phosphorylation, methylation,

glycosylation, sialylation and others, introduce structural chemical

changes to existing proteins. Even though these proteins are self-

proteins, the attachment of an additional glycan or sialyl-group

transforms them into foreign antigens. PTMs occurring on tumor

cells can therefore give rise to TAAs. Regarding differential splicing,

the generation of TAAs can arise from an alternative splicing

process during gene expression by which particular exons of a

gene are either included or excluded from the final mRNA (7).

Changes in these processes generate surface proteins that,

instead of increasing or decreasing protein antigens, as happens

with EGFR or other surface proteins driven by increased mRNA

processing, produce surface molecules that are aberrant in nature

and therefore more specific as targets to elicit a specific anti-tumor

therapy. Overall, ongoing research and advancements in

understanding the immune system, genomics, and protein

engineering are continually expanding the range of potential

antigens that can be targeted for immunotherapy, cell therapies,

and vaccine development.

It is worth noting that the development and approval of new

antigens for immunotherapy, cell therapies, and vaccines involve a

complex and rigorous process of preclinical and clinical trials to

assess safety and efficacy. Regulatory agencies such as the U.S. Food

and Drug Administration (FDA) and the European Medicines

Agency (EMA) play a critical role in evaluating and approving

these therapies and vaccines (8).

In this review, we introduce a selection of promising TAAs that

have shown potential as targets for cancer monitoring, targeted

therapy, and the development of new immunotherapy tools. These

tools include recombinant antibodies and CAR-T or CAR-NK cells,

which can be utilized for precise tumor eradication in various types

of tumors. This comprehensive review focuses on the latest

information about three specific TAAs: CD44v6, STn, and O-

GD2 the first is a variant generated from differential splicing of

the well-known CD44 surface marker and the other two are very

good examples of cancer associated antigens generated by aberrant

glycosylation patterns such as sialylation and O-glycosylation. The

review covers their origins, as well as their current and potential

applications as disease biomarkers and therapeutic targets across a

diverse range of tumor types.
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2 CD44 alternative splicing as a
source of TAAs

The role of the CD44 adhesion protein family in neoplastic

transformation and invasive potential of carcinomas has been widely

considered (9). CD44 represents a complex transmembrane

glycoprotein encoded by a single gene on the short arm of

chromosome 11 (Figure 1, upper). In humans, the CD44 encoding

gene consists of 20 exons that give rise to a wide variety of

multifunctional glycoproteins due to alternative splicing processes.

The standard form, known as CD44s glycopeptide, represents the

smallest and most abundant CD44 structure, comprised of exons 1-5

and 16-20. The constant region of the variable isoforms (CD44v) is

represented by the same exons, while alternative splicing of the

remaining exons (exons 6-15 or CD44v1-10) gives rise to the

different CD44v isoforms. It is of note that isoform CD44v1 has

not been detected in humans due to the presence of a stop codon in

exon 6 (also known as exon v1) (10). The different isoforms of CD44

generated by alternative splicing can act as TAAs and have been

implicated in tumor progression and immune evasion. Some CD44

isoforms, such as CD44v6 and CD44v9, have been found to be

frequently expressed in many types of cancer, including pancreatic

(11, 12), colon (13, 14), and prostate cancer (15, 16). These isoforms

are associated with increased invasiveness, metastasis, and resistance

to apoptosis.
2.1 CD44v6

Alterations of CD44 glycoprotein expression have been shown

to play an important role in the progression of various malignancies

(17). Specifically, overexpression of the CD44v6 variant has been

found in the majority of squamous cell carcinomas and a variety of

adenocarcinomas, but has not frequently been observed in non-

epithelial tumors (18). In this way, CD44v6 has been described to

negatively impact the prognosis of patients with multiple myeloma

(19), colorectal cancer (CRC) (20, 21), osteosarcoma (22),

esophageal carcinoma (22), gastric cancer (23) as well as head

and neck squamous cell carcinoma (HNSCC) (24, 25) patients,

among others. Moreover, altered CD44v6 expression has been

associated with tumor development, migration, invasion and

metastatic potential in a broad variety of tumor types, such as

HNSCC (24), oral cancer (26), laryngeal carcinoma (27), esophageal

squamous cell carcinoma, gastric cancer (28–30), pancreatic cancer

(11, 31), liver cancer (32, 33), CRC (34), lung cancer (35, 36), breast

carcinoma (37) and gynecologic malignancies (38) such as ovarian

(39, 40) and prostate cancer (41), among others (Figure 1).

Circulating tumor cells (CTCs) highly expressing CD44v6 were

found in blood samples from metastatic CRC patients (34, 42).

Nicolazzo et al. (2020) (43) described treatment failure in those

patients with CD44v6-positive CTCs undergoing first-line

chemotherapy and proposed that the presence of those cells might

be a valuable predictive biomarker of therapy resistance. Indeed, many
frontiersin.org
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studies have associated CD44v6 expression with chemoresistance. For

example, Gaggianesi et al. (2022) (44) demonstrated that tumor

microenvironmental cytokines promote CD44v6 expression in CRC

stem cells, conferring resistance to standard anti-tumor therapeutic

options, whereas Wang et al. (2019) (45) found that the

downregulation of CD44v6 augments chemosensitivity of CRC cells

in vitro. CD44v6 has been described to enhance CRC therapy

resistance by a variety of mechanisms, including activation of the

PI3K/Akt/mTOR pathway leading to increased multidrug resistance,

up-regulation of the MAPK/ERK pathway stimulating autophagosome

formation, and blocking of the Fas-FasL interaction preventing cell

apoptosis. Pereira et al. (2020) (46) found similar results, showing that

CD44v6+ gastric cancer cells were more resistant to chemotherapy

treatment compared to the CD44v6 cells. Even though the exact

mechanism in gastric cancer remains unknown, they proposed that

therapy resistance might be the result of concomitant CD44v6

expression and either STAT3 or P38 activation, depending on the

cellular context. Wang et al. (2021) (45) proposed the involvement of

CD44v6 expression in cisplatin resistance in ovarian cancer cells due to

the interaction of CD44v6 with P-glycoprotein (P-gp) and, therefore,

the acquisition of multidrug resistance. Sagawa et al. (2016) (47) found

a correlation between CD44v6 expression and chemoradiotherapy

resistance in nasopharyngeal carcinoma, and prostate cancer

chemosensitivity was associated with CD44v6 by Ni et al. (2020)

(41). Both studies indicated the activation of the PI3K/Akt/mTOR

pathway as the major player in the acquisition of therapy resistance.

Specifically, in the case of prostate cancer, the interaction between

CD44v6 and hyaluronic acid, a component of the extracellular matrix
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of epithelial and connective tissues, could augment multidrug

resistance through up-regulation of the PI3K/Akt/mTOR pathway.

Even though some studies hypothesized the potential role of the

majority of CD44 isoforms, such as CD44v3-5 and CD44v8-10, in

tumorigenesis and cancer progression, none has been as extensively

described as CD44v6 (48). The extensive description of all these

different isoforms and their potential implication in tumor

development and/or disease progression goes beyond the scope of

this review. Beyond alternative splicing process giving rise to

different CD44 isoforms, extensive posttranslational modifications,

such as N- and O-glycosylation processes as well as the addition of

glycosaminoglycans add another layer of complexity to the CD44

transmembrane glycoprotein structure and function (49).
3 STn and O-GD2, the result of
alternative glycosylation processes

Altered glycosylation processes are known to be widely involved

in tumorigenesis and cancer progression (50). In early cancer stages,

the normal synthesis of glycans present in normal epithelial tissues

is often impaired due to altered expression of glycosyltransferases,

which causes the biosynthesis of truncated carbohydrate structures

(such as Tn and STn) which can be observed in a variety of tumor

types (49). In the same way, altered ganglioside expression (like

GD2 and O-GD2 expression) due to modified glycosyl- and

sialyltransferase expression has been found in different cancers

such as melanomas and neuroblastomas (51). The role of Tn/STn
FIGURE 1

Schematic representation of CD44-alternative splicing, giving rise to CD44 standard form (CD44s) and CD44 isoforms (CD44v1-10), as well as alternative
glycosylation processes, generating O-glycans sialyl-Tn (STn) and O-acetyl-GD2 (O-GD2). CD44v6, (S)Tn and (O-)GD2 have been described to
negatively impact prognosis as well as to promote tumorigenesis, tumor progression and therapy resistance. Created with BioRender.com.
frontiersin.org
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and GD2/O-GD2 expression in tumorigenesis and cancer

progression will be discussed below (Figure 1, lower).
3.1 Tn & STn

Truncated O-glycan Tn (GalNAca1-Ser/Thr) and its sialylated

variant sialyl-Tn (STn) (Neu5Aca2,6GalNAca1-Ser/Thr) represent
two modifications observed in a variety of proteins which give rise to

two tumor-associated antigens that are not expressed in normal cells.

