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SOCS-JAK-STAT inhibitors and
SOCS mimetics as treatment
options for autoimmune uveitis,
psoriasis, lupus, and autoimmune
encephalitis
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1Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,
2Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia,
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Autoimmune diseases arise from atypical immune responses that attack self-

tissue epitopes, and their development is intricately connected to the disruption

of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles.

Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune

encephalitis exhibit immune system dysfunctions associated with JAK-STAT

signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT

inhibitors and SOCS mimetics to modulate immune responses and alleviate

autoimmune manifestations. Although more research and clinical studies are

required to assess their effectiveness, safety profiles, and potential for

personalized therapeutic approaches in autoimmune conditions, JAK-STAT

inhibitors and SOCS mimetics show promise as potential treatment options.

This review explores the action, effectiveness, safety profiles, and future

prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for

psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune

encephalitis. The findings underscore the importance of investigating these

targeted therapies to advance treatment options for individuals suffering from

autoimmune diseases.

KEYWORDS

JAK-STAT, inflammation, autoimmunity, SOCS (suppressor of cytokine signaling),
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Introduction

Genetic predisposition, environmental triggers, and dysregulation of the immune system

play significant roles in the origin of autoimmune diseases. Additionally, molecular mimicry,

epigenetic modifications, hormonal influences, and gut microbiota composition are also

relevant factors in the development of these diseases (1, 2). The incidence of these conditions

is increasing, affecting around 3% to 5% of people in Western countries (3). Dysregulated

cytokine holds a pivotal position in their pathogenesis, making it an attractive target for
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treatment (4, 5). Cytokines are diverse proteins that mediate cell

signaling within the immune system and other host cells, regulating

immune responses and inflammation. Cytokines are grouped into

various families (6–15), each serving unique functions by binding to

specific receptors on target cells and influencing the behavior and

function of the immune system. While many are named as

interleukins (IL) with numerical identifiers (e.g., IL-2), some, such

as TNF-a, IFN-g, prolactin, and erythropoietin, do not adhere to this
naming convention. As integral components of the innate immune

system, interferons provide an early defense against infections and

contribute to the overall regulation of the immune response (16, 17).

Precise control of cytokine signaling is essential to maintain

immune system homeostasis. Monoclonal antibodies targeting

specific pathogenic cytokines have transformed autoimmune

disease therapy. Nevertheless, there is a necessity for novel

therapeutic approaches to tackle relapses and uncontrollable

symptoms in affected individuals. Janus Kinase (JAK) inhibitors

offer potential as they effectively target crucial cytokines involved in

autoimmune and inflammatory diseases (4). This review presents

an in-depth examination of the use of JAK inhibitors and SOCS

mimetics in treating autoimmune uveitis, psoriasis, systemic lupus

erythematosus, and autoimmune encephalitis.
Janus kinases and signal transducers
and activators of transcription

The JAK-STAT pathway is a vital signaling cascade that regulates

diverse biological processes, including immune responses, cell
Frontiers in Immunology 02
growth, and differentiation. It is named after its key components,

Janus Kinases (JAKs), which were discovered 30 years ago. The term

“Janus” originates from Roman mythology, symbolizing transitions,

and duality. JAKs possess two domains: a kinase domain responsible

for phosphorylation and a pseudokinase domain acting as a negative

regulator, giving them the name “Janus Kinases.” The term “Signal

Transducers and Activators of Transcription” describes the primary

function of these proteins in the JAK-STAT pathway. Once JAKs

phosphorylate STATs, the activated STATs act as signal transducers

by relaying the extracellular signal from the cell surface receptors to

the cell nucleus. Once in the nucleus, STATs function as transcription

factors, activating the transcription (gene expression) of specific

target genes (Figure 1).

The JAK family in humans consists of four members: JAK1,

JAK2, JAK3, and TYK2. These four JAK proteins are utilized by over

50 cytokines, leading to substantial overlap in their usage (Figure 2).

The STAT family in humans consists of seven members - STAT1,

STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6.

Additionally, some cytokines and chemokines signal through

mechanisms independent of JAK-STAT (18). The JAKs and STATs

are differentially expressed in various cell types, and their activation

can lead to distinct downstream effects (4, 19–24). Selective activation

of this pathway enables precise adjustment of cellular reactions to

diverse triggers. Nevertheless, in specific cellular scenarios (as

illustrated in Figure 2), the JAK-STAT pathway exhibits

redundancy. This redundancy guarantees the preservation of vital

functions, even when one JAK-STAT axis encounters disruption or

inhibition. Such redundancy empowers cells to react to numerous

cytokines, ensuring a resilient and flexible immune response.
FIGURE 1

JAK-STAT Signaling Cascade: Key Players in Cellular Regulation and Immune Responses. Extracellular molecules, such as cytokines or growth
factors, bind to cell surface receptors, activating Janus Kinases (JAKs). Activated JAKs phosphorylate Signal Transducers and Activators of
Transcription (STATs) at specific tyrosine residues, forming homo- or heterodimers in the cytoplasm. STAT dimers then translocate to the cell
nucleus and act as transcription factors, regulating gene expression. JAK inhibitors target JAKs. STAT inhibitors target STATs and prevent
dimerization and its translocation to nucleus.
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The effective functioning of the immune system depends

heavily on the JAK-STAT signaling pathway, and disruptions in

cytokine-JAK-STAT signaling can result in immunodeficiency (25,

26). If the JAK1 or JAK2 genes are deactivated in the germline, the

fetus in non-viable (27, 28). Certain primary immunodeficiencies

result from genetic mutations affecting JAK-STAT signaling

components, leading to immunological abnormalities and

increased susceptibility to infections (29–36). Furthermore,

mutations impairing the function of STAT proteins can cause

both immunodeficiency and autoimmunity (37–39). The

occurrence of autoimmunity is believed to be associated with the

disruption of regulatory communication between STAT proteins

(40, 41). Job Syndrome (Hyper-IgE Syndrome), a rare genetic

disorder caused by impaired functioning of STAT3, leads to

compromised JAK-STAT signaling (42, 43). Overall, the loss of

cytokine-JAK-STAT signaling interferes with critical immune

functions, compromising the development, differentiation, and

response of immune cells, as well as the regulation of immune

mediators and inflammatory processes. Overactivation of cytokine

signaling can have detrimental effects too (25, 26, 44). The

overactive JAK-STAT pathway promotes production of pro-

inflammatory cytokines and activation of immune cells and

contributes to the development of autoimmune diseases.

