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Distinct regulatory machineries
underlying divergent chromatin
landscapes distinguish innate
lymphoid cells from
T helper cells
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Xingyu Zhao1,2 and Chao Zhong1,2,3,4*
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Innate lymphoid cells (ILCs), as the innate counterpart of CD4+ T helper (Th) cells,

play crucial roles in maintaining tissue homeostasis. While the ILC subsets and

their corresponding Th subsets demonstrate significant similarities in core

programming related to effector function and regulatory mechanisms, their

principal distinctions, given their innate and adaptive lymphocyte nature,

remain largely unknown. In this study, we have employed an integrative

analysis of 294 bulk RNA-sequencing results across all ILC and Th subsets,

using scRNA-seq algorithms. Consequently, we identify two genesets that

predominantly differentiate ILCs from Th cells, as well as three genesets that

distinguish various immune responses. Furthermore, through chromatin

accessibility analysis, we find that the ILC geneset tends to rely on specific

transcriptional regulation at promoter regions compared with the Th geneset.

Additionally, we observe that ILCs and Th cells are under differential

transcriptional regulation. For example, ILCs are under stronger regulation by

multiple transcription factors, including RORa, GATA3, and NF-kB. Otherwise, Th

cells are under stronger regulation by AP-1. Thus, our findings suggest that,

despite the acknowledged similarities in effector functions between ILC subsets

and corresponding Th subsets, the underlying regulatory machineries still exhibit

substantial distinctions. These insights provide a comprehensive understanding

of the unique roles played by each cell type during immune responses.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1271879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1271879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1271879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1271879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1271879/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1271879&domain=pdf&date_stamp=2023-12-01
mailto:zhongc@pku.edu.cn
https://doi.org/10.3389/fimmu.2023.1271879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1271879
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2023.1271879
Introduction

In recent years, innate lymphoid cells (ILCs) have garnered

increasing attention owing to their functional parallels with CD4+ T

helper (Th) cells of the adaptive immune system (1–3). Both ILCs

and Th cells play pivotal roles by secreting effector cytokines,

sharing similarities in their effector functions and regulatory

mechanisms. These shared characteristics lead to the

categorization of both cell types into distinct subsets based on the

expression of signature effector cytokines and master transcription

factors (4–7). For instance, type 1 ILCs (ILC1s) and Th1 cells

mainly produce IFN-g and TNF-a, regulated by the master

transcription factor T-bet (8, 9). Likewise, ILC2s and Th2 cells

predominantly express IL-5 and IL-13, controlled by the

transcription factor GATA3 (10–12). Furthermore, ILC3s,

encompassing natural killer receptor expressing (NCR+) ILC3s,

double-negative (DN) ILC3s, and lymphoid tissue-inducer (LTi)

cells, mirror Th17 cells as they primarily secrete IL-22 and IL-17,

under the regulation of the transcription factor RORgt (13, 14).
Although the ILC subsets and their corresponding Th subsets

share functional and regulatory similarities, it remains imperative to

acknowledge their fundamental differences as innate and adaptive

lymphocytes, respectively. One notable distinction lies in the role of

T-cell receptor (TCR) signaling, which is crucial for the activation,

differentiation, and effector functions of Th cells (15). TCR

signaling triggers downstream transcription factors like AP-1,

NF-AT, and NF-kB (16). In contrast, ILCs, lacking TCR

expression, rely on cytokines, neuropeptides, eicosanoids, and

other environmental signal for activation (17–21). Additionally,

ILCs are characterized by their tissue residency, meaning that their

activation and functions are regulated by local environmental cues

and they exert crucial regulatory roles in maintaining tissue

homeostasis (22, 23). Th cells, however, are primarily circulatory,

undergoing initially activated and differentiated in secondary

lymphoid organs before migrating to exert effector functions in

peripheral tissues (24). This distinction underscores that despite

parallels, there exist key functional and regulatory differences

between ILCs and Th cells intrinsic to their identities as innate

versus adaptive lymphocytes.

The transcriptomic differences between ILC subsets and their

corresponding Th cells should, to varying degrees, reflect their

functional and regulatory differences. Previous studies have

attempted transcriptional comparison between these cell types

(25–27). For instance, in a study examining Nippostrongylus

brasiliensis infection, lung ILC2s and Th2 cells isolated on day 14

were subjected to bulk RNA-sequencing (RNA-seq) analysis. The

resulting differentially expressed genes between the two cell types

were indeed substantial (25). However, the core programing of lung

ILC2 and Th2 cells, including cell-surface receptors, cytokines, and

transcription factors, exhibited significant shared properties (26,

28). Furthermore, other studies have demonstrated that

differentiated Th2 cells and memory Th2 cells can produce

effector cytokines independently of TCR signaling, similar to

innate lymphocytes (29, 30). These findings may partially explain

the resemblance between lung Th2 cells and ILC2s after N.

brasiliensis infection. Nevertheless, it remains unclear whether all
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ILC subsets and their corresponding Th cells exhibit such

comparable features under different conditions. Moreover, ILCs

primarily reside in local tissues, where they participate in

maintaining tissue homeostasis. Conversely, Th cells typically

undergo activation and differentiation in secondary lymphoid

organs, specializing in cytokine production to facilitate immune

responses. Therefore, further investigation into the fundamental

difference between ILCs and Th cells is still imperative.
Results

Integrated transcriptome analysis uncovers
distinct gene expression signatures
between ILC and Th subsets