Even though O-glycan Tn formation does occur in normal tissue, the

Tn glycopeptide represents an immature structure which is normally

elongated into other structures by additional glycosyltransferases.

Furthermore, altered expression of ST6GalNAc1 glycosyltransferase

modifies the Tn glycopeptide by the addition of a sialyl-acid, resulting

in STn glycopeptide formation (Figure 1). Therefore, the presence of

both O-glycan Tn and STn are described to be restricted to

pathological conditions, including tumorigenesis (49).

The structural simplicity and biological complexity of the Tn

antigen have been extensively reviewed by Ju et al. (2011) (52).

Even though the exact role of the Tn antigen in tumor

development and progression is only starting to be unraveled,

the presence of the Tn antigen on tumor cells was observed as

early as 1969 (53). The first correlation between the Tn antigen

and cancer was made by Springer et al., who described expression

of the Tn antigen in 90% of breast carcinomas. Subsequently,

several studies have reported altered levels of the Tn antigen in

many tumor types, such as lung, gastric, CRC, bladder, cervical,

prostate and ovarian tumors (54–56). Additionally, altered

expression of the Tn antigen has been associated with tumor

progression, migratory capacity and metastasis as well as poor

prognosis in a wide variety of cancer types, including lung cancer

(57), pancreatic cancer (58), CRC (59, 60), breast carcinomas and

cervical cancer (59, 61).

Similar to the Tn antigen, the presence of the STn antigen has

been reported in several tumor types, such as lung cancer, gastric

cancer, pancreatic cancer, CRC, breast carcinomas, cervical cancer,

prostate and ovarian cancer (62–64). Nevertheless, STn expression in

tumors has been described to be rather heterogeneous, with STn-

positive cells ranging from 5% to 100% independent of tumor type

origin (64). A growing body of evidence also suggests that the role of

STn in tumorigenesis might be cancer type-specific and/or organ-

specific as STn can be carried by different glycoproteins. Increased

expression of STnwas associated with cell proliferation andmetastasis

in gastric, breast and pancreatic cancer (65). In prostate cancer,

however, Munkley et al. (2015) (66) described that STn expression

is likely to promote cancer cell dissemination and invasion, and this

expression is up-regulated in primary prostate carcinoma.

Concordantly, Davidson et al. (2000) (67, 68) reported higher levels

of STn-positive ovarian cancer cells at the invasive site of primary

tumors than in metastatic lesions, and Ferreira et al. (2013) (69)

reported increased migratory and invasive capacity of bladder cancer

cells upon STn expression. The current hypothesis behind these

observations suggests that the STn antigen inhibits tumor formation

by reduction of cell-cell and cell-matrix interactions, which facilitates
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tumor cell spreading. Even though the STn antigen does not seem to

provide cell adhesive properties needed for the formation of

metastatic lesions, these specific adhesive characteristics are essential

for extravasation and invasive capacity. Accordingly, a transient role

for STn in cancer progression has been proposed.

Recently, STn expression has also been associated with tumor-

microenvironment interactions. Interestingly, a protective role for

glycan STn with regard to tumor cell recognition and degradation

has been described (70). Either by receptor masking or the

inhibition of cytolytic activity, STn has been reported to play an

essential role in immunosuppression (71, 72). In bladder cancer,

STn expression has been suggested to induce a tolerogenic

phenotype in innate and adaptive immune cells. However,

extensive studies in a variety of cancer types will be needed to

further unravel the role of STn in cancer progression, invasion and

metastasis (73).

The STn antigen can be detected in serum when considerable

tumor size is reached, either due to O-glycoprotein secretion from

tumors or by its expression on CTCs. Therefore, the presence of the

STn antigen in serum is thought to be correlated with advanced

cancer and, thus, poor prognosis. Indeed, Carvalho et al. (2020)

(74) recently reported an association between STn expression and

advanced bladder cancer stage and grade. However, the correlation

between the STn antigen and prognosis seems to be rather

ambiguous and cancer type-specific (64). STn expression was

associated with poor prognosis in ovarian cancer (75, 76), but has

not been associated with overall survival in either lung (77) or

cervical cancer (68). Additionally, contradictory findings have been

published for several tumor types, such as breast cancer, esophageal

cancer, gastric cancer and CRC, reflecting the potential cancer

subtype-specific role of the STn antigen in tumorigenesis and

cancer progression (64).

3.1.1 Interaction between CD44v & STn
As mentioned above, STn can be carried by different

glycoproteins and glycosylation processes add another layer of

complexity to the CD44 glycoprotein. With these observations in

mind, CD44 has indeed been reported as carrier protein for STn

in gastric and colon cancer. Campos et al. (2015) (78) described

the presence of glycan STn on CD44 glycoprotein which leads to

altered CD44 molecular features such as molecular weight and

antibody recognition in gastric cancer. Mereiter et al. (2019) (79)

also reported activation of the receptor tyrosine kinase RON due

to increased colocalization of CD44v6 with this receptor in the

presence of STn, leading to enhanced hyaluronan binding

capacity. Additionally, improved CD44v9 detection by the

expression of immature O-glycan structures, such as STn, has

recently been proposed by Moreira et al. (2020) (80). Finally,

Singh et al. (2001) (81) showed the presence of the STn antigen

on CD44 splice variants in CRC, further emphasizing the

abovementioned interaction between STn and CD44. Taken

together, it might be clear that not only STn or CD44 (v)

expression, but also their combination might be very

useful with regard to biomarker detection as well as

therapeutic targeting.
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3.2 GD2 & O-GD2

Even though the exact biological mechanisms remain to be

elucidated, altered activity of glycosyl- and sialyltransferases seems

to be mainly responsible for the modification of ganglioside

expression in tumorigenesis (51). For example, increased N-

acetylgalactosaminyltransferase I (GM2/GD2 synthase) expression

has been found to provoke enhanced GD2 ganglioside levels in

melanoma and neuroblastomas (82). Additionally, even though high

expression levels of GD2 have been associated with reduced

apoptosis as well as enhanced tumor cell proliferation, adhesion,

angiogenesis, migration and invasion capacity in a variety of tumor

types such as breast cancer (83, 84), bladder cancer (85), lung cancer

(86), osteosarcoma (87), Ewing sarcoma (88), retinoblastoma (89)

and brain tumors (90), some expression of this ganglioside has been

also observed in some normal tissue in healthy adults, like the central

nervous system and peripheral nerves (90), Even so, this ganglioside

has been used as a biomarker of cancer in serum samples (91)

associated with advanced disease and poor prognosis in

neuroblastoma by (92), and (85) in high-grade bladder cancer

compared to low-grade disease (84). Also, a correlation between

GD2 expression and malignant phenotypes of lung cancer has been

described by Yoshida et al. (2002) (86) and Esaki et al. (2020) (93).

Even thoughGD2 expressionmight be a valuable prognosticmarker

and biomarker, its expression on healthy cells complicates its potential as

therapeutic target (detailed below). Therefore, interest has currently

focused on O-acetyl-GD2 (O-GD2), which is formed by the addition of

an O-acetyl ester to the GD2 backbone by 9 (7)-O-Acetyl transferase

(Figure 1, lower right). Fleurence et al. (2017) (51) and Cavdarli et al.

(2019) (91) have extensivelymodeled the complex biosynthetic processes

giving rise to the different members of the O-acetylated ganglioside

family. Interestingly, O-GD2 has been found to be coexpressed with

GD2 on tumor cells. Indeed, the presence of O-GD2 in GD2 positive

tumors, such as lung carcinoma,melanoma, osteocarcoma, brain tumors

and neuroblastoma, has been confirmed by various studies (94, 95),

whereas no expression of O-GD2 was observed in either peripheral

nerves or a large variety of other healthy tissues (96).

Even though these findings strongly support O-GD2’s potential as

valuable biomarker and therapeutic target, its regulatory mechanisms

of expression as well as its role in tumorigenesis remain largely

unknown due to the complexity of studying this antigen within the

extensive biosynthesis network of the whole ganglioside family.