Similarly, in cancer, dysregulated JAK-STAT signaling can play a

role in promoting uncontrolled cell growth and survival (4, 45–47).
The SOCS protein family

The Suppressor of Cytokine Signaling (SOCS) protein family is

a group of proteins that play a vital role in regulating and inhibiting
Frontiers in Immunology 03
cytokine signaling pathways. These proteins act as negative

feedback regulators, dampening excessive immune responses and

maintaining immune system balance. SOCS proteins achieve this by

binding to specific signaling proteins, including Janus kinases and

cytokine receptors, and interfering with their activity, ultimately

controlling the duration and intensity of immune and inflammatory

reactions. The SOCS protein family consists of numerous members,

namely SOCS1, SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, SOCS7,

and CIS (Cytokine-Inducible SH2-Containing protein), with CIS

being the initial SOCS member to be discovered (48). Since their

discovery in 1997 simultaneously by three groups (48–50), these

have gained widespread recognition due to their prominent role in

the negative modulation of signaling pathways subsequent to

cytokine engagement with the receptor complex. In the late

1990s, researchers were investigating how cells modulate their

responses to cytokines to prevent excessive inflammation and

maintain immune system balance. In this regard, retroviral

expression screen was developed to investigate how cells

modulate their responses to cytokines. During this screen, an

identified cDNA sequence encoded a compact protein featuring

an SH2 domain, displaying resemblance to the cytokine-inducible

SH2-containing (CIS) protein (48). This specific cDNA was

designated as SOCS1 and subsequently played a pivotal role in

the revelation and cloning of an additional six SOCS family

members (SOCS2, 3, 4, 5, 6 and 7). Comparable to CIS, it was

observed that SOCS1, SOCS2, and SOCS3 were responsive to

cytokine stimulation (50, 51). Studies utilizing a combination of

molecular biology techniques, gene expression profiling, and cell

culture experiments collectively provided strong evidence that

SOCS1 is not solely triggered by cytokine activation but also

functions as a standard negative-feedback modulator, effectively
FIGURE 2

The specificity and redundancy of the JAK-STAT pathway. Different JAK family members are linked to specific cytokine receptors, and they trigger
distinct STAT proteins within the pathway. This selective activation allows for fine-tuning of cellular responses to different stimuli. However, the JAK-
STAT pathway also demonstrates redundancy, especially in certain cellular contexts. This redundancy ensures that essential functions are maintained
even if one JAK-STAT axis is compromised or inhibited. For instance, various cytokines can activate both JAK1 and JAK2, leading to phosphorylation of
STAT1 and STAT3, respectively. This redundancy allows cells to respond to multiple cytokines and ensures a robust and adaptable immune response.
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limiting JAK signaling (52). The discovery of SOCS1 shed light on a

crucial aspect of immune system regulation and paved the way for

further research into the broader implications of SOCS proteins in

various physiological and pathological contexts. Notably, within

autoimmune disorders, multiple SOCS proteins (SOCS1, SOCS3,

SOCS5, and CIS) function as potent negative regulators

significantly contribute to the underlying mechanisms driving the

diseases’ progression. SOCS1 helps to control inflammation,

immune responses, and cell differentiation in various

autoimmune diseases. SOCS3 targets diverse cytokine pathways

by binding to receptors and JAKs and curbs signal transmission,

moderating inflammation and immune responses in type 1

diabetes, inflammatory bowel disease (IBD), and psoriasis. CIS

competes with STAT proteins for cytokine receptor binding. It

fine-tunes cytokine responses and prevents uncontrolled immune

reactions. SOCS4-7 extend their functions beyond cytokine

signaling, with notable roles in regulating receptor tyrosine

kinases that mediate hormonal effects like insulin and growth

factors such as epidermal growth factor (EGF) (24, 53). SOCS5

dampens cytokine signaling by interacting with and inhibiting

JAKs. While its precise role in autoimmune disorders remains

unclear, emerging evidence suggests its potential involvement in

autoimmune uveitis (54), type 1 diabetes (55), multiple sclerosis

(56), SLE (57) and EAE (58). SOCS-6 was revealed as a suppressor

of p56(lck) in yeast two-hybrid screening. By promoting ubiquitin-

dependent proteolysis, SOCS-6 acts as a negative regulator of T cell

activation (59). In contrast, SOCS7−/− mice exhibited varying

immune-related characteristics contingent on their genetic

makeup. Precise role of SOCS6 and SOCS7 in the intricate

landscape of immune regulation is still emerging (60–62).

Although CISH and SOCS1–3 hold evident prominence in the

context of the immune system and extensively reviewed in diseases

context elsewhere (44, 63), recent investigations suggest that

SOCS4–7 might also play a role, underscoring the need for

further exploration into these proteins. Although the exact roles

they play in distinct autoimmune conditions might necessitate

further scrutiny, their significance is progressively acknowledged,
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offering possibilities for upcoming therapeutic strategies directed at

modulating these regulatory pathways.
Structure of SOCS proteins

SOCS (Suppressors of Cytokine Signaling) proteins exhibit a

structured composition that encompasses several key elements

essential for their regulatory functions (Figure 3). A fundamental

feature found in all SOCS family members is the SOCS box, a

conserved domain pivotal in protein-protein interactions, especially

with components of the ubiquitin ligase complex. SOCS proteins

interact with phosphorylated tyrosine residues on target substrates

through their SH2 domain (64). The SH2 domains of SOCS

proteins possess an additional N-terminal a-helical extension

called the extended SH2 domain (ESS) (65). The SOCS controls

assembly of E3 ubiquitin ligase complex and contains two motifs:

the Elongin B/C (BC) box and the Cullin (Cul) box (66, 67). The N-

terminal varies significantly (68). The N-terminus of SOCS4-7 are

notably longer (69). Specific motifs within the N-terminal domains

have been identified in related SOCS proteins. Notably, SOCS1 and

SOCS3 feature a unique kinase inhibitory region (KIR) that binds

and inhibits JAKs (70), whereas SOCS3 and CISH contain a PEST

motif located between the SH2 domain and SOCS box (48, 65).

SOCS4 and SOCS5 have distinct N-terminal conserved region

(NTCR) with unknown function (69). SOCS proteins are vital in

immune coordination, making them potential targets for

therapeutic intervention. The evolutionary relationship between

SOCS proteins is reflected in their similarity. This conservation is

seen in humans and other mammalian species, which possess

equivalent sets of SOCS proteins. Higher vertebrates have

homologs for each SOCS protein, and teleost fish have additional

duplicates. Recent discoveries have revealed intriguing differences

among these proteins, emphasizing their importance in health and

disease. SOCS proteins are promptly induced upon cytokine

receptor signaling but are rapidly degraded when signaling

subsides, remaining inactive in quiescent cells acting as negative
FIGURE 3

The diagram depicts CIS/SOCS family proteins featuring conserved SOCS box in all of them. Notably, SOCS1 and SOCS3 exhibit unique kinase
inhibitory region (KIR) which acts as a pseudo substrate.
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feedback regulators. This unique structural arrangement allows

SOCS proteins to exert regulation over cytokine signaling

pathways, facilitating functions such as competitive binding,

targeted protein degradation, and the inhibition of kinase activity.