ILCs and Th cells exhibited parallel effector functions in innate

and adaptive immunity, respectively (31). However, the

transcriptomic differences between these cell types had remained

largely unclear. To comprehensively compare their transcriptomes

and minimize variations from a single data source, we performed an

integrative analysis leveraging publicly available bulk RNA-

sequencing (RNA-seq) datasets. In total, we collected bulk RNA-

seq datasets from 52 published studies, comprising 294 samples,

including 21 ILC1, 64 ILC2, 41 ILC3, 61 Th1 cell, 49 Th2 cell, and

58 Th17 cell samples (Figure 1A, Supplementary Table 1).

Subsequently, we applied a series of data processing steps to the

bulk RNA-seq datasets, including normalization of data, filtration

of genes with low expression, and removal of batch effect (Figure 1B,

Supplementary Figure 1A). Through these steps, we identified 8,393

genes with significantly high expression levels (transcripts per

million or TPM >10) in at least one ILC or Th subset (expressed

in more than 80% of the samples for each respective subset)

(Figure 1C, Supplementary Figure 1B). Following the removal of

batch effects, the RNA-seq samples underwent UMAP

classification, a commonly used algorithm frequently used for

single-cell RNA-seq (scRNA-seq) analysis, based on the gene

expression profiles of the samples (Figure 1D, Supplementary

Figure 1C). The UMAP analysis accurately assigned the samples

to their respective cell type categories, indicating that the gene

expression profiles effectively captured the cellular heterogeneity

within the dataset. To further validate the accuracy of the RNA-seq

dataset processing, we examined the expression of expected

signature genes in ILC and Th subsets. Specifically, all three ILC

subsets exhibited enriched expression of the ILC marker Kit,

whereas the three Th subsets showed specific expression of the T-

cell marker Cd3e (Figure 1E). Moreover, the master transcriptional

factors Tbx21, Gata3, and Rorc, associated with different immune

cell types, were accurately and highly expressed by their respective

ILC or Th subsets (Figure 1E).

The successful classification allowed us to further investigate the

distinct transcriptional features present in each ILC and Th subset

by employing algorithms specifically designed for scRNA-seq

analysis. Despite sharing similarities in effector functions, we

anticipated significant transcriptional differences between ILC

subsets and their corresponding Th subsets, reflecting their
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https://doi.org/10.3389/fimmu.2023.1271879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1271879
inherent differentiation as innate and adaptive immune cells,

respectively. To elucidate such transcriptional differences, we

conducted paired transcriptome comparisons between ILC

subsets and their parallel Th subsets (ILC1 versus Th1, ILC2

versus Th2, and ILC3 versus Th17). This analysis revealed 258

ILC-specific genes and 434 Th-specific genes, referred to as the ILC

geneset and Th geneset, respectively (Figure 1F, Supplementary

Table 2). To further verify the reliability of the geneset and eliminate

the interference of the tissue environment, we conducted a

comparison of the expression levels of the ILC geneset and the

Th geneset between ILC and Th subsets originating from the same

source (25, 32, 33). As we anticipated, most genes in the ILC geneset
Frontiers in Immunology 03
exhibit a higher expression level in ILC subsets, whereas most genes

in the Th geneset exhibit a higher expression level in Th subsets

from the same source (Supplementary Figure 2). Overall, the ILC

geneset and Th geneset represent fundamental distinctions

between ILC and Th cells and are minimally affected by

environmental factors.

The different subsets of ILCs, along with their corresponding Th

subsets, play distinct roles in immune responses. Therefore, we next

conducted a screening process to identify genes that underlay

specific immune responses, exhibiting conserved, subset-specific

expression patterns in individual ILC subsets and their

corresponding Th counterparts, aiming to identify genes
B

C D

E

F G

A

FIGURE 1

Integrative RNA-seq analysis uncovers principal genesets distinguishing ILC and Th subsets. (A) Bar chart showing the sources and numbers of bulk
RNA-seq datasets across different ILC and Th subsets, and donut plot showing the numbers of bulk RNA-seq datasets collected for each cell type.
(B) Schematics of the RNA-seq data preprocessing strategy. RNA-seq datasets of ILCs and Th cells are normalized into TPM, and then low-
expression genes are filtered out, followed by batch effect removal using the limma package. (C) Violin plot showing average gene expression (log2
TPM) in each cell type after low expression gene filtering. (D) UMAP plot showing distribution of ILC and Th RNA-seq samples after batch effect
removal. Cell types and data sources are annotated. (E) Scatter plot showing the expression of Kit, Cd3e, Tbx21, Gata3, and Rorc across ILC and Th
subsets. (F) Heatmap showing differentially expressed genes between ILC and Th (log2 fold-change > 0.25, P. value < 0.01). The top 10 ILC-specific
and Th-specific genes ranked by fold change are listed. (G) Heatmap showing conserved genes in ILC and Th subsets of each immune response
(log2 fold change > 0.25, P. value < 0.01). The top 10 genes with minimum fold change among ILC and Th subset are listed. UMAP, Uniform Manifold
Approximation and Projection. TPM, transcripts per million mapped reads.
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underlying specific immune responses. As a result, we defined 167

genes as the type 1 geneset, which included Ifng and Tbx21,

specifically expressed in both ILC1s and Th1 cells. We also

defined 98 genes as the type 2 geneset, such as Il4, Il5, Il13, and

Gata3, which were preferentially upregulated in both ILC2s and

Th2 cells. Additionally, we defined 148 genes as the type 3 geneset,

like Il17a, Il17f, Il22, and Rorc, exhibiting significant increases in

both ILC3s and Th17 cells (Figure 1G, Supplementary Table 3).