Fleurence et al. (2017) (51) suggested that O-GD2 expression in a

cell type depends on the balance and activity of at least 4 different

enzymes involved in the biosynthetic model of the ganglioside family.
4 CD44v6, STn and O-GD2 as
therapeutic targets: past,
present and future

4.1 CD44v6

Due to its expression pattern, CD44v6 has been considered an

attractive target for antibody-based cancer therapy (17). Thus far, a
Frontiers in Immunology 05
variety of recombinant antibodies and antibody-drug conjugates have

been evaluated in different phase I clinical trials, mainly for their

use in HNSCC treatment (96–104). In addition, CD44v6-directed

CAR-T cell therapies have shown promising results in preclinical

studies, which has led to a phase I/IIa trial in AML and MM patients

to study efficacy, safety and feasibility of CD44v6-directed CAR-T cell

therapy (105). Even though CAR-T cell therapy for hematological

cancers has been very successful, its use for the treatment of solid

cancers remains very challenging. Therefore, a variety of studies has

evaluated the potential of CD44v6-directed CAR-T cell therapy in

solid CD44v6-expressing tumors (105–108). Recently, CD44v6-

directed CAR-cytokine induced killer cells (CIK) have

demonstrated anti-tumor activity in preclinical studies among

different cancer types such as high grade soft tissue sarcomas where

the anti-sarcoma activity of CD44v6-CAR-CIK bipotential killers was

confirmed in a STS xenograft model in which killing activity was

significantly higher compared with unmodified CIK, especially at low

effector/target (E/T) ratios: 98% vs 82% (E/T = 10:1) and 68% vs 26%

(1:4), (p<0.0001) (109) (Figure 2). An extensive overview on the

development and potential of the abovementioned immunotherapy

strategies can be found below.
4.1.1 Anti-CD44v6 antibody &
antibody-drug conjugates

The first studies into the potential of anti-CD44v6 antibody-

based immunotherapy were performed almost 30 years ago, when

anti-CD44v6 antibodies VFF18 and U36 were characterized as

candidates for immunotherapy in squamous cell carcinoma

(97–99).

Heider et al. (1996) (97) showed essential therapeutic features

for radiolabeled the anti-CD44v6 VFF18 antibody in an in vivo

model of human epidermoid squamous cell carcinoma.

Additionally, a first clinical study was performed by Bree et al.

(1995) (98), who demonstrated high and selective tumor uptake for

the radiolabeled 99mTc-labeled anti-CD44v6 U36 antibody in

HNSCC patients. In agreement with the previous finding, Van

Hal et al. (1996) (99) demonstrated that the CD44v6 antigen

targeted by anti-U36 is an appropriate target for the treatment of

head-and-neck carcinoma by the use of radiolabeled anti-CD44v6

U36 antibody. The biodistribution studies in vitro, after which a

first phase I clinical trial with 186RE-labeled chimeric antibody U36

among patients with HNSCC showed excellent tumor targeting

(100). Even though stable disease as well as reduction in tumor size

were observed and the antibody was found to be well-tolerated,

myelotoxicity represented a dose-limiting factor. Preclinical

characterization of two other radiolabeled anti-CD44v6

antibodies, 111In- and 177Lu-labeled U36 antibodies, using

HNSCC in vitro and in vivo models has also been described as

showing a tumor uptake of 72 h.p.i which makes it interesting for

therapies (110, 111) cancer detection tool (Table 1).

Another phase I clinical study reported high tumor uptake

and well-tolerated administration of the murine 99mTc-labeled

anti-CD44v6 antibody BIWA1 (initially called VFF18) in patients

with HNSCC (101) showing a tumor intake with a mean value of

14.2+/-8.4% of the injected dose/kg tumor tissue and a mean tumor:
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blood ratio of 2.0+/-1.4 at 40 h after injection with a mean biological

half-life in blood (34.5+/-6.1 h). With the aim of clinical

application, a humanized 99mTc-labeled anti-CD44v6 antibody

BIWA4 antibody, known as bivatuzumab, was then developed,

and a phase I clinical trial with HNSCC patients showed selective

and high tumor uptake by radioimmunoscintigraphy showing

targeting of primary tumors and lymph node metastases in 8 of

10 and 1 of 5 patients, respectively. The highest tumor uptake and

tumor to nontumor ratios was observed for the 50-mg dose group

with a tumor intake of 26.2 +/- 3.1% of bivatuzumab, without

evidence of safety concerns (102). At the same time, phase I clinical

studies were performed with HNSCC patients and patients with

recurrent or metastatic HNSCC receiving humanized 186Re-labeled

bivatuzumab, which showed anti-tumor activity and high tumor to

non-tumor targeting ratio (103, 104). Several parallel phase I

clinical trials in patients with HNSSC, esophageal carcinoma and

metastatic breast cancer were also started with antibody-drug

conjugate Bivatuzumab mertansine (105, 109, 114, 115), but the

clinical development of this drug was discontinued after a lethal

outcome due to toxic epidermal necrolysis in one of the trials.

Nevertheless, in 2012, Gurtner et al. (127) reported improved local

tumor control at acceptable toxicity levels in an in vivomodel using

lower doses of Bivatuzumab mertansine (the maytansine derivative

DM1 as cytotoxic agent) in combination with fractioned

irradiation (Table 1).

4.1.2 CD44v6-based CARs cell therapy

Other therapeutic strategies based on anti-CD44v6 antibody

constructions, which have recently generated interest, include the
Frontiers in Immunology 06
use of chimeric antigen receptor (CAR) T cell approaches. In 1996,

Hekele et al. (110) reported tumor growth suppression in a rat

pancreatic adenocarcinoma in vivo model when receiving

genetically manipulated cytotoxic T lymphocytes (CTLs),

expressing the scFv of rat-specific anti-CD44v6 antibody

1.1ASML. The same 1.1ASML antibody was used for the

construction of a bispecific F(ab9)2 antibody conjugate (BAC)

which recognizes both the CD44v6 tumor cell moiety and the

complement receptor CR3 on macrophages in order to redirect

and induce efficient macrophage-mediated tumor cytotoxicity.

However, in vitro and in vivo models of the abovementioned

pancreatic carcinoma showed lower anti-tumor activity for the

BAC compared to the naked anti-CD44v6 1.1ASML antibody

(111). So far, promising results regarding CAR-T cell mediated

anti-tumor activity have been described for several cancer types

such as leukemia (19), multiple myeloma (19, 116), HNSCC (117),

lung adenocarcinoma (107) and ovarian cancer (107). In in vivo

models of acute myeloid leukemia (AML) and multiple myeloma

(MM), CD44v6 CAR-T cells were found to provide significant anti-

tumor activity without affecting either CD44v6-expressing

keratinocytes or hematopoietic stem cells (19). A phase I/IIa

clinical trial has subsequently been performed to study safety,

efficacy and feasibility of CD44v6 CAR-T cell immunotherapy in

AML and MM patients mediating a potent antitumor effects against

primary AML and MM while sparing normal hematopoietic stem

cells and CD44v6-expressing keratinocytes (105) mediating a

potent antitumor effects against primary AML and MM while

sparing normal hematopoietic stem cells and CD44v6-expressing

keratinocytes (105) mediating a potent antitumor effects against

primary AML and MM while sparing normal hematopoietic stem
FIGURE 2

Schematic representation of potential therapeutic strategies based on CD44v6, (S)Tn and (O-)GD2 targeting. Each type of therapy is grouped with
different antigens. Created with BioRender.com.
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cells and CD44v6-expressing keratinocytes (105) mediating a

potent antitumor effects against primary AML and MM while

sparing normal hematopoietic stem cells and CD44v6-expressing

keratinocytes (105). Additionally, Porcellini et al. (2020) (107)

showed CD44v6 CAR-T cell infiltration and proliferation at the

tumor site and tumor growth inhibition, leading to enhanced

overall survival in xenograft mouse models of ovarian and lung

adenocarcinoma with more than 30% of CD44v6-CAR T treated

mice still alive after 2 months of observation (106, 117). T cells

expressing CD44v6 CAR have been shown to be effective against

lung and ovarian adenocarcinomas in mice (107), urothelial

carcinoma (106) and pancreatic adenocarcinoma (108). Recently,

studies have also focused on optimization of the CAR structure in

order to improve CD44v6 CAR-T cell functionality (105) and

generating not just CAR-T but CAR-NK cells, which in

comparison to CAR-T are proposed to show less cytokine release

syndrome associated problems (105) and generating not just CAR-

T but CAR-NK cells, which in comparison to CAR-T are proposed

to show less cytokine release syndrome associated problems (105)

and generating not just CAR-T but CAR-NK cells, which in

comparison to CAR-T are proposed to show less cytokine release

syndrome associated problemsRaferty et al. (108) demonstrated the

efficacy of CD44v6-CAR-NKs in triple negative breast cancer model

demonstrating cytotoxic function in both 2D and 3D models of

triple-negative breast cancer (108). Nearby to CAR-T and CAR-NK
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cells, CD44v6-directed CAR-cytokine induced killer cells (CIK)

have demonstrated anti-tumor activity in in vitro and in vivo

models of high-grade soft tissue sarcomas such as undifferentiated

pleomorphic sarcoma, liposarcoma, fibrosarcoma, leiomyosarcoma

and gastrointestinal stromal tumor, among others (118). Moreover,

a recent preclinical study proposed the use of CAR-CIK in leukemia

patients due to intrinsic anti-tumor activity as well as enhanced

safety (119).