In doing so, SOCS proteins contribute to the maintenance of

immune system homeostasis.
Mechanisms of SOCS action

SOCS employ diverse mechanisms, as illustrated in Figure 4, to

regulate cytokine signaling, encompassing competitive binding,

protein degradation or re-routing, and inhibition of kinase activity.

These strategies rely on the presence of specific protein domains and

motifs in varying combinations to tightly regulate cytokine signaling

and maintain immune system homeostasis. The SH2 domain of

SOCS proteins, reviewed elsewhere [24, 92], usually bind to the

cytokine receptor signaling complex or downstream signaling

proteins by interacting with appropriate motifs containing

phosphotyrosine residues (24, 71). Competitive binding hinders the

docking of STAT and other proteins, effectively suppressing their

subsequent activation through steric interference (24). SOCS proteins

degrade target proteins by interacting through their SH2 domain (72,

73) with phosphorylated JAK proteins or receptors, assembling the

E3 ubiquitin ligase complex, which transfers ubiquitin to target

substrates for degradation (74) and potential re-routing of

associated proteins (75). SOCS1 binds to JAKs, while SOCS3 binds

to receptors (76, 77), and they both directly inhibit JAK kinase

activity by blocking the substrate-binding groove of the JAK kinase

domain, acting as a pseudo substrate (78, 79). SOCS1 has a unique

nuclear localization signal (NLS) and interacts exclusively with p65 in

the nucleus. This interaction effectively curtails prolonged p65

signaling and halts the expression of NF-kB-inducible gene (80–

83). SOCS proteins also regulate cytokine-responsive genes by

interacting with transcription factors or chromatin modifiers (83).
Frontiers in Immunology 05
At the post-transcriptional level microRNA-155 has been

identified as a natural regulator of SOCS1 mRNA (84). miRNA-

155 dysregulation has been associated with Inflammation (85–87),

heart failure (85), neurodegenerative diseases (88, 89), antiviral

immune response in SARS-CoV2 infection (90) and cancers (91–

95). Additionally, SOCS1 is regulated post-translationally by several

kinases like v-abl, pim1, and pim2. Phosphorylation by these

kinases blocks the SOCS Box from binding to Elongin C, a key

step in recruiting the E3 complex (96, 97). Numerous cytokines and

growth factors stimulate SOCS1, implying its role in moderating

and buffering the cellular and inflammatory responses initiated by

these molecules suggesting that SOCS1 plays a role in

downregulating/buffering the cellular/inflammatory responses

triggered by these cytokines (98–102).
SOCS1 in autoimmunity

The SOCS1 gene is located on chromosome 16 alongside

CLEC16A (cytogenetic location: 16p13.13; genomic coordinates

[GRCh38]: 16:11,254,417-11,256,204). This region, around 530 kb

on chromosome 16p13.13, harbors four genes (CIITA-DEXI-

CLEC16A-SOCS1) (Figure 5).

In 2007, we initially identified a region on chromosome 16p13

mapping to KIAA0350, now known as C-type lectin-like domain

family 16A (CLEC16A), as a novel susceptibility locus for type 1

diabetes (T1D) (103). CLEC16A is situated between two

neighboring genes: CIITA, crucial for MHC Class II expression,

and SOCS1, a negative regulator of cytokine signaling and DEXI.

The susceptibility sites, CIITA-DEXI-CLEC16A-SOCS1, are

common across various autoimmune conditions (104–108).

SOCS1 and CIITA are recognized contributors to inflammation

and autoimmunity (106, 107, 109–111). SOCS1 plays vital role in

immune cell homeostasis and modulating inflammation through its

intricate modulation of cytokine signaling (63, 112). Variations in
FIGURE 4

Diagram illustrating the role of SOCS (Suppressor of Cytokine Signaling) in cytokine signaling. SOCS molecules act as crucial regulators, inhibiting
excessive cytokine responses to maintain balanced immune function.
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SOCS1’s 5’ UTR (rs243324 and rs441349) have been identified as

susceptibility factors for multiple sclerosis (MS) in cytokine

pathway screenings (105, 113) . The CLEC16A locus ,

encompassing SOCS1, is now associated with 21 autoimmune

diseases. These include type 1 diabetes (103, 114–126), multiple

sclerosis (MS) (104, 105, 119, 125, 127–140), primary adrenal

insufficiency (PAI) (141, 142), systemic lupus erythematosus

(SLE) (143–146) Crohn ’s disease (CD) (147), selective

immunoglobulin A deficiency (IgA) (148), alopecia areata (AA)

(149, 150), juvenile idiopathic arthritis (JIA) (151), rheumatoid

arthritis (RA) (119, 151), primary biliary cirrhosis (PBC) (152–155),

asthma (156–162), Crohn’s disease (CD) (147), allergic rhinitis

(AR) (163, 164), autoimmune thyroid diseases (ATD) (115, 165),

common variable immunodeficiency (CVID) (166), eosinophilic

esophagitis (EE) (167), juvenile idiopathic arthritis (JIA) (151),

Selective IgA deficiency (148), Celiac disease (168), systemic

sclerosis (169) and even Parkinson’s Disease (PD) (170, 171) as

reviewed (1).

The field of autoimmune research is constantly progressing, and

over the past three years there has been a major advancement and

shift to identify new therapeutic pathways for autoimmunity

sufferers. 2020, study highlighted the importance of restoring

immune homeostasis and tolerance, with a particular emphasis

on therapies aimed at promoting, activating, or delivering

regulatory T cells (Tregs). These approaches have shown promise

in the pursuit of curing or effectively managing autoimmune

diseases (172). 2021, another study discussed the safety and

effectiveness and challenges associated with mesenchymal stem

cell (MSC) treatment for people with autoimmune liver disease

(173). In 2021, a study highlighted the role of patients’microbiomes

in the management of systemic sclerosis and immunoglobulin G4-

related disease (IgG4-RD) (174). Recently, we reported an

autoimmune and lipodystrophic phenotype using a mouse model,

Clec16aDUBC (175). This study revealed a link between CLEC16A,

lipid metabolism, and immune disruptions. Treating Clec16aDUBC

mice with the tofacitinib, partly alleviates the lipodystrophic issue

and enhances survival. Tofacitinib affects autophagy and JAK-

STAT mediated SOCS signaling (175). The CLEC16A locus role

in autophagy (176, 177), mitophagy (178), immune regulation and

neurodegeneration (179, 180), makes it a promising target in

autoimmune disorders. Genetic interactions and environmental

triggers contribute to immune dysregulation, resulting in

inflammation, autophagy, and cell death in autoimmune

disorders. Exploring the intricate crosstalk and potential synergy

between SOCS-mediated cytokine regulation and the contributions

of CLEC16A to autoimmune pathogenesis could unveil novel

insights into disease mechanisms. Investigating the convergence
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of SOCS and CLEC16A in the context of autoimmunity might