Collectively, by conducting an integrated analysis of 294 bulk

RNA-seq datasets across ILC and Th subsets using scRNA-seq

algorithms, we have successfully identified genesets that highlight

the key transcriptional differences between ILCs and Th cells, as

well as the variations in immune response programs.
GO enrichment analysis reveals
fundamental functional and regulatory
disparities across ILC and Th subsets

These genesets identified in our analysis provided valuable

insights into the fundamental transcriptional characteristics

underlying the functional properties of the ILC and Th subsets.
Frontiers in Immunology 04
To further elucidate the functional differences between ILCs and Th

cells, as well as between distinct immune response programs, we

performed gene ontology (GO) enrichment analysis on these

genesets. The analysis revealed the top 100 enriched GO terms in

the ILC and Th genesets, highlighting the significant

overrepresentation of pathways related to “lymphocyte activation

and chemotaxis” in both ILCs and Th cells. This finding

underscored the critical role of these processes in shaping the

functional properties of ILCs and Th cells in the immune system

(Figure 2A, Supplementary Tables 4, 5). To validate this

observation, we examined the expression profile of representative

genes within these GO terms across different ILC and Th subsets

(Supplementary Figure 3A). Additionally, GO terms associated with

pathways of “cell migration”, “epithelium development”,

“mesenchyme development”, “blood vessel development”, and

“nervous system process” were specifically enriched in the ILC

geneset (Figure 2A, Supplementary Table 4), consistent with the

known role of ILCs as tissue-resident immune cells involved in

maintaining tissue homeostasis (22, 23). Specifically, GO terms

related to “cytokine production”, “MAPK-ERK pathway” and

“SMAD pathway” were also enriched in the ILC geneset,

suggesting distinct regulation machineries underlying the immune
B

A

FIGURE 2

GO enrichment analysis reveals fundamental functional and regulatory differences between ILCs and Th cells. (A) GO analysis of the ILC and Th
genesets. Enrichment map shows the top100 terms enriched in the ILC or Th genesets. (B) Dot plot showing the top10 terms enriched in immune
response-specific genesets. GO, gene ontology.
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effects of ILCs compared with Th cells (Figure 2A). In contrast, GO

terms associated with “cell cycle” were highly enriched in the Th

geneset, indicating fundamental disparities between Th cells and

ILCs in terms of proliferation (Figure 2A, Supplementary Table 5).

This observation aligned with the knowledge that T cells underwent

clonal expansion during activation and differentiation, resulting in a

significant increase in cell number (34). Furthermore, the

expression profiles of representative genes within the specifically

enriched GO terms in the ILC and Th genesets confirmed the

functional distinctions between ILCs and Th cells (Supplementary

Figures 3B–D).

In addition, we examined the enriched GO terms in the three

immune response-related genesets. Although there were discernible

differences between these immune response programs, it was noted

that GO terms associated with cytokine production, defense

response, and inflammatory response were consistently enriched

across all three genesets (Figure 2B, Supplementary Figures 3E–G,

Supplementary Tables 6–8). This suggested a similarity in their

helper- l ike functional i t ies and their contr ibution to

immune responses.

Together, the combined GO enrichment analysis of the

predefined ILC and Th genesets, as well as the immune response-

related genesets, provides a comprehensive understanding of the

functional and regulatory similarities and differences between the

different ILC and Th subsets.
Expression-concordant opening chromatin
regions associated with the ILC geneset
tend to distribute in close proximity to the
transcription start sites

Gene expression levels often exhibited correlation with the

accessibility of corresponding chromatin loci (35, 36). To further

understand the transcriptional disparities between ILCs and Th

cells, we compared the chromatin accessibility across the ILC and

Th genesets using publicly available sequencing of DNase I

hypersensitive sites (DNase-seq) data (GSE172358) (37)

(Figure 3A). Through this analysis, we identified 3,292 opening

chromatin regions (OCRs) across the ILC genesets and 4,293 OCRs

across the Th geneset (within 50 kb to the transcriptional start site

or TSS). The accessibility of these OCRs was then compared

between ILCs and Th cells. OCRs that exhibited accessibility

changes consistent with the expression changes of their associated

genes when comparing ILCs and Th cells were referred to as

expression-concordant OCRs (Figures 3A, B). Conversely, OCRs

showing discord accessibility and expression changes between ILC

and Th subsets were categorized as expression-non-concordant

OCRs. As a result, we identified 1,022 concordant OCRs across

the ILC genesets, which we termed as ILC concordant OCRs

(Figure 3C). These OCRs corresponded to majority (79.5%) of the

genes in the ILC geneset (Figure 3D). Additionally, we identified

2,270 ILC non-concordant OCRs, encompassing 94.2% of the genes

in the ILC geneset (Supplementary Figures 4A, B). Similarly, we

discovered 1,559 concordant OCRs across the Th genesets, named

as Th concordant OCRs (Figure 3E). These OCRs accounted for
Frontiers in Immunology 05
72.4% in the genes in the Th geneset (Figure 3F). We also identified