4.1.3 CD44v6-based nanomedicine
Finally, CD44v6-targeting nanomedicine has been explored as a

promising tool for cancer therapy. Qian et al. (2013) described the

use of anti-CD44v6 conjugated nanoparticles carrying the anti-

cancer agent Arsenic trioxide in a pancreatic cancer mouse model

and its successful accumulation at the tumor site, followed by tumor

growth control (120). The same animal model was used for the

evaluation of nanopartic le-mediated co-del ivery of a

chemotherapeutic agent and target genes, either Gemcitabine and

small-interfering RNA or Gemcitabine and microRNA-21 (121,

122). Both strategies confirmed CD44v6-directed tumor cell

targeting and they were found to provide efficient inhibitory

effects on tumor growth and metastasis. Kennedy et al. (2018)

(128) reported the specificity and stability of anti-CD44v6 Fab-

conjugated poly(lactic-co-glycolic acid (PLGA) nanoparticles in

vivo in a gastric cancer model, emphasizing its potential as a
TABLE 1 Overview of the CD44v6 directed therapies described in this study.

Target Type of therapy Therapeutic construct Example Reference

CD44v6

Anti-CD44v6 antibody & antibody-drug
conjugates

Radiolabeled murine/chimeric anti-CD44v6

99mTc-U36 (98)

99mTc-VFF18 (BIWA1) (101)

186Re-U36 (100)

111In-U36 (112)

177Lu-U36 (113)

Radiolabeled humanized anti-CD44v6

99mTc-BIWA4
(bivatuzumab)

(101)

186Re-bivatuzumab (103, 104)

Anti-CD44v6 drug conjugate Bivatuzumab-mertansine
(105, 109, 114,

115)

CD44v6-CAR-based cell therapy
Anti-CD44v6 CAR-T scFv 1.1ASML (19, 107, 116, 117)

Anti-CD44v6 CAR-CIK (118, 119)

CD44v6-based nanomedicine

Anti-CD44v6 conjugated nanoparticle drug
delivery

Arsenic trioxide (120)

Gemcitabine + siRNA (121, 122)

Gemcitabine + miRNA21 (122)

Bevazucimab (123)

MG2477 (124)

Multi-walled carbon nanotubes (MWNTS)
CXCR4 + gemcitabine (125)

CXCR4 + oxaliplatin (125)

Polymeric micelles (126)
This table includes therapeutic target, type of therapy, therapeutic construct and antigenic determinant.
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carrier for cancer therapy in solid tumors, and Baião et al. (2020)

(123) described the application of anti-CD44v6 PLGA-PEGylated

nanoparticles for bevacizumab delivery in a colorectal cancer model

demonstrating intracellular levels of bevacizumab significantly

higher in cells incubated with v6 Fab-PLGA-PEG NPs and these

nanoparticles resulted in a significant decrease in the intracellular

VEGF compared to untargeted nanoparticles and free bevacizumab.

In addition, the use of anti-CD44v6 conjugated PEGylated, organic-

modified silica (ORMOSIL) nanoparticles carrying the anti-cancer

agent 3N-cyclopropylmethyl-7-phenyl-pyrrolo-quinolinone

(MG2477) has been shown to provide significantly increased

cytotoxic activity towards CD44v6-expressing cells demonstrating

that nanoparticles conjugated with a smaller amount of targeting

agent being more effective than the ones conjugated with a larger

amount of antibody, an effect that will probably be dependent of the

affinity of the antigen-antibody interaction (123) demonstrating

that nanoparticles conjugated with a smaller amount of targeting

agent being more effective than the ones conjugated with a larger

amount of antibody, an effect that will probably be dependent of the

affinity of the antigen-antibody interaction (123) demonstrating

that nanoparticles conjugated with a smaller amount of targeting

agent being more effective than the ones conjugated with a larger

amount of antibody, an effect that will probably be dependent of the

affinity of the antigen-antibody interaction (123) demonstrating

that nanoparticles conjugated with a smaller amount of targeting

agent being more effective than the ones conjugated with a larger

amount of antibody, an effect that will probably be dependent of the

affinity of the antigen-antibody interaction (123). Finally, multi-

walled carbon nanotubes (MWNTS) and polymeric micelles have

been considered as vectors for drug delivery in cancer therapy.

Recently, Yin and Qian (2021) (125) showed enhanced anti-tumor

activity after treatment with anti-CD44v6 MWNTS, carrying

CXCR4 and either gemcitabine or oxaliplatin, in in vitro and in

vivo models of ovarian cancer, whereas Andrade et al. (2021) (126)

described the efficacy of anti-CD44v6 polymeric micelles as an

anticancer agent carrier (Table 1).

Although the above experimental evidences require further

proof, the targeted nanoparticle development present clinical

potential and provide a launching point for future improvements

and therapeutic and/or diagnostic opportunities.
4.2 Tn & STn

Based on the restricted expression of O-glycans Tn and STn

among human carcinomas, these antigens represent an excellent

feature for targeted therapy. As for CD44v6, several recombinant

antibodies and antibody-drug conjugates have been evaluated in a

variety of phase I/II clinical studies for their anti-tumor efficacy in

different tumor types (129–133). Additionally, STn-based CAR-T

cell therapy has shown promising results in preclinical studies and,

subsequently, reached phase I clinical trials for the treatment of

solid tumors (134–136). Nevertheless, the best characterized STn-

targeting therapy remains a STn-based vaccine, which has been

extensively evaluated in phase III clinical trials (51) (Figure 2). An
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extensive overview on the development and potential of the

abovementioned immunotherapy strategies can be found below.

4.2.1 Anti-Tn/STn antibody &
antibody-drug conjugates

Many Tn-recognizing antibodies have been generated over the

last 35 years. The Tn antigen seems to represent an easy antigenic

determinant due to its simple chemical structure (GalNAca1-Ser/
Thr). However, even though Trabbic et al. (2018) (137) published

the recognition of a single Tn residue by the anti-Tn Kt-IgM-8

antibody, a single Tn determinant has often been found not be

enough for anti-Tn antibody function (138). Accordingly, either the

presence of a peptide backbone or multiple consecutive Tn residues

has been found to be essential for a wide variety of anti-Tn

antibodies. Reis et al. (1998) (89) reported that the PMH1

antibody requires an additional MUC2 apomucin peptide chain,

whereas the Tn-MUC1 complex was found to represent the

antigenic determinant for several anti-Tn antibodies, including

SM3 (139), PankoMab (140) and 5E5 (141). Furthermore,

multiple anti-Tn antibodies, such as MLS128 (142), 83D4 (143),

KM3413 (144) and Ca3638 (145), have been described to require at

least two consecutive Tn residues. Finally, the importance of the Tn

backbone composition has been described for some antibodies. For

example, Mazal et al. (2013) (146) demonstrated specific

recognition of a tri-Serine Tn backbone by the 15G9

antibody (Table 2).

Some of the abovementioned mouse anti-Tn antibodies have

been converted into chimeric or humanized antibodies for

therapeutic use in the clinic. The mouse-human chimeric

antibody, cKM3413, was found to induce ADCC and direct

killing activity, which was accompanied by increased survival in

vivo (144). Additionally, the humanized 5E5 antibodies CIM301-1

and CIM301-8 were reported to enhance NK cell activation and

cytotoxicity in vitro (147), and humanized PankoMab-GEX was

described to be safe, well-tolerated and exhibit promising anti-

tumor activity in advanced disease in ovarian cancers, in a phase I

clinical trial (129, 130). In 60 evaluable patients with ovarian cancer

the clinical benefit included one complete response in a patient

treated 483 d and confirmed disease stabilization in 19 patients

lasting a median (range) of 23 (10–102) weeks (126). Additionally,

the combination of PankoMab-GEX with an anti-EGFR antibody

was evaluated in a phase I clinical study and showed anti-tumor

activity in lung cancer and CRC patients (131). From this clinical

trial were 2 and 4 RECIST partial responses in the first and second

part of the study, all in CRC patients. There were 2 responses in

each subgroup and the duration of best response was 7.2 months.