provide a comprehensive understanding of the complex interplay

between regulatory and predisposing factors, offering opportunities

for innovative treatments.
SOCS-mimetics

The discovery of the SOCS1-KIR binding site on JAK2 has led

to the development of SOCS1 mimetics and antagonists with

potential immune response enhancement capabilities (181).

Specifically, SOCS1-KIR, a unique mimetic peptide, consists solely

of the KIR domain, acting as a pseudosubstrate for JAK1, JAK2, and

TYK2, but not interacting with JAK3 (78). Several Jakinibs have

received FDA approval for specific autoimmune/inflammatory

disorders and are currently being evaluated for additional

conditions. A significant advantage of SOCS1-KIR as a

therapeutic candidate is its structural similarity to natural SOCS1

protein. Nonetheless, mimetic peptide drugs present drawbacks

encompassing potential higher costs, restricted permeability,

proteolytic vulnerability, short half-life, swift in-vivo clearance,

and limited oral bioavailability. To address these limitations,

various strategies are currently being employed to improve the

properties of peptide drugs (182).

Over the past decade, different types of SOCS mimetics and

antagonists have surfaced and been subject to testing. For instance,

Tkip (mimetic of SOCS1, WLVFFVIFYFFR) (183, 184) is based on

the SOCS-KIR domain. The mimetic peptide showed promising

results similar to naturally occurring SOCS1, reduced the

inflammatory phenotype in murine encephalomyelitis model

(EAE). Tkip inhibits IFN-g signaling and suppressed the effector

functions of T-cells. It compensates for low levels of endogenous

SOCS1 and SOCS3 associated with EAE (185). Topical

administration of SOCS1-KIR peptide was shown to successfully

prevent uveitis and ocular damage (186). Furthermore, a different

mimetic peptide, R9-SOCS1-KIR, successfully suppressed

autoimmune uveitis EAU in mice by inhibiting the cations of

IFN-g, TNF-a, and IL-17, consequently preventing ocular

pathology (187).

Additionally, cell-penetrating forms of SOCS1 (CP-SOCS1) and

SOCS3 (CP-SOCS3) have also been developed and tested in various

disease models. Controlled, intracellular delivery of recombinant

CP-SOCS1 has been shown to suppress the IFN-g signaling (188). It
interacts similar to endogenous SOCS1, and the extent of inhibition

depended on the dosage. Another, CP-SOCS3 peptide was

developed and tested to treat acute liver injury driven by LPS in

mice. It effectively suppressed the inflammation driven by TNF-a
FIGURE 5

Schematic outline representing the genetic region on chromosome 16p13, encompassing CIITA-DEXI-CLEC16A-SOCS1. The genomic coordinates
are sourced from Genome Reference Consortium Human Build 38.
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and IFN-g. A previous in-vitro study demonstrated that CP-SOCS3

exhibited similar actions to endogenous SOCS3 (189). Deletion of

the SOCS box domain in both CP-SOCS1 and CP-SOCS3 in the

mimetic peptide is a strategic modification that yields significant

benefits in terms of both activity and longevity. The SOCS box

domain is a crucial part of the natural SOCS-1 protein, serving as a

recognition site for ubiquitin ligases that lead to the degradation of

the protein. By removing this domain, the modified CP-SOCS1 and

CP-SOCS3 peptides gain an advantage in their intracellular

presence, as they are no longer subject to rapid degradation,

ensuring their persistence within the cellular environment to

inhibit pro-inflammatory signaling pathways over an extended

period. By extending their activity and increasing their potency,

the modified peptides provide a more robust and durable anti-

inflammatory effect, making them promising candidates for

therapeutic interventions aimed at curbing excessive immune

responses and managing inflammatory conditions (187–189).

The potential of manipulating SOCS proteins as a therapeutic

strategy for immune-related disorders is underscored by these

findings. Among the SOCS peptides, SOCS1-KIR stands out as a

promising mimetic with unique interactions and potential

therapeutic benefits. It holds great promise as an addition to the

arsenal of Jakinibs and it is our belief that the development of

peptide drugs will persist in the future, offering new avenues for

therapeutic interventions with notably fewer adverse events. While

peptide drugs face certain limitations, ongoing research and

technological advancements offer opportunities to improve their

efficacy and overcome challenges related to their absorption,

distribution, metabolism, and excretion characteristics. The

restoration or enhancement of SOCS1 function is proposed to

suppress excessive immune responses in autoimmune and

autoinflammatory conditions (71, 108, 190). Table 1 and Figure 6

provide an overview of the application of SOCS mimetics in the

therapeutic management of autoimmune uveitis, lupus, and

psoriasis. SOCS mimetics have not yet undergone testing for

autoimmune encephalitis. However, treatment options for other

autoimmune and inflammatory disorders using mimetic peptides

can be found in separate literature due to space constrain.
Autoimmune uveitis

Uveitis refers to inflammation in any part of the uveal tract.

Uveitis can stem from localized eye issues or systemic disorders

affecting the body like autoimmune conditions (e.g., Bechet

syndrome, ankylosing spondylitis) or infections (e.g., tuberculosis,
Frontiers in Immunology 07
herpes) (197–199). Uveitis can affect a single or multiple uveal

structures of the eye and may also involve adjacent ocular tissues.