2,734 Th non-concordant OCRs, corresponding to 92.6% of the

genes in the Th geneset (Supplementary Figure 4C, D). Similar to

RNA-seq, Th subsets for DNase-seq are differentiated in vitro

whereas ILC subsets are isolated in vivo. For eliminating the

interference of the tissue environment and differentiation method,

we validated chromatin accessibility of ILC concordant OCRs and

Th concordant OCRs in ATAC-seq data of ILC and Th subsets in

vivo (25). As we anticipated, most of ILC concordant OCRs are

specifically opened in ILC subsets, whereas most of Th concordant

OCRs are specifically opened in Th subsets in vivo (Supplementary

Figure 5). This confirmed that the specific regulatory regions of ILC

geneset and Th geneset are not affected by environmental factors.

Furthermore, we performed a detailed characterization of the

ILC and Th concordant and non-concordant OCRs associated with

the ILC and Th genesets. Notably, we observed that the peak widths

of the ILC concordant OCRs in all ILC subsets were broader

compared with the peak widths of the Th concordant OCRs in

the Th subsets (Figures 3C, E). To statistically confirm this

difference, we quantified the peak widths of the ILC and Th

concordant and non-concordant OCRs (Figure 3G). The ILC

concordant OCRs exhibited a significant increase in width

compared with the Th concordant OCRs (Figure 3G). Conversely,

the width of the ILC non-concordant OCRs showed some variation

and even reduction when compared with the width of the Th non-

concordant OCRs (Supplementary Figure 4E). Previous studies had

suggested that wider OCRs might result from the merging of

multiple accessible regions and were more likely to be located in

the promoter and super-enhancer regions of the associated genes

(38). Therefore, we also investigated the genomic distribution of

these ILC and Th concordant and non-concordant OCRs.

Consistent with the previous studies (39–41), ILC concordant

OCRs demonstrated a preferential distribution within 1 kilobase

pair (kb) around TSSs compared with the Th concordant OCRs

(Figure 3H). However, the distribution of ILC non-concordant

OCRs did not show such a tendency (Supplementary Figure 4F).

Overall, these findings suggest that the transcriptional regulation of

the ILC geneset tends to heavily rely on promoter regions compared

with the transcriptional regulation of the Th geneset.
Different transcription factors are involved
in distinguishing the functionalities of ILCs
from Th cells

The observed differences in chromatin landscapes between the

ILC and Th genesets suggested that they might be regulated by

distinct transcriptional control mechanisms mediated by unique

regulators. To explore this further, we conducted an analysis to

identify enriched transcription factor binding motifs within the ILC

and Th concordant OCRs. Indeed, we found that the ILC

concordant OCRs displayed enriched binding motifs for

transcription factors including RORa, GATA3, GABPA, and c-

Rel (Figure 4A), whereas differentially enriched binding motifs were

observed for transcription factors such as BATF, AP-1, and ELK4 in

the Th concordant OCRs (Figure 4A). Subsequently, we considered
frontiersin.org
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the average expression levels of these predicted transcription factors

across ILC or Th subsets, providing further evidence of their

potential roles in driving the divergence of gene expression

programs between ILCs and Th cells (Figure 4B). Importantly,

the motifs for BATF and AP-1, both belonging to the bZIP family,

were notably enriched in the Th concordant OCRs (Figures 4A, B).

This observation aligned with the notion that these transcription

factors could form the AP-1-BATF transcriptional complex,

exerting crucial regulatory functions downstream of TCR

signaling to promote the activation and function of Th cells (16,
Frontiers in Immunology 06
42). In contrast, the transcriptional regulation of the ILC geneset

appeared to rely on a distinct set of transcription factors, primarily

belonging to different transcription factor families rather than the

bZIP family (Figure 4B). On the other hand, a diverse range of

transcription factors were enriched in the expression-non-

concordant OCRs in both ILCs and Th cells, indicating their

unlikely involvement in regulating the gene expression in the ILC

or Th geneset (Supplementary Figures 6A, B).