The PFS for NSCLC was 5.3 months and 2 heavily pretreated

patients achieved a prolonged control of disease of 10.6 and 9.4

months. Sedlik et al. (147) has used another mouse-human chimeric

antibody, ChiTn, derived from the mouse anti-83D4 antibody, as an

ADC for cancer treatment. The ChiTn antibody selectively

accumulated in the solid tumor, but not in healthy tissue. When

conjugated to saporin (SAP) or to auristatin F, the Chi-Tn ADC

exhibited effective cytotoxicity to Tn-positive tumor cells in vitro

and conjugated to MMAF also induced a delay of tumor growth in
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TABLE 2 Overview of the (S)Tn directed therapies described in this study.

Target Type of therapy Therapeutic construct
Antigenic
determinant Example Reference

Tn

Anti-Tn antibody & antibody-drug
conjugates

Anti-Tn antibody

Tn single residue Kt-IgM-8 (137)

Tn-MUC2 complex PMH1 (89)

Tn-MUC1 complex

SM3 (139)

PankoMab (140)

5E5 (141)

Consecutive Tn
residues

MLS128 (142)

83D4 (143)

KM3413 (144)

Ca3638 (145)

Tri-Serine Tn 15G9 (146)

Humanized anti-Tn antibody

Consecutive Tn
residues cKM3413

(144)

Tn-MUC1 complex

CIM301-1 (147)

CIM301-8 (147)

PankoMab-GEX (129, 130)

Consecutive Tn
residues ChiTn

(148)

Anti-Tn drug conjugate
Consecutive Tn
residues ChiTn - drug conjugate

(148)

Humanized anti-Tn antibody
combination therapy Tn-MUC1 complex

PankoMab-GEX + anti-
EGFR

(131)

Tn-based vaccines Anti-Tn vaccine Tn single residue MAG-Tn-TT (149)

Tn-based CAR-T cell therapy Anti-Tn CAR-T Tn-MUC1 complex

Anti-Tn 5E5 CAR-T (150)

Anti-Tn SM3 CAR-T (135, 136)

Anti-TnMUC1 CAR-T (151)

STn

Anti-STn antibody & antibody-drug
conjugates

Radiolabeled murine anti-STn

177Lu-CC49 (152)

131I-CC49 (153)

Radiolabeled murine anti-STn
combination therapy 131I-CC49 + IFN

(153)

Humanized anti-STn antibody
HuCC49DCH2 (154)

225Ac-DOTaylated-huCC49 (155)

Anti-STn drug conjugate
CC49-Br-MMAE (156)

SF3-MMAE (157)

STn-based vaccins Anti-STn vaccin Theratope (158–162)

STn-based CAR-T cell therapy

Anti-STn CAR-T
Anti-STn CC49 CAR-T

(134, 163,
164)

Dual-specific CAR-T

Dual STn- and CD30-
specific CAR-T

(165)

Dual STn- and CD47-
specific CAR-T

(166)
F
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vivo, validating for the first time the use of an anti-Tn antibody as

an effective ADC (148).

The anti-STn antibody CC49 has shown promising.

Radiolabeled 177Lu-CC49 was initially demonstrated to provide

significant anti-tumor activity in vivo (152), which led to its

evaluation in phase I and phase I/II radioimmunotherapy clinical

trials (132, 133). Here, the 177Lu-CC49 antibody was shown to be

well-tolerated and anti-tumor effects were confirmed in patients

with chemoresistant ovarian cancer. A differently radiolabeled

CC49 antibody, 131I-CC49, was tested in patients with hormone-

resistant metastatic prostate cancer. Phase II clinical studies

demonstrated enhanced tumor uptake and anti-tumor activity for

this antibody in the presence of interferon (IFN) which promoted

increased tumor antigen expression and localization compared to

the use of the 131I-CC49 antibody alone (153). However, the

generation of human anti-murine antibody responses and bone

marrow suppression represented two major adverse side-effects,

which limited the therapeutic use of these radiolabeled anti-CC49

antibodies. A solution was reported by Rogers et al. (2005) (154)

who presented the development of a humanized CC49 antibody,

huCC49DCH2, and demonstrated less bone marrow toxicity as well

as prolonged median survival in vivo, probably due to the

acceptance of higher radiation doses without limiting side effects

and off-side toxicity. In 2021, Minnix et al. (155) described the use

of another humanized CC49 antibody construction, 225Ac-labeled

DOTaylated-huCC49, in an in vivo murine model of ovarian

cancer, which showed reduced tumor growth and increased

survival without considerable off-side toxicity. Minnix et al.

(2020) (156) also proposed an alternative therapeutic strategy

using antibody-drug conjugates. The same abovementioned

murine model was used to evaluate treatment with the anti-STn

antibody-drug conjugate, CC49-Br-monomethyl auristatin E

(MMAE, developed from CC49 antibody and monomethyl

auristatin E). Reduced tumor growth as well as increased survival

were found in mice receiving CC49-Br-MMAE treatment. Finally,

another anti-STn antibody-drug conjugate, SF3-MMAE, was

reported to be well tolerated and inhibit tumor growth in murine

breast and colon cancer models (157) (Table 2).

4.2.2 Tn/STn-based vaccines
Another therapeutic strategy is the use of Tn- and STn-based

vaccines. In a phase I clinical trial among breast cancer patients with

high-risk of relapse, Rosenbaum et al. (2020) (149) evaluated the

efficiency of the multiple antigenic glycopeptide-Tn-tetanus toxoid-

derived TT830-844 (MAG-Tn-TT) vaccine. This study revealed

high levels of Tn-specific antibodies which were found to induce

complement dependent cytotoxicity (CDC) and subsequent tumor

cell death in all vaccinated patients. It is of note that carbohydrates

can induce immune tolerance towards the tumor, which

complicates the clinical success of glycan-based cancer vaccines.

The development of efficient Tn-based vaccines, such as the MAG-

Tn-TT vaccine, might therefore be a complicated process rather

than standard therapeutic strategy (167–170).

The same holds for the STn antigen. The generation of an

efficient STn-based anti-tumor immunotherapy is challenging due
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best characterized STn-targeting therapy is a STn-based vaccine

called Theratope. As delayed tumor growth by efficient antibody

responses was observed in in vivomodels receiving Theratope (158,

159), anti-STn immune responses and increased survival were

initially also observed in phase I and II clinical studies with

Theratope-treated pancreatic, colorectal, breast and ovarian

cancer patients (160–162). Nevertheless, phase III clinical trials

with metastatic breast cancer patients did not show this overall

beneficial anti-tumor activity of Theratope, either alone or in

combination treatment with endocrine therapy (172). An

extensive review on Theratope´s composition and all clinical

studies performed with this STn-based vaccine was published by

Julien et al. (2012) (51).

4.2.3 Tn/STn-based CAR-T cell therapy
The construction of anti-STn CAR-T cells and their anti-tumor

activity in vitro was first described by Hombach et al. (163) in 1997,

after which therapeutic benefit of anti-STn CC49-based CAR-T

cells was proposed based on in vivo models of colon and

endometrial carcinoma by McGuinness et al. (164) in 1999. Based

on these preliminary findings, several anti-STn CAR-T cell

engineering strategies have been evaluated. For example, dual-

specific CAR-T cells targeting a second additional antigen, such

as CD30 or CD47, have been developed to potentiate the anti-tumor

activity of anti-STn CAR-T cells (165, 166). Indeed, Shu et al. (2021)

(166) reported delayed tumor growth in low STn expressing tumors

when treated with the dual STn- and CD47-specific CAR-T cells,

but not after therapy with the single anti-STn CAR-T cells in an in

vivo ovarian cancer model. It is of note that single anti-STn CAR-T

cell therapy was found to be sufficient to obtain the same result in

high STn expressing tumors. Finally, the first phase I clinical trials

with anti-STn CC49-based CAR-T cells as immunotherapy for solid

tumors were published by Hege et al. (134) in 2017. Even though

these anti-STn engineered T cells were found to be relatively safe, no

considerable clinical efficacy was observed in metastatic CRC

patients. Here, rapid clearance of those anti-STn CAR-T cells was

proposed as one of the limitations to be overcome for significant

therapeutic benefit (Table 2).