Injuries to the eye, certain medications, and environmental factors

play roles. Uveitis is a significant cause of ocular morbidity, leading

to legal blindness in developed societies, with prevalence influenced

by geography, ethnicity, and unknown factors in 30-60% of

patients. Autoimmune or autoinflammatory uveitis is prevalent in

developed countries, with different forms based on the location of

inflammation within the uveal tract (anterior, intermediate,

posterior, or panuveitis). The pathogenesis involves complex

interactions between genetic, environmental, and immunological

factors, and prompt diagnosis and treatment are crucial to prevent

severe vision impairment or blindness (200).
EAU pathogenesis

Experimental autoimmune uveitis (EAU) is a valuable model

for studying the pathogenesis of human autoimmune uveitis (192,

197, 199, 201–203). EAU is primarily triggered by a dysregulated

immune response directed against ocular antigens, specifically

retinal antigens. Antigen-presenting cells, such as dendritic cells,

capture retinal antigens and present them to autoreactive T cells in

the draining lymph nodes. This interaction leads to the activation of

pathogenic T cell subsets, particularly Th1 and Th17 cells, which

migrate back to the eye, triggering an inflammatory cascade and

attract secondary effectors (204–206). In EAU models, genetic

factors influence the immune response (207). Human leucocyte

antigens (HLA) association with different forms of uveitis have been

identified since the early 1970s (208). Recent progress in genetics of

Uveitis has shown novel associations of AAU, BD and BSCR with

HLA-B27, HLA-B51, and HLA-A29, respectively (207).

Inflammation within the eye involves the recruitment of various

immune cells, including neutrophils, macrophages, and T cells,

leading to tissue damage, breakdown of the blood-retinal barrier,

and retinal destruction. The release of pro-inflammatory cytokines,

chemokines, and growth factors further amplifies the immune

response, leading to the characteristic clinical features of uveitis

(209–213). The intricate interplay between immune cells, cytokines,

and ocular tissues in EAU provides valuable insights into the

complex pathogenesis of autoimmune uveitis in humans, guiding

the development of targeted therapies to mitigate the detrimental

effects of the disease. The integration of human studies, equine

models, and mouse uveitis models highlights Th17 cells and the

JAK-STAT pathway’s significance in uveitis pathogenesis, with

SOCS molecules playing crucial roles (192, 213).
TABLE 1 SOCS mimetic peptides in autoimmune uveitis, lupus, and psoriasis.

Peptide Sequence Uveitis Lupus AE Psoriasis

Tkip WLVFFVIFYFFR

SOCS1-KIR 53DTHFRTFRSHSDYRRI68 (186, 187, 191, 192) (193)

PS-5 DTC(Acm)RQTFRSH (194)

KIRESS-SOCS3 22LKTFSSKSEYQLVVNAVRKLQESG45 (195, 196)
fr
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Treatment of autoimmune uveitis

The JAK-STAT pathway regulates uveitis inflammation. Uveitis

treatment can be categorized into local therapy, systemic therapy, or

a combination of both. STAT3 inhibitors like ORLL-NIH001,

blocking lymphocyte entry into the retina, shows promise for

uveitis treatment (214).

Novel approaches to uveitis treatment aim to improve

outcomes and mitigate its effects. These therapies include

targeting cytokines and cytokine receptors, Janus kinases, the

STAT3 pathway (via synthetic inhibitors), SOCS mimetic peptide

therapy, and therapeutic cytokines like IL-35. Employing

immunosuppressive cytokines such as IL-27 and IL-35, as well as

using small molecule inhibitors to counteract proinflammatory

cytokines, are noteworthy therapeutic strategies. For instance,

ustekinumab specifically targets IL-12 and IL-23, while anakinra

focuses on IL-1. IL-35 treatment was protective in mice with EAU.

Conversely, mice lacking IL-35 (p35 knockout, or KO, mice) or with

impaired IL-35 signaling (IL-12Rb2 KO mice) experienced severe

uveitis (215). Additionally, IL-35 exosomes effectively combat

instability and short lifespan concerns, providing protection

against severe uveitis in mice (216). These findings suggest role of
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IL-35 in modulating Uveitis through cytokine therapy. In mice, the

absence of STAT3 within the CD19 B cell compartment (known as

CD19-STAT3KO mice) worsens uveitis EAU (217). Another aspect

influenced by STAT3 is miR-155-5p (miR-155), which is linked to

ocular inflammation. STAT3 activates miR-155, and this interplay

between STAT3 and miR-155 contributes to severe uveitis by

fostering the expansion of pathogenic Th17 cells (218, 219). This

suggests STAT3 pathway employed by Th17 cells is a potential

strategy for uveitis.

Currently, TNF-a inhibitors are the main biologic agents used

(220). Uveitis clinical trials of JAK inhibitors to date are listed in

Table 2. The search for a potentially innovative uveitis therapeutic

option continues. There are three clinical uveitis trials with JAK-

STAT inhibitors now underway: Brepocitinib (NCT05523765) and

Baricitinib (NCT04088409 and NCT05651880).
SOCS1 mimetics in autoimmune
uveitis

The JAK-STAT pathway is a crucial regulator in NIU, and

SOCS1 mimetics are promising to address SOCS1 deficiency. The
FIGURE 6

JAK inhibitors and mimetics show promise in treating autoimmune disorders like uveitis, psoriasis, SLE, and AE. SOCS1-KIR peptide mimics SOCS1 to
inhibit pro-inflammatory cytokines, reducing uveitis. In psoriasis, characterized by the infiltration of immune cells and excessive keratinocyte
proliferation, the action of SOCS1 and the PS-5 peptide involves the inhibition of pro-inflammatory molecules through the targeting of JAK2. In SLE,
SOCS1-KIR treatment alters lymphocyte phenotype, potentially mitigating SLE pathology. SOCS1 mimetic has not been tested for AE.
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SOCS1-KIR peptide (53DTHFRTFRSHSDYRRI68) is a noteworthy

candidate due to its similarity to natural SOCS1 and its ability to

inhibit JAK1/2 and TYK2, extending survival in SOCS1-deficient

mice (183, 184, 221, 222). SOCS1 expression in the retina reduces

inflammation and lymphocyte recruitment (223). Locally

administered SOCS1-KIR peptide shows positive effects in

mitigating disease symptoms in rodents (186, 187, 191).

A pilot study recently examined the safety and effectiveness of

the SOCS1 mimetic peptide for treating equine recurrent uveitis

(ERU), which serves as a model for human recurrent uveitis (RU)

(192). RU is a debilitating autoimmune disease that can cause visual

impairment in both horses and humans, despite existing

treatments. Cases unresponsive to current treatments remain a

significant concern. In ERU, inflammatory process driven by

cytokines utilizes JAK2 signaling and contributes to blindness.

SOCS1, which limits JAK2 activation, is often deficient in

autoimmune disease patients. Bioinformatics and binding assays

confirmed the SOCS1-KIR peptide’s potential to bind to equine

JAK2. The safety of SOCS1-KIR peptide in equine eyes was initially

assessed in a pilot study using healthy horses without equine

recurrent uveitis. Two experimental horses received topical

administration of SOCS1-KIR or a carrier for two weeks, while

two other horses received intravitreal injection of SOCS1-KIR.