In our analysis of the ILC concordant OCRs, we identified 10

potential transcription factors with highly enriched binding motifs
B

C D E F

G H

A

FIGURE 3

Expression-concordant opening chromatin regions associated with the ILC geneset tend to distribute in close proximity to the transcription start
sites. (A) Schematics of identifying all OCRs associated with the genes in the ILC and Th genesets. (B) DNase-seq tracks at the Kit locus and Cd3g,
Cd3d, and Cd3e loci in ILC and Th subsets. Expression-concordant OCRs (fold change > 1.5 between ILC and Th, minimum BPM in both repeats of
each ILC subset > maximum BPM in both repeats of each Th subset, BPM in all ILC/Th sample > 0.5, red in ILC and blue in Th) and expression-non-
concordant OCRs (gray) are signed. (C) Heatmap showing chromatin accessibility of ILC concordant OCRs in the ILC and Th subsets. Profile plot
illustrates the average chromatin accessibility of corresponding regions. (D) Pie chart showing the number and proportion of genes in the ILC
geneset with ILC concordant OCRs at their gene loci. (E) Heatmap showing chromatin accessibility of Th concordant OCRs in ILC and Th subsets.
(F) Pie chart showing the number and proportion of genes in the Th geneset with Th concordant OCRs at their gene loci. (G) Histogram showing
peak size distribution of expression-concordant OCRs in ILCs and in Th cells. The percentage of OCRs broader than 500 bp are calculated. (H)
Histogram showing distances of expression-concordant OCRs to transcription start sites (TSSs) of their neighboring genes in ILC and in Th.
Percentage of OCRs within 1 kb of TSS is calculated. For box plots, the three horizontal lines of the box represent the third quartile, median, and first
quartile, respectively, from top to bottom. The whiskers below and above the box show 5 and 95 percentiles. Statistical significance of peak size and
distance of OCRs to their associated TSSs are calculated by two-sided Mann–Whitney U test. P. value above 0.05 is considered not significant, ***P
< 0.001. OCRs, open chromatin regions. BPM, bins per million mapped reads.
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and significant expression levels, namely, RORa, GATA3, RXRb, c-
REL, REL-B, REL-A, ERRa, ZBTB33, NR4A2, and RUNX3.

Notably, RORa, a member of the nuclear receptor family,

displayed the highest enrichment in the ILC concordant OCRs.

This finding aligned with previous studies that highlighted the

crucial roles of RORa in the development, maintenance, and

immune activation of ILC2s and ILC3s (43–45). Similarly, we

observed significant enrichment of GATA3 binding motifs,

supporting the notion that GATA3 played a regulatory role in the

development, expansion, and activation of both ILC2s and ILC3s in

our previous studies (12, 46, 47). Thus, these results validated the

accuracy of our analysis. Furthermore, we observed substantial

enrichment of binding motifs for REL-A, REL-B, and c-Rel in the

ILC concordant OCRs. Their transcription factors, belonging to the

RHD family, formed complexes with the NF-kB subunits (p50 for
Frontiers in Immunology 07
REL-A and c-Rel, and p52 for REL-B) (48). This suggested a

potential involvement of NF-kB in the transcriptional regulation

of the ILC geneset. In contrast, in the Th concordant OCRs, all of

the top 10 enriched potential transcription factors with significant

expression levels belonged to the bZIP family. This highlighted the

critical role of AP-1 in regulating T-cell function under TCR

signaling (49). Additionally, we discovered substantial enrichment

of potential transcription factors from the ETS family in both the

ILC and Th concordant OCRs. For example, ETS1 was identified as

occupying a significant number of expression-concordant OCRs in

both cell types. Based on literature, ETS1 had been reported to play

crucial regulatory roles in both the expansion of ILC2s and the

activation of Th cells (50, 51). Overall, our analysis identified the top

10 highly enriched potential transcription factors in ILCs or Th cells

based on their expression-concordant OCRs, as well as five
B

C D E

A

FIGURE 4

Distinct transcription factors are involved in distinguishing the functionalities of ILCs from Th cells. (A) Motif enrichment of expression-concordant
OCRs in ILCs and in Th cells. The top significantly enriched motifs and the associated P. value are shown. TF and the TF family are annotated in the
HOCOMOCO database and Homer software. Similar transcription factors in the same TF family are not shown. (B) Scatter plot of potential
transcription factors that may bind to expression-concordant OCRs in ILCs and in Th cells. TF expression (X axis) and enrichment score (Y axis) are
shown. Potential TFs in ILCs and Th cells are identified by TPM >50 in ILCs or Th cells, and P. value < 0.01. Colors indicate TF families as in (4A). (C)
Bar chart showing percentage of OCRs with binding motifs of the top 10 ILC-specific TFs within the ILC concordant OCRs and within the Th
concordant OCRs (top). The percentages of OCRs with binding motifs of the top 10 ILC-specific TFs within the ILC concordant OCRs and within the
Th concordant OCRs are analyzed by the two-sided Wilcoxon test (bottom). (D) Bar chart showing percentage of OCRs with binding motifs of the
top 10 putative TFs in Th cells, within the ILC concordant OCRs and within the Th concordant OCRs (top). The average percentages of OCRs with
binding motifs of the top 10 Th-specific TFs within the ILC concordant OCRs and within the Th concordant OCRs are analyzed by the two-sided
Wilcoxon test (bottom). (E) Bar chart showing percentage of OCRs with binding motifs of the top five ILC and Th common TFs, within the ILC
concordant OCRs and within the Th concordant OCRs (top). The top 10 TFs in Th cells (TPM >50 in all three Th subsets) are ordered by P. value. The
percentages of OCRs with binding motifs of the top five ILCs and Th common TFs within the ILC concordant OCRs and within the Th concordant
OCRs are analyzed by two-sided Wilcoxon test (bottom). For box plots, the three horizontal lines of the box represent the third quartile, median, and
first quartile, respectively, from top to bottom. The whiskers below and above the box show the 5th and 95th percentile. P. value above 0.05 is
considered not significant, **P < 0.01. ns, no significance.
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potential transcription factors that were commonly enriched in

both cell types.