CAR-T cell strategies targeting Tn or STn have been extensively

studied as well. Posey et al. (2016) (150) used the scFv of the

abovementioned anti-Tn 5E5 antibody for the development of anti-

Tn CAR-T cells, which subsequently showed anti-tumor activity in

murine models of pancreatic cancer and leukemia. Anti-Tn CAR-T

cells with alternative Tn recognition domains have also been

developed and showed therapeutic benefit in in vivo models of

head and neck cancer (173) and breast and gastric carcinoma (174).

In this last case, as an alternative to the use of ab T cells a subtype of

gd T cells were used, and comparison of both CAR-Ts demonstrated

a better cytotoxic effect with the gd CAR-T cells both in vitro and in

vivo. Additionally, anti-Tn SM3 antibody specificity has been used

for the generation of multiple CAR-T constructs, which have been

tested in a variety of clinical studies (135, 136). Significant clinical

efficacy without evidence of adverse side-effects and safety concerns

has been observed in phase I trials including patients with
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metastatic seminal vesicle cancer (135) and lung cancer (136).

Finally, therapeutic efficacy as well as tolerability and safety of

anti-TnMUC1 CAR-T cells are being evaluated in a phase I clinical

trial among patients with TnMUC1+ multiple myeloma and solid

tumors such as lung cancer, breast cancer, pancreatic cancer and

ovarian cancer, by Gutierrez et al. (2021) (151). Preliminary efficacy

assessed by RECIST v1.1 at Day +28 demonstrate stable disease in

all patients that followed lymph depletion chemotherapy.
4.3 GD2 & O-GD2

GD2 might be the most relevant glycan in the clinic. Two

different antibodies, namely anti-GD2 antibodies 3F8 and 14.18,

have been the basis for the generation of clinically successful anti-

GD2 therapy (Figure 2).

After a variety of phase I clinical studies indicating clinical safety

and effectiveness without significant toxicity, either after single or

repeated ch14.18 antibody administration (175, 176), a phase II

clinical trial showed that the use of ch14.18 combined with

granulocyte-macrophage colony-stimulating factor (GM-CSF) and

interleukin-2 (IL2) compared to the ch14.18 alone in metastatic

neuroblastoma patients was associated with a significantly improved

outcome as compared with standard therapy in patients with high-risk

neuroblastoma (177). This observation was emphasized by Simon et al.

(2004) (178), who demonstrated that the administration of ch14.18

alone did not improve progression-free survival in stage 4

neuroblastoma patients. In 2010, Yu et al. (179) reported a

significant increase in event-free survival and overall survival for

high-risk neuroblastoma patients treated with a combination of anti-

GD2 mAb ch14.18 with IL2 and GM-CSF compared to patients who

received standard treatment in a phase III clinical study. Based on these

results, Dinutuximab (anti-GD2 ch14.18 antibody) in combination

with IL2 and GM-CSF was approved by the United States Food and

Drug Administration (FDA) in 2015 for the treatment of high-risk

neuroblastoma patients (180). The mechanism of action behind

Dinutuximab is based on GD2 binding and subsequent induction of

antibody-dependent cell-mediated cytotoxicity (ADCC) as well as

CDC, after which recruitment of granulocytes and NK cells finally

provoke tumor cell death. In 2017, Dinutuximab b (ch14.18/CHO) was
approved by the European Commission for the treatment of high-risk

neuroblastoma patients in Europe, whereas Naxitamab (a humanized

mAbHu3F8) in combination with GM-CSF was approved by the FDA

in 2020 for the treatment of relapsed high-risk neuroblastoma patients

or those who show refractory disease in the bone or bone marrow

(181). Currently, several clinical trials are ongoing which will evaluate

the potential of Dinutuximab and other hu14.18- and hu3F8-based

anti-GD2 antibodies as therapeutic strategies for neuroblastoma and

other cancer types including lung cancer, melanoma and osteosarcoma

(138, 182). Additionally, alternative therapeutic constructs of anti-GD2

antibodies are being extensively studied, such as radiolabeled

antibodies, antibodies modified for drug delivery, GD2-based

vaccines, GD2-specific chimeric antigen receptor (CAR) T cells and

bispecific antibodies, among others (138, 182). Accordingly, the
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immunotherapy is rapidly growing. An extensive review on approved

anti-GD2 antibody-based cancer treatments as well as the many

ongoing clinical trials was recently published by Nazha et al. (2020)

(182) and Berois et al. (2022) (138).

However, a major bottleneck to the clinical application of anti-

GD2-based immunotherapy is the presence of significant adverse

side-effects such as neuropathic pain, due to GD2 expression among

peripheral nerves (96). In addition to further studies into strategies

that circumvent or diminish those significant side effects, alternative

approaches for anti-GD2 cancer immunotherapy are being

evaluated. Accordingly, the O-GD2 antigen has shown great

potential as therapeutic target for cancer immunotherapy due to

its absence on healthy tissues, supposing safer therapeutic options

and improved treatment tolerance (96). Decades ago Cerato et al.

(1997) (183) developed a mouse 8B6-antibody specific for O-GD2

(Table 3). Over time, this antibody has been proven to be as efficient

as anti-GD2 antibodies regarding the induction of ADCC and CDC

(95, 96, 184). Additionally, Cochonneau et al. (2013) (185)

proposed a role for the anti-O-GD2 8B6 antibody in tumor cell

death by the induction of cell cycle arrest and apoptosis. Even

though the exact mechanism behind this observation remains to be

elucidated, the apoptosis inducing activity of this O-GD2 antibody

might clinically be of major importance, especially in the treatment

of tumors that are able to protect themselves from immunological

cytotoxicity. For clinical purposes, an alternative mouse/human

chimeric version of the 8B6 antibody (c.8B6), maintaining antigen

binding affinity and specificity characteristics, was developed by

Terme et al. (2014) (184) (Table 3). The c.8B6 O-GD2 antibody was

found to be as effective as the ch14.18 GD2 antibody, but did not

provoke any significant adverse side effects in an in vivo model,

emphasizing the potentially major clinical benefit of O-GD2-based

therapeutic approaches. Nevertheless, whereas many clinical trials

with anti-GD2-based antibody therapies are ongoing, clinical trials

with an anti-O-GD2 c.8B6 antibody are still awaited.
5 Concluding remarks &
future perspectives

Taken together, the reviewed antigens represent potential

biomarkers and attractive therapeutic targets for personalized

medicine in cancer treatment.

The three mentioned TAAs could serve as biomarkers in liquid

biopsy and provide valuable information about the presence,

progression, and characteristics of tumors. Liquid biopsy involves the

analysis of various biomarkers, including circulating tumor cells

(CTCs), circulating tumor DNA (ctDNA), and proteins, obtained

from a patient’s blood or other bodily fluids (Lodewijk et al., 2018).

TAAs can be detected andmeasured in these samples and offer insights

into the underlying cancer biology. Even though some studies have

reported the presence of CD44v6, STn and GD2 antigens in serum, no

extensive evaluations of their potential as valuable diagnostic,

prognostic and/or predictive biomarkers in liquid biopsy have been
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described. It is of note that the presence of promising biomarker and

therapeutic target O-GD2 in serum has not been reported. However,

this might be explained by both the recent interest and limited

approaches to study the regulatory mechanisms of O-GD2

expression, and further studies into the expression of this antigen are

needed to examine the presence of this glycan in serum. Importantly,

CD44v6 expression has only been detected on CTCs, whereas STn

glycans have been found to be present either on CTCs or as secreted

products from tumors. Contrarily, GD2 expression has not been

observed on CTCs and is found in the serum as secreted products

either from the tumor or exosomes. This observation emphasizes the

importance of evaluation of different components of liquid biopsies in

order to characterize the presence of newly described antigens in liquid

biopsies. Moreover, liquid biopsies not only include serum, but various

biological fluids, such as pleural liquid, cerebrospinal fluid, saliva and

urine. Therefore, dependent on the cancer type, it might be important

to examine CD44v6, STn and O-GD2 expression in other fluids

additional to serum. For example, as expression of all those antigens

has been observed in lung cancer, the evaluation of pleural liquid might

be of great interest. It’s important to note that the choice of TAAs as

biomarkers in liquid biopsy depends on the specific type of cancer and

the unique genetic alterations associated with it. Different cancers have

distinct TAAs, and ongoing research continues to identify and validate

novel TAAs for liquid biopsy applications. The utilization of TAAs as

biomarkers in liquid biopsy holds promise for non-invasive cancer

detection, monitoring, and personalized treatment decisions.