Ophthalmic, physical exams, and electroretinography were

conducted, showing that both topical and intravitreal SOCS1-KIR

were safe for equine eyes (192). The results suggest that topical

SOCS1-KIR treatment may restore immune tolerance in the eye and

inhibit antigen presentation, a factor in triggering inflammation.

Further testing in human and equine samples is essential for a

comprehensive understanding of the mechanisms of action. These

findings strongly encourage additional exploration of the

mechanistic aspects of SOCS mimetics in uveitis.
Psoriasis

Psoriasis is a chronic, inflammatory skin condition with genetic

and environmental roots, impacting about 2-3% of the global

population (224) (225, 226). Often underdiagnosed, it has serious
Frontiers in Immunology 09
effects on quality of life and is associated with medical and

psychiatric issues. Although treatments alleviate symptoms,

accurate diagnosis and classification of its specific type are crucial

for effective management. The most prevalent form is plaque

psoriasis, ranging from mild to severe (227–229). Psoriasis’s cause

involves complex interactions within the immune system,

particularly T helper cells like Th1 and Th17, which lead to

inflammation and thickened skin (230–234). Key pathways

include JAK/STAT, NF-kB, and MAPK. IL-12 and IL-23

signaling sustains chronic inflammation by promoting cytokines

(233, 235). This imbalance results in scaly plaques due to excessive

keratinocyte growth (231–234).

Genetic factors significantly contribute to psoriasis. Certain

genes, like HLA-C, IL23R, IL12B, and LCE3B/3C, increase

susceptibility to psoriasis. Environmental triggers like infections,

skin trauma, and medications exacerbate this condition in

genetically predisposed individuals by activating immune responses.

Targeting the JAK/STAT pathway with inhibitors, such as SOCS1-

KIR, shows promise for alleviating psoriatic inflammation.

Genetic factors significantly contribute to psoriasis. Certain

genes, like HLA-C, IL23R, IL12B, and LCE3B/3C, increase

susceptibility to psoriasis (236, 237). Environmental factors, such

as infections (streptococcal infections), trauma to the skin, and

certain medications, can trigger or exacerbate psoriasis in

individuals with a genetic predisposition (238, 239). These

triggers can activate immune responses and further perpetuate

the inflammatory processes in psoriasis. Targeting the JAK/STAT

pathway with inhibitors including SOCS1-KIR, shows promise for

alleviating psoriatic inflammation.
Preclinical studies - animal models

Multiple animal models have been developed to study psoriasis

and its mechanisms (spontaneous, xenograft, genetically

engineered, intradermal injection of cytokines (L-23 or IL-17),

and topical application of irritant imiquimod (IMQ)) resulting in

skin inflammation, hyperproliferation of keratinocytes, and

immune cell infiltration, mimicking key aspects of human
TABLE 2 Uveitis clinical trials of JAK inhibitors, chronological by the start date.

Intervention Specificity
of
Inhibition

Conditions NCT
Number

Phases Study
Status

Enrollment Start
Date
(M/D/Y)

Completion
Date
(M/D/Y)

Filgotinib &
Prednisone

JAK1 Noninfectious Uveitis NCT03207815 2 Terminated 74 7/26/2017 04/22/2021

Tofacitinib JAK3>JAK1>>
(JAK2)

Uveitis Scleritis NCT03580343 2 Unknown 5 4/4/2019 04/04/2021

Baricitinib &
Adalimumab

JAK1/JAK2 Chronic Anterior
Uveitis

NCT04088409 3 Active, Not
Recruiting

40 10/16/2019 07/15/2023

Brepocitinib (PF-
0670841)

JAK1/TYK2 Noninfectious Uveitis NCT05523765 2 Recruiting 24 11/14/2022 07/2024

Baricitinib JAK1/JAK2 Active Non-anterior
Non-infectious Uveitis

NCT05651880 3 Not Yet
recruiting

33 2/23/2023 08/01/2026
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psoriasis (240). Cytokines like IL-17, IL-23, and TNF-a are crucial

in psoriasis, driving inflammation and abnormal cell proliferation.

In light of this, targeting these cytokines could revolutionize the

psoriasis treatment.

Tofacitinib have been investigated in several psoriasis mouse

models. The topical application of Tofacitinib effectively reduces IL-

22 expression in imiquimod-treated mouse ear skin (241) and IL-31

in mice with allergic dermatitis from toluene-2,4-diisocyanate

(242). In-vitro tofacitinib has been shown to inhibit IL-23

expression in dendritic cells, suppress IL-22 expression in Th17

cells, and impede the differentiation of CD4+ T cells into Th2 cells,

which are responsible for releasing IL-31 (243). Systemic delivery of

tofacitinib has been shown to reduce the itch-related behaviors in

the mice by controlling cytokines (IL-22, IL-23, and IL-31) and

modulating epidermal nerves. Tofacitinib also influenced the

expression of TSLP and IL-23, affecting both downstream and

upstream signals of JAK (elevating Tslp mRNA expression and

decreasing IL-23 mRNA expression). Although IL-17A expression,

regulated by IL-23, remained unaffected, tofacitinib increased the

density of peptidergic epidermal nerves (244). Mouse models

provide valuable initial insights, but clinical trials are essential to

assess JAK inhibitors ’ safety and efficacy in treating

human psoriasis.
Treatment - clinical trials

Psoriasis treatment has evolved from ancient remedies to

modern therapies like UV light, immunosuppressants, biologics,

and personalized approaches. Ongoing research aims for better,

safer options, offering hope for improved management and quality

of life for patients with a specific emphasis on targeting cytokines.

Tofacitinib has undergone extensive clinical trials for psoriasis

treatment. In a 12-week Phase 2b trial, tofacitinib displayed

notable clinical improvement and good tolerance for moderate-

to-severe chronic plaque psoriasis (245, 246). Another small phase 2

clinical trials (NCT01710046) further supported its effectiveness by

attenuating the pathological immune pathways in psoriasis (247).

Phase 3 trials confirmed tofacitinib’s efficacy, showing it to be

comparable to etanercept and superior to placebo in treating

moderate-to-severe plaque psoriasis, offering a viable treatment

option (248). Tofacitinib effectively treats nail psoriasis, showing

continued efficacy in a two-year extension study (249).

Additionally, in Asian patients with plaque psoriasis, tofacitinib

was found to be more effective than placebo, with its efficacy

maintained throughout a 52-week study period (250, 251). These

findings support the potential of tofacitinib as a promising

treatment for psoriasis, offering hope for improved management

of this chronic skin disorder.