Subsequently, we investigated the frequencies of binding motifs

associated with these potential transcription factors in the

expression-concordant OCRs of ILCs and Th cells. The top 10

potential transcription factors specific to ILCs displayed enhanced

regulation of the ILC geneset in ILCs compared with the Th geneset

in Th cells, indicating their importance in distinguishing the

functionalities of ILC and Th cells (Figure 4C). Moreover, the top

10 Th-specific transcription factors from the bZIP family exhibited

significant regulation of the Th geneset specifically in Th cells,

whereas their impact on the ILC geneset in ILCs was relatively

limited (Figure 4D). This underscored the essential role of AP-1 in

distinguishing the functionalities of Th cells from ILCs.

Additionally, the five potential transcription factors commonly

enriched in the expression-concordant OCRs of ILCs and Th cells

demonstrated comparable regulation of the ILC geneset in ILCs and

the Th geneset in Th cells (Figure 4E). However, these transcription

factors regulated a relatively high frequency of genes within both the

ILC and Th genesets, suggesting their critical roles. In contrast, the

distribution patterns of these potential transcription factors in the

expression-non-concordant OCRs of ILCs and Th cells did not

align with the gene expression patterns (Supplementary

Figures 6C–E). Collectively, these findings indicate that distinct

functionalities of ILCs and Th cells are regulated by different

transcription factors.
Similar effector roles of ILCs and Th cells
are operated by distinct
regulatory machineries

Given the presence of distinct regulatory machineries for the

ILC and Th genesets, we further wondered whether the immune

response-related genesets, which exhibited similar expression in

both ILC subsets and their corresponding Th subsets, were

differentially regulated. Remarkably, we found that chromatin

regions of signature effector genes associated with different

immune responses, such as the Ifng locus in ILC1s and Th1 cells,

the Il4, Il5, and Il13 loci in ILC2s and Th2 cells, and the Il17a and

Il17f loci in ILC3s and Th17 cells, all displayed variant accessibility

between ILC subsets and their corresponding Th subsets

(Figure 5A). Therefore, we defined the ILC and Th subset-specific

OCRs based on their differential chromatin accessibility between

ILC subsets and their corresponding Th subsets (Figure 5B,

Supplementary Figure 7A). ILC3- and Th17-specific OCRs

displayed exclusive chromatin accessibility in ILC3 and Th17

subsets in vivo, respectively (Supplementary Figure 7B). In

addition, ILC2- and Th2-specific OCRs displayed higher

accessibility in ILC2 and Th2 subsets in vivo, respectively

(Supplementary Figure 7C). Notably, the overall width of ILC

subset-specific OCRs exceeded that of the corresponding Th

subset-specific OCRs, with the former preferentially located in

close proximity to TSSs, suggesting distinct regulation of these

genesets between the two cell types (Figures 5C, D, Supplementary

Figures 7D, E). Consequently, we conducted an analysis of potential
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transcription factors inferred from these subset-specific OCRs in

ILCs and Th cells. As expected, different sets of potential

transcription factors with significant expression were enriched by

the subset-specific OCRs in ILC subsets and the corresponding Th

subsets, respectively (Figure 5E). Interestingly, these potential

transcription factors exhibited considerable consistency with

those we inferred from the expression-concordant OCRs to the

ILC or Th genesets, indicating the utilization of the same regulatory

machinery to govern effector functions in each subset. Notably, the

master transcription factors Tbx21, Gata3, and Rorc displayed the

highest enrichment by the ILC subset-specific OCRs, underscoring

their indispensable regulatory roles in the effector functions of ILC

subsets. Additionally, upon assessing the distribution patterns of

binding motifs linked to these potential transcription factors in the

ILC or Th subset-specific OCRs, we confirmed the preferential

binding of potential transcription factors specific to ILC subsets to

the ILC subset-specific OCRs, whereas those specific to Th subsets

tended to interact with the Th subset-specific OCRs (Figure 5F).

Therefore, despite the striking similarity in effector roles between

ILC subsets and their corresponding Th subsets, the underlying

regulatory mechanisms remain distinctive.
Discussion

ILCs are often regarded as the innate counterparts to Th cells in

the adaptive immune system due to their shared functionalities and

regulatory mechanisms (3, 31). However, it is important to

recognize the fundamental differences between these two cell

types as innate and adaptive lymphocytes, respectively. In this

study, we have demonstrated the presence of significant

distinctions in functionalities and underlying regulatory

mechanisms between ILCs and Th cells by conducting integrative

transcriptome and chromatin landscape analyses.

Bulk RNA-seq has been widely used as a mature approach for

transcriptome analysis for many years. More recently, single-cell

transcriptome analysis, or scRNA-seq, has emerged as a highly

valuable tool in the field (52, 53). While scRNA-seq offers several

advantages over bulk RNA-seq, it also comes with certain

limitations (54). One noticeable drawback is the higher cost

associated with scRNA-seq, resulting in smaller sample sizes for

each cell type. In contrast, bulk RNA-seq is comparatively more

cost-effective, and thus researchers can easily access numerous

publicly available datasets, particularly for the ILC and Th

transcriptomes that are relevant to our study (55). Furthermore,

due to technological differences, scRNA-seq typically captures fewer

genes compared with bulk RNA-seq (52). In our study, we sought to

harness the advantages of both technologies. Therefore, we

compiled and processed a collection of 294 publicly available bulk

RNA-seq datasets for ILCs and Th cells, which were subsequently

analyzed using algorithms designed for scRNA-seq. Through this

integrated approach, we successfully identified two genesets specific

to all ILCs or Th cells, as well as three genesets specific to different

types of immune responses. Although for bulk RNA-seq data, most

of Th cell datasets are derived from in vitro differentiated lineages,

and most ILCs are isolated from mucosal tissue in vivo, we observed
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1271879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1271879
that our defined ILC geneset and Th geneset still represent

difference between ILC and Th subsets in vivo, suggesting that

these genesets represent fundamental distinctions between ILC and

Th cells.