In conclusion, the identification and targeting of tumor-

associated antigens have opened up exciting new avenues in

cancer treatment. Immunotherapies based on TAAs, such as

immune checkpoint inhibitors, cancer vaccines, and CAR-T-cell

therapy, have shown great promise in improving patient outcomes.

However, it is important to note that the field of TAA-based

therapies is still evolving, and further research is needed to

optimize treatment strategies, overcome resistance mechanisms,

and broaden the application to a wider range of cancer types.
Frontiers in Immunology 12
Nonetheless, the progress made so far suggests the tremendous

potential for the future of cancer treatment.
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TABLE 3 Overview of the (O-)GD2-directed therapies described in this study.

Target
Type of
therapy Therapeutic construct Example Reference

GD2 Anti-GD2 antibody
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constructs

(138, 182)

Anti-GD2 antibodies for drug
delivery

GD2-based vaccins

GD2-specific CAR-T cells

Bispecific antibodies

O-GD2
Anti-O-GD2
antibody

Murine anti-O-GD2 antibody Anti-O-GD2 8B6 antibody (183)
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This table includes therapeutic target, type of therapy, therapeutic construct and antigenic determinant.
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17. Kuncová J, Urban M, Mandys V. Expression of CD44s and CD44v6 in
transitional cell carcinomas of the urinary bladder: comparison with tumour grade,
proliferative activity and p53 immunoreactivity of tumour cells. APMIS (2007) 115
(11):1194–205. doi: 10.1111/j.1600-0643.2007.00602.x

18. Heider KH, Kuthan H, Stehle G, Munzert G. CD44v6: A target for antibody-
based cancer therapy. Cancer Immunology Immunother (2004) 53(7):567–79. doi:
10.1007/s00262-003-0494-4

19. Casucci M, Di Robilant B, Falcone L, Camisa B, Norelli M, Genovese P, et al.
CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia
andmultiplemyeloma. Blood (2013) 122(20):3461–72. doi: 10.1182/blood-2013-04-493361

20. Zhao LH, Lin QL, Wei J, Huai YL, Wang KJ, Yan HY. CD44v6 expression in
patients with stage II or stage III sporadic colorectal cancer is superior to CD44
expression for predicting progression. Int J Clin Exp Pathol (2015) 8(1):692.
21. Garouniatis A, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N,
Papavassiliou AG. FAK, CD44v6, c-Met and EGFR in colorectal cancer parameters:
tumour progression, metastasis, patient survival and receptor crosstalk. Int J Colorectal
Dis (2013) 28(1):9–18. doi: 10.1007/s00384-012-1520-9

22. Shiozaki M, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Naganawa Y, et al.
Expression of CD44v6 is an independent prognostic factor for poor survival in patients
with esophageal squamous cell carcinoma. Oncol Lett (2011) 2(3):429. doi: 10.3892/
ol.2011.264

23. Almeida GM, Pereira C, Park JH, Lemos C, Campelos S, Gullo I, et al.
CD44v6 high membranous expression is a predictive marker of therapy response
in gastric cancer patients. Biomedicines (2021) 9(9):1249. doi: 10.3390/
biomedicines9091249

24. Kawano T, Nakamura Y, Yanoma S, Kubota A, Furukawa M, Miyagi Y, et al.
Expression of E-cadherin, and CD44s and CD44v6 and its association with prognosis in
head and neck cancer. Auris Nasus Larynx (2004) 31(1):35–41. doi: 10.1016/
j.anl.2003.09.005

25. Xu YP, Zhao XQ, Sommer K, Moubayed P. Correlation of matrix
metalloproteinase-2, -9, tissue inhibitor-1 of matrix metalloproteinase and CD44
variant 6 in head and neck cancer metastasis. J Zhejiang Univ Sci (2003) 4(4):491–
501. doi: 10.1631/jzus.2003.0491

26. Kashyap T, Pramanik KK, Nath N, Mishra P, Singh AK, Nagini S, et al. Crosstalk
between Raf-MEK-ERK and PI3K-Akt-GSK3b signaling networks promotes
chemoresistance, invasion/migration and stemness via expression of CD44 variants
(v4 and v6) in oral cancer. Oral Oncol (2018) 86:234–43. doi: 10.1016/
j.oraloncology.2018.09.028

27. Liu B, Kong W, Gong S, Yang C, Wang G, Zhu L. Relationship between the
expression of CD44v6 and development, progress, invasion and metastasis of laryngeal
carcinoma. J Huazhong Univ Sci Technolog Med Sci (2005) 25(3):351–3. doi: 10.1007/
BF02828165

28. Sun Y, Yu X, Li M, Zou Z. Expression of CD44v6 and lymphatic vessel density in
early gastric cancer tissues and their clinical significance. Pak J Med Sci (2019) 35
(2):549. doi: 10.12669/pjms.35.2.464

29. Lourenço BN, Springer NL, Ferreira D, Oliveira C, Granja PL, Fischbach C.
CD44v6 increases gastric cancer Malignant phenotype by modulating adipose stromal
cell-mediated ECM remodeling. Integr Biol (Camb) (2018) 10(3):145. doi: 10.1039/
c7ib00179g

30. Liang S, Li HL, Han GY, Cui JH. CD44V6 regulates gastric carcinoma
occurrence and development through up-regulating VEGF expression. Eur Rev Med
Pharmacol Sci (2017) 21(22):5121–8. doi: 10.26355/eurrev_201711_13828

31. Xie Z, Gao Y, Ho C, Li L, Jin C, Wang X, et al. Exosome-delivered CD44v6/
C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver
microenvironment. Gut (2022) 71(3):568–79. doi: 10.1136/gutjnl-2020-323014

32. Wrana F, Dötzer K, Prüfer M, Werner J, Mayer B. High dual expression of the
biomarkers CD44v6/a2b1 and CD44v6/PD-L1 indicate early recurrence after
colorectal hepatic metastasectomy. Cancers (Basel) (2022) 14(8):1939. doi: 10.3390/
cancers14081939

33. Jha RK, Ma Q, Chen S, Sha H, Ding S. Relationship of fibronectin and CD44v6
expression with invasive growth and metastasis of liver cancer. Cancer Invest (2009) 27
(3):324–8. doi: 10.1080/07357900802375753

34. De Angelis ML, Francescangeli F, Nicolazzo C, Xhelili E, La Torre F, Colace L,
et al. An orthotopic patient-derived xenograft (PDX) model allows the analysis of
metastasis-associated features in colorectal cancer. Front Oncol (2022) 12. doi: 10.3389/
fonc.2022.869485

35. Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins LA, et al. SFPQ
Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol
(2022) 12. doi: 10.3389/fonc.2022.862250

36. Eren B, Sar M, Oz B, Oner Dincbas FH. MMP-2, TIMP-2 and CD44v6 expression
in non-small-cell lung carcinomas †. Ann Acad Med Singap (2008) 37(1):32–9.

37. Rustamadji P, Wiyarta E, Bethania KA. CD44 variant exon 6 isoform expression
as a potential predictor of lymph node metastasis in invasive breast carcinoma of no
special type. Int J Breast Cancer (2021) 2021:1586367. doi: 10.1155/2021/1586367
frontiersin.org