Solcitinib (GSK2586184), an oral JAK1 inhibitor, showed

promise in a phase 2a trial (NCT01782664) for moderate-to-

severe plaque psoriasis. In this trial, patients across different doses

(100, 200, or 400 mg) experienced significant PASI 75 response

rates at week 12, along with improved itch and quality of life.

Adverse events were consistent across treatment groups, without a

dose-related trend. Overall, Solcitinib demonstrated clinical
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improvement and good tolerability in treating moderate-to-severe

plaque psoriasis over 12 weeks (252). Another oral JAK1 inhibitor,

Abrocitinib (PF-04965842), showed efficacy and good tolerability in

treating moderate-to-severe plaque psoriasis in a phase 2 trial with

59 patients (NCT02201524). Patients receiving different doses (200

or 400 mg) demonstrated improved symptoms compared to

placebo. Although some abnormal laboratory test results were

observed, no serious infections or bleeding events were reported.

The study was terminated despite positive results (253).

Brepocitinib (PF-0670841), a dual TYK2/JAK1 inhibitor (254,

255), has undergone three clinical trials for psoriasis treatment. In a

phase 1 trial (NCT02310750), it was well-tolerated up to 200 mg in

healthy subjects and 100 mg in psoriasis patients, showing

significant improvements in PASI scores (256). In a phase 2a trial

(NCT02969018), it reduced PASI scores compared to placebo in

multiple treatment groups, with continuous treatment at 30 mg

once daily showing the greatest improvement (257). However, in a

recent phase 2b trial (NCT03850483) using topical brepocitinib

cream, it was well-tolerated but did not show significant changes

compared to the vehicle in treating mild-to-moderate plaque

psoriasis [288].

Ropsacitinib (PF-06826647), a dual oral TYK2/JAK2 inhibitor

targeting IL-12 and IL-23 signaling (258) shows promising results

in treating moderate-to-severe plaque psoriasis (259) with

significant improvements seen in a phase 2b, 2020 (260). A

network meta-analysis of JAK inhibitors (included eight

randomized clinical trials involving tofacitinib, peficitinib,

solcitinib, baricitinib, abrocitinib, and deucravacitinib) for

psoriasis found tofacitinib to be the most effective, despite not

being FDA-approved for psoriasis due to side effects (261).

Tofacitinib and deucravacitinib showed the best responses in both

efficacy and safety, supporting JAK inhibitors as a promising

treatment option for moderate-to-severe plaque psoriasis. Table 3

lists all JAK inhibitors that have been used in clinical trials

for psoriasis.
SOCS mimetics in psoriasis

In 2012, Doti et al. introduced PS-5, a new peptide inhibitor of

JAK2, which is a mimetic of the kinase-inhibitory region of SOCS1

(262). This peptide (DTC(Acm)RQTFRSH) has a distinct amino

acid composition and length compared to SOCS1-KIR. Specific

amino acid substitutions in PS-5, involving phenylalanine and

arginine residues, led to improved JAK2 binding by establishing

enhanced electrostatic interactions with the negative phosphate

moiety on Y1007. PS-5, containing a nonnatural residue (Cys

(Acm)), exhibited greater protease stability and effectively

inhibited STAT1 phosphorylation, leading to reduced interferon

regulatory factor-1 (IRF-1) expression through binding-assay

screening (262). In a 2013 study, Madonna et al. explored the

therapeutic potential of PS-5 in managing IFN-g-mediated skin

pathogenesis. The research compared PS-5 with the full kinase

inhibitory region of SOCS1 protein for its ability to suppress

inflammatory gene expression in IFN-g-treated human

keratinocytes. PS-5 mimetic showed comparable effectiveness to
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TABLE 3 Psoriasis clinical trials of JAK inhibitors, chronological by the start date.

Intervention Specificity
of
Inhibition

Conditions NCT
Number

Phases Study
Status

Enrollment Start
Date
(M/D/Y)

Completion
Date
(M/D/Y)

Tofacitinib
(CP-690550)

JAK3>JAK1>>
(JAK2)

Psoriasis NCT01736696 1 Completed 59 11/2002 04/2004

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT00678210 2 Completed 197 07/2008 08/2009

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT00678561 2 Completed 81 10/13/2008 07/24/2009

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01186744 3 Completed 666 09/2010 01/2013

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01163253 3 Terminated 2867 09/2010 06/2016

Tofacitinib Etanercept JAK3>JAK1>>
(JAK2)

Psoriasis NCT01241591 3 Completed 1101 11/2010 01/2013

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01246583 2 Completed 71 02/16/2011 11/29/2011

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01276639 3 Completed 901 03/2011 04/2013

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01309737 3 Completed 960 03/2011 04/2013

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01519089 3 Completed 95 03/2012 01/2014

GSK2586184 (Solcitinib) JAK1 Chronic plaque
psoriasis

NCT01782664 2 Completed 68 03/01/2013 03/24/2014

Tofacitinib JAK3>JAK1>>
(JAK2)

Plaque
Psoriasis

NCT01710046 2 Completed 12 03/2013 11/2013

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis;
Vulgaris
Psoriasis

NCT01831466 2 Completed 476 05/2013 09/2014

Tofacitinib JAK3>JAK1>>
(JAK2)

Psoriasis NCT01815424 3 Completed 266 12/2013 07/2015

PF06263276 Tofacitinib
Daivonex

TYK2
JAK1/3
Corticosteroid

Psoriasis
Vulgaris

NCT02193815 1 Completed 15 09/2014 02/2015

PF04965842
(Abrocitinib)

JAK1 Plaque
Psoriasis

NCT02201524 2 Terminated 59 11/2014 09/2015

Brepocitinib (PF-
06700841)

TYK2/JAK1 Healthy; Plaque
Psoriasis

NCT02310750 1 Completed 96 11/2014 02/2016

Deucravacitinib TYK2 Psoriasis NCT02931838 2 Completed 268 11/15/2016 11/16/2017

Brepocitinib (PF-
06700841)

TYK2/JAK1 Chronic Plaque
Psoriasis

NCT02969018 2 Completed 212 12/2016 03/2018

Ropsacitinib (PF-
06826647)

TYK2/JAK2 Healthy
Plaque
Psoriasis

NCT03210961 1 Completed 109 07/14/2017 01/25/2019

Deucravacitinib
Apremilast

TYK2 Psoriasis NCT03611751 3 Completed 1020 07/26/2018 11/30/2020

Deucravacitinib TYK2 Psoriasis NCT03624127 3 Completed 666 08/07/2018 09/02/2020

Deucravacitinib TYK2 Psoriasis NCT03924427 3 Completed 74 04/10/2019 03/24/2021

Brepocitinib (PF-
06700841)

TYK2/JAK1 Psoriasis NCT03850483 2 Completed 344 04/08/2019 04/20/2021

(Continued)
F
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the kinase inhibitory region peptide, inhibiting Jak, IFN-gRa, and
STAT1 phosphorylation, along with the expression of ICAM-1,

HLA-DR, CXCL10, and CCL2 (194). These findings highlight PS-5

as a promising novel therapeutic strategy for IFN-g-induced skin

pathogenesis, as depicted in Figure 6.