The accuracy and reliability of the genesets we defined are

ensured by their generation from a large number of bulk RNA-seq

datasets derived from various experiments conducted in different

laboratories. This comprehensive approach guarantees that the

genesets should accurately capture the fundamental differences

between ILCs and Th cells, as well as between different types of
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immune responses. Consequently, we performed GO enrichment

analysis to gain further insights into the functional disparities

underlying the transcriptional differences. While there are some

shared features between the ILC and Th genesets, they are

predominantly enriched in distinct pathways. Consistent with our

understanding of T-cell expansion following activation, we

observed a preferential enrichment of cell cycle-related pathways

in the Th geneset. On the other hand, the ILC geneset exhibited

specific enrichment in pathways associated with their role in

maintaining tissue homeostasis. Moreover, despite ILC and Th
B C D

E F

A

FIGURE 5

Similar effector roles of ILCs and Th cells are operated by distinct regulatory machineries. (A) DNase-seq tracks at the Ifng locus, Il4, Il13, and Il5 loci,
and Il17a and Il17f loci in the indicated ILC and Th subsets. ILC-specific OCRs in corresponding ILC and Th subsets are defined as, for example,
accessibility ILC1/Th1 >1.5, minimum accessibility of ILC1 > maximum accessibility of Th1, and minimum accessibility of ILC1 >0.5 (chromatin
accessibility of OCRs are calculated to BPM). Similarly, Th-specific OCRs are defined as, for example, accessibility Th1/ILC1 >1.5, minimum
accessibility of Th1 > maximum accessibility of ILC1, and minimum accessibility of ILC1 >0.5. (B) Schematics of identifying ILC-specific OCRs and Th-
specific OCRs associated with each respective immune response-specific geneset. (C) Box plot showing peak size of ILC-specific and Th-specific
OCRs related to the type 1, type 2, and type 3 genesets. Statistical significance is calculated using two-sided Mann–Whitney U test. (D) Box plot
showing distances of ILC-specific and Th-specific OCRs related to the type 1, type 2, and type 3 genesets to TSSs of neighboring genes. Statistical
significance is calculated using two-sided Mann–Whitney U test. (E) Scatter plot of potential transcription factors that may bind to ILC-specific OCRs
or Th-specific OCRs related to the type 1, type 2, and type 3 genesets. Expression levels of TFs (X axis) and their enrichment score (Y axis) are
shown. Potential TFs in ILCs versus Th cells are identified by TPM >50 in corresponding ILC and Th subsets, and P. value <0.01. Colors indicate TF
families as in Figure 4A. (F) Bar chart showing percentage of putative binding of OCRs by the top five TFs enriched in ILCs and Th cells within OCRs
associated with the type 1, type 2, or type 3 geneset. For box plots, the three horizontal lines of the box represent the third quartile, median, and first
quartile, respectively, from top to bottom. The whiskers below and above the box show the 5th and 95th percentiles. A P. value above 0.05 is
considered not significant, **P < 0.01, ***P < 0.001.
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subsets being involved in diverse immune responses, we identified a

similarity in pathway enrichment for immune response-related

genesets, indicating the existence of certain fundamental similarities

in their T helper cell functions through cytokine secretion.

The differential enrichment of pathways in the ILC and Th

genesets suggests that the functionalities of these two cell typesmay be

regulatedbydistinctmechanisms.Notably, the expression-concordant

OCRs associated with the ILC geneset are generally broader in width

compared with those associated with the Th genesets. ILC concordant

regions preferentially localize around TSSs, which correspond to the

promoter regions of genes. Interestingly, the OCRs specific to the

immune response-related genesets in ILCs also exhibit a similar

distribution pattern as compared with distribution of the Th-specific

OCRs in Th cells. This characteristic may confer an advantage for

multiple transcription factors to bind to the promoter regions in ILCs,

thereby facilitating rapid transcription initiation upon cell activation.

We have conducted further analysis on the expression-

associated OCRs for the ILC and Th genesets, as well as on the

ILC- and Th-specific OCRs for the immune response-related

genesets, to infer the potential involvement of transcription

factors. It is noteworthy that Th cells exhibit a heightened

tendency to specifically utilize AP-1-mediated regulation, which

occurs downstream of TCR signaling. In contrast, ILCs do not favor

AP-1 and exhibit enhanced utilization of master transcription

factors specific to their respective subsets. Additionally, our

findings indicate a preferential reliance on NF-kB for regulatory

processes in ILCs. Furthermore, despite the similar effector

functions of ILC subsets and their corresponding Th subsets, the

underlying regulatory mechanisms are also largely distinct, aligning

with their innate and adaptive lymphocyte properties, respectively

(56). Consequently, our study provides valuable insights into the

functional and regulatory differences between ILCs and Th cells,

contributing to a comprehensive understanding of their unique

roles during immune responses.
Materials and methods

Data acquisition

Raw data for gene expression profiles (RNA-seq) of ILC and Th

subsets were retrieved from Sequence Read Archive (SRA);