https://doi.org/10.1007/978-1-60327-811-9_1
https://doi.org/10.1111/j.1600-065X.1999.tb01331.x
https://doi.org/10.1007/s00262-004-0560-6
https://doi.org/10.1126/scitranslmed.abn6056
https://doi.org/10.3390/cells10051100
https://doi.org/10.3389/fimmu.2022.809761
https://doi.org/10.3390/cancers15010138
https://doi.org/10.4161/hv.27586
https://doi.org/10.3389/fimmu.2019.01078
https://doi.org/10.1155/2017/2709547
https://doi.org/10.1186/1746-1596-9-79
https://doi.org/10.1007/s12010-012-9752-2
https://doi.org/10.1007/s12010-012-9752-2
https://doi.org/10.1016/j.stem.2014.01.009
https://doi.org/10.1074/jbc.M110.104273
https://doi.org/10.1002/pros.22775
https://doi.org/10.1111/j.1600-0643.2007.00602.x
https://doi.org/10.1007/s00262-003-0494-4
https://doi.org/10.1182/blood-2013-04-493361
https://doi.org/10.1007/s00384-012-1520-9
https://doi.org/10.3892/ol.2011.264
https://doi.org/10.3892/ol.2011.264
https://doi.org/10.3390/biomedicines9091249
https://doi.org/10.3390/biomedicines9091249
https://doi.org/10.1016/j.anl.2003.09.005
https://doi.org/10.1016/j.anl.2003.09.005
https://doi.org/10.1631/jzus.2003.0491
https://doi.org/10.1016/j.oraloncology.2018.09.028
https://doi.org/10.1016/j.oraloncology.2018.09.028
https://doi.org/10.1007/BF02828165
https://doi.org/10.1007/BF02828165
https://doi.org/10.12669/pjms.35.2.464
https://doi.org/10.1039/c7ib00179g
https://doi.org/10.1039/c7ib00179g
https://doi.org/10.26355/eurrev_201711_13828
https://doi.org/10.1136/gutjnl-2020-323014
https://doi.org/10.3390/cancers14081939
https://doi.org/10.3390/cancers14081939
https://doi.org/10.1080/07357900802375753
https://doi.org/10.3389/fonc.2022.869485
https://doi.org/10.3389/fonc.2022.869485
https://doi.org/10.3389/fonc.2022.862250
https://doi.org/10.1155/2021/1586367
https://doi.org/10.3389/fimmu.2023.1272681
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lodewijk et al. 10.3389/fimmu.2023.1272681
38. Soon CH, Jae YS, Jae KL, Nak WL, Sun HK, Bom WY, et al. Significance of
CD44v6 expression in gynecologic Malignancies. J Obstetrics Gynaecology Res (2006)
32(4):379–86. doi: 10.1111/j.1447-0756.2006.00422.x.

39. Wang Y, Yang X, Xian SHU, Zhang LI, Cheng Y. CD44v6 may influence ovarian
cancer cell invasion and migration by regulating the NF-kB pathway. Oncol Lett (2019)
18(1):298. doi: 10.3892/ol.2019.10306

40. Wang Y, Yang X, Yuan M, Xian S, Zhang L, Yang D, et al. Promotion of ovarian
cancer cell invasion, migration and colony formation by the miR-21/Wnt/CD44v6
pathway. Oncol Rep (2019) 42(1):91. doi: 10.3892/or.2019.7153

41. Ni J, Cheung BB, Beretov J, Duan W, Bucci J, Malouf D, et al. CD44 variant 6 is
associated with prostate cancer growth and chemo-/radiotherapy response in vivo. Exp
Cell Res (2020) 388(2):111850. doi: 10.1016/j.yexcr.2020.111850

42. Belthier G, Homayed Z, Grillet F, Duperray C, Vendrell J, Krol I, et al. CD44v6
defines a new population of circulating tumor cells not expressing epCAM. Cancers
(Basel) (2021) 13(19):4966. doi: 10.3390/cancers13194966

43. Nicolazzo C, Loreni F, Caponnetto S, Magri V, Vestri AR, Zamarchi R, et al.
Baseline CD44v6-positive circulating tumor cells to predict first-line treatment failure
in patients with metastatic colorectal cancer. Oncotarget (2020) 11(45):4115–22. doi:
10.18632/oncotarget.27794

44. Gaggianesi M, Mangiapane LR, Modica C, Pantina VD, Porcelli G, Di Franco S,
et al. Dual inhibition of myc transcription and PI3K activity effectively targets colorectal
cancer stem cells. Cancers (Basel) (2022) 14(3):673. doi: 10.3390/cancers14030673

45. Wang Y, Chen G, Dai F, Zhang L, Yuan M, Yang D, et al. miR-21 induces
chemoresistance in ovarian cancer cells via mediating the expression and interaction of
CD44v6 and P-gp. Onco Targets Ther (2021) 14:325–36. doi: 10.2147/OTT.S286639

46. Pereira C, Ferreira D, Mendes N, Granja PL, Almeida GM, Oliveira C.
Expression of CD44v6-containing isoforms influences cisplatin response in gastric
cancer cells. Cancers (Basel) (2020) 12(4):858. doi: 10.3390/cancers12040858

47. Sagawa K, Uwa N, Daimon T, Sakagami M, Tsujimura T. Expression of CD44
variant isoforms, CD44v3 and CD44v6, are associated with prognosis in
nasopharyngeal carcinoma. J Laryngol Otol (2016) 130(9):843–9. doi: 10.1017/
S0022215116008525

48. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer
progression: therapeutic implications. J Hematol Oncol (2018) 11(1):1–23. doi: 10.1186/
s13045-018-0605-5

49. Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, Steentoft C,
et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features.
Proc Natl Acad Sci USA (2014) 111(39):E4066–75. doi: 10.1073/pnas.1406619111

50. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical
implications. Nat Rev Cancer (2015) 15(9):540–55. doi: 10.1038/nrc3982

51. Fleurence J, Fougeray S, Bahri M, Cochonneau D, Clémenceau B, Paris F, et al.
Targeting O-acetyl-GD2 ganglioside for cancer immunotherapy. J Immunol Res (2017)
2017:5604891. doi: 10.1155/2017/5604891

52. Ju T, Otto VI, Cummings RD. The tn antigen—Structural simplicity and
biological complexity. Angew Chem Int Ed Engl (2011) 50(8):1770. doi: 10.1002/
anie.201002313

53. Prokop O, Uhlenbruck G. N-acetyl-D-galactosamine in tumor cell membranes:
demonstration by means of Helix agglutinins. Med Welt (1969) 46:2515–9

54. Dombek GE, Ore AS, Cheng J, Matsumoto Y, Glickman JN, Fleishman A, et al.
Immunohistochemical analysis of Tn antigen expression in colorectal adenocarcinoma
and precursor lesions. BMC Cancer (2022) 22(1):1281. doi: 10.1186/s12885-022-10376-y

55. Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis,
and immunotherapy. J Mol Med (Berl) (1997) 75(8):594–602. doi: 10.1007/
s001090050144

56. Springer GF. T and Tn, general carcinoma autoantigens. Science (1984) 224
(4654):1198–206. doi: 10.1126/science.6729450

57. Laack E, Nikbakht H, Peters A, Kugler C, Jasiewicz Y, Edler L, et al. Lectin
histochemistry of resected adenocarcinoma of the lung: helix pomatia agglutinin
binding is an independent prognostic factor. Am J Pathol (2002) 160(3):1001–8. doi:
10.1016/S0002-9440(10)64921-8

58. Hofmann BT, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, et al.
COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties
in pancreatic cancer. Mol Cancer (2015) 14(1):109. doi: 10.1186/s12943-015-0386-1

59. Dong X, Jiang Y, Liu J, Liu Z, Gao T, An G, et al. T-synthase deficiency enhances
oncogenic features in human colorectal cancer cells via activation of epithelial-
mesenchymal transition. BioMed Res Int (2018) 2018:9532389. doi: 10.1155/2018/9532389

60. Konno A, Hoshino Y, Terashima S, Motoki R, Kawaguchi T. Carbohydrate
expression profile of colorectal cancer cells is relevant to metastatic pattern and
prognosis. Clin Exp Metastasis (2002) 19(1):61–70. doi: 10.1023/A:1013879702702

61. Numa F, Tsunaga N, Michioka T, Nawata S, Ogata H, Kato H. Tissue expression
of Sialyl Tn antigen in gynecologic tumors. J Obstet Gynaecol (Tokyo 1995) (1995) 21
(4):385–9. doi: 10.1111/j.1447-0756.1995.tb01027.x

62. Munkley J. The role of sialyl-tn in cancer. Int J Mol Sci (2016) 17(3):275. doi:
10.3390/ijms17030275

63. Fu C, Zhao H, Wang Y, Cai H, Xiao Y, Zeng Y, et al. Tumor-associated antigens:
Tn antigen, sTn antigen, and T antigen. HLA (2016) 88(6):275–86. doi: 10.1111/
tan.12900
Frontiers in Immunology 14
64. Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the
target? Biomolecules (2012) 2(4):435–66. doi: 10.3390/biom2040435

65. Thomas D, Sagar S, Caffrey T, Grandgenett PM, Radhakrishnan P. Truncated O-
glycans promote epithelial-to-mesenchymal transition and stemness properties of
pancreatic cancer cells. J Cell Mol Med (2019) 23(10):6885–96. doi: 10.1111/
jcmm.14572

66. Munkley J. The role of sialyl-tn in cancer. Int J Mol Sci (2016) 17(3):275.
doi: 10.3390/ijms17030275

67. Davidson B, Berner A, Nesland JM, Risberg B, Kristensen GB, Tropé CG, et al.
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