A distinct SOCS3 mimetic peptide, referred to as the KIRESS

peptide (sequence: 22LKTFSSKSEYQLVVNAVRKLQESG45), was

synthesized and assessed in vitro. This peptide spans both the

KIR (Kinase Inhibitory Region) and ESS (Extended SH2-Substrate

Binding) regions (195). KIRESS peptide was shown to inhibit the

IL-22 signaling pathway by regulating the STAT3 and ERK 1/2

signaling, along with suppression of STAT3 expression in

keratinocytes. In-vivo KIRESS peptide effectively suppressed

tumor growth and increased STAT3 activation in athymic nude

mice harboring squamous cell carcinoma (SCC) xenografts (196).

While, these results are encouraging, the specificity and efficacy of

these mimetic peptides in an in-vivo setting requires further

investigation, necessitating additional studies.
Autoimmune encephalitis

Autoimmune encephalitis (AE) is a rare, severe neurological

disorder involving brain inflammation from an autoimmune

response against synaptic antigens (263). The immune system

mistakenly targets and attacks healthy brain tissue, leading to a

range of neurological symptoms. A list of commonly reported AE

autoantibodies includes: N-methyl-D-aspartate receptor (NMDAR)

(264), anti-leucine-rich glioma-inactivated protein 1 (LGI1) (265),

contactin associated protein-like 2 receptors (CASPR2) (266),

gamma aminobutyric acid (GABA) (267, 268); alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (269),

dipeptidyl-peptidase-like protein-6 (DPPX) (270), and myelin
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oligodendrocyte glycoprotein (MOG) (271). Currently, NMDAR

encephalitis is the most common and well-studied subtype of

AE (272).

AE presents cognitive impairments, seizures, memory

problems, behavioral changes, movement disorders, and

psychiatric symptoms (273). It require careful diagnosis and

appropriate treatment, often involving immunosuppressive

therapies (274). Antibodies in AE are intrinsically pathogenic.

They target synaptic proteins and induce conformational changes

leading to widespread inflammation (275). A prior infection that

caused inflammation and neurological symptoms is a common

precursor to AE. Herpes simplex virus encephalitis (HSVE) has

been shown to trigger immune response causing NMDAR

encephalitis (276). Moreover, the human leukocyte antigen (HLA)

is linked to the production of antibodies that trigger autoimmune

responses (277). Up to the present time, a considerable number of

comparable syndromes, often termed AE, have been discovered. In

neuron cultures, pathogenic antibody effects have been shown for

various AE types. These effects include receptor blocking

(GABABR), receptor cross-linking and internalization (NMDAR)

(278, 279), and disruption of protein-protein interactions (LGI1)

(280). Yet, the lack of suitable animal models continues to restrict

our comprehension and development of novel therapies. Anti‐

NMDAR encephalitis is a prevalent (281) and best studied

subtype of AE, for which a few mouse models were developed

(75, 282, 283). Studies have explored the pathogenic effects of

patient-derived or a human recombinant antibody in passive-

transfer animal models. Planaguma et al. demonstrated that

infusing CSF from anti-NMDAR encephalitis patients altered

memory and behavior in mice. The antibodies disrupted NMDAR

interaction with the ephrin-B2 receptor, leading to receptor

internalization and impaired synaptic plasticity, memory,

anhedonia, and depressive behavior. After the antibody infusion
TABLE 3 Continued

Intervention Specificity
of
Inhibition

Conditions NCT
Number

Phases Study
Status

Enrollment Start
Date
(M/D/Y)

Completion
Date
(M/D/Y)

Ropsacitinib (PF-
06826647)

TYK2/JAK2 Plaque
Psoriasis

NCT03895372 2 Completed 179 06/27/2019 11/26/2020

Deucravacitinib TYK2 Psoriasis NCT04036435 3 Active, Not
Recruiting

1452 08/12/2019 07/26/2026

Deucravacitinib TYK2 Psoriasis NCT04167462 3 Completed 220 11/25/2019 01/07/2022

Deucravacitinib TYK2 Plaque
Psoriasis

NCT04772079 3 Recruiting 153 03/23/2021 09/09/2031

Deucravacitinib TYK2 Psoriasis NCT05478499 4 Recruiting 150 10/06/2022 10/07/2024

Adalimumab,
Secukinumab,
Ixekizumab, Guselkumab,
JAK inhibitors,
methotrexate

Psoriasis NCT05503875 N/A Recruiting 100 01/01/2023 12/31/2027

Deucravacitinib TYK2 Psoriasis NCT05701995 4 Recruiting 250 01/31/2023 01/29/2025

Deucravacitinib TYK2 Psoriasis
Vulgaris

NCT05858645 4 Not Yet
Recruiting

25 07/2023 06/2026
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was terminated, these changes gradually resolved (75). Other

studies indicated that passive NMDAR antibody transfer from

patients to mice could induce seizures (283) and psychotic

behavior in mice (282). These findings demonstrate the potential

of AE patient autoantibodies for creating precise mouse models,

providing insights across multiple levels, including cellular,

synaptic, and neural networks, and facilitating novel therapy

testing. A postinfectious autoimmune encephalitis mouse model

developed by performing multiple intranasal infections with live

group A Streptococcus (GAS) shows Th17 cells migration from the

nose into the brain, resulting in the disruption of the blood-brain

barrier (BBB) and the inflow of autoantibodies into the CNS (284).

Later, the same group highlighted the essential role of Th17

lymphocytes in enabling selective CNS autoantibody entry,

microglial activation, and neural circuit impairment in

postinfectious AE. Mice lacking Th17 cells exhibited reduced BBB

leakage, microglial activation, CNS antibody infiltration, and partial

olfactory function restoration (285). In AE, the JAK-STAT pathway

can become dysregulated, leading to abnormal immune responses

and inflammation within the central nervous system (CNS).

Tofacitinib’s ability to cross the blood-brain barrier and modulate

cytokine receptors positions it as a potential therapy for AE and

refractory AE, offering hope for more targeted treatments

(286, 287).
Preclinical studies - animal models

Autoimmune Encephalitis (AE) is predominantly a human

condition and is less frequently observed in mice. Animal models

that mimic aspects of AE have been instrumental in providing direct

evidence