accession numbers are given in Figure 1A and Supplementary

Table 1. Raw data for RNA-seq of ILC and Th subsets in vivo

were retrieved from SRA under accession numbers SRP060453,

SRP069783, and SRP337230. Chromatin accessibility profiles

(DNase-seq) of ILC and Th subsets were retrieved from

SRP315389, and ATAC-seq of ILC and Th subsets in vivo were

retrieved from SRP069783.
RNA-seq data processing

TheRNA-seq readswere aligned to theGRCm38/mm10 assembly

of mouse genome using HISAT2 (v 2.2.1), and quantified by

featureCounts. The gene expression level was counted by
Frontiers in Immunology 10
featureCounts (v 2.0.3) against mouse GRCm38 genome assembly (v

94). Transcripts per million mapped reads (TPM) were calculated

using R package scuttle (v1.4.0). Genes with significantly high

expression levels were filtered by TPM >10 in at least one ILC or Th

subse t . Ba tch e ff ec t remova l was per formed by the

“removeBatchEffect” function in the limma package (v3.50.3) (57).

Dimension reduction of the gene expression matrix before or after

batch effect removal by the Uniform Manifold Approximation and

Projection (UMAP) algorithm was performed by R package Seurat

(v4.3.0) (58). “ScaleData”, “RunPCA”, and “RunUMAP” were

sequentially executed, and top20 principle components (PCs) were

used for UMAP analysis. GSEA was performed by GSEA

software (v3.0).
Differential expression analysis and gene
ontology enrichment

For differential expression analysis between ILCs and Th cells and

among three types of immune responses, the FindConservedMarkers

function in the Seurat package was performed (minimum of log2 fold

change >0.25 and maximum of P. value <0.01). The FindMarkers

functionwasused indifferential expressionanalysis in each ILCandTh

subsets (log2 fold-change >0.25 and P value < 0.01). GO analysis was

performed by overrepresentation test with R package clusterProfiler

(v4.2.2). Function “compareCluster” was performed for GO

enrichment of ILC - and Th-specific genesets (q value < 0.05), and

the top 100 GO terms in q value are shown in enrichment map by the

“emapplot” function in the “enrichplot” package. Function enrichGO

was performed for GO enrichment of immune response-

specific genesets.
DNase-seq data processing

DNase-seq readsweremapped to themm10 genomewith Bowtie2

(v2.4.4). Non-redundant reads with MAPQ ≥10 were remained. The

remaining readswere sorted using Samtools (v 1.13). DNase-seq peaks

(OCRs) were called by MACS2 (v2.2.7.1) with settings of –nomodel –

extsize 75, based on a q-value threshold of 0.01. DNase-seq reads in

each OCR were quantified using bedtools (v2.27.1). Bins per million

mapped reads (BPM) values of OCRs were calculated with R-package

scuttle as TPM in RNA-seq data.
Peak annotation and differential
OCR analysis

Annotation of OCRs to their neighboring genes were performed

by the annotatePeak function in R package ChIPseeker (v1.30.3).

OCRs within 50 kb to TSS of neighboring genes were defined as

OCRs related to these genes. For OCRs related to genes in the ILC

and Th genesets, concordant OCRs were defined as OCRs

exhibiting concordant accessibility changes with the expression

changes of their related genes; the residual OCRs were defined as

non-concordant OCRs. For example, in OCRs related to the ILC
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geneset, the ILC concordant OCRs were defined as OCRs with a

fold change of ILC/Th >1.5, minimum BPM in both repeats of each

ILC subset > maximum BPM in both repeats of each Th subset, and

BPM of both repeats in all ILC subsets >0.5. The residual OCRs

related to the ILC geneset are defined as ILC non-concordant OCRs.

Similar criteria are used to define Th concordant and non-

concordant OCRs.

For OCRs related to immune response-related genesets, ILC-

specific OCRs are defined as OCRs with fold change between ILC

subsets and the correspondingThsubsets>1.5,minimumBPMinboth

repeats of the ILC subset > maximum BPM in both repeats of the

corresponding Th subset, and BPM of both repeats in the ILC subset

>0.5. A similar criterion is used to define Th concordant OCRs.
Motif enrichment

Transcription factor motif enrichment was performed by the

findMotifsGenome function in Homer software (v4.10), using the

HOCOMOCO database and the database included in HOMER. For

each OCR, transcription factor binding sites were annotated by

FIMO software in MEME Suite (v5.0.5), using a p-value threshold

of 0.0001.
Data visualization and statistics

Data were analyzed by R version 4.1.2. Bar charts, pie charts,

box plots, scatter plots, and histograms were operated by ggplot2

(v3.4.2). Heatmaps in schematic illustration were performed by

pheatmap (v1.0.12). Heatmaps of OCRs in DNase-seq were

visualized by deepTools (v3.5.1). DNase-Seq tracks were visualized

using UCSC Genome Browser. The statistical significance of GO

enrichment and motif enrichment were calculated by a two-sided

hypergeometric test. P values above 0.05 were considered not

significant, *P < 0.05 **P < 0.01, ***P < 0.001.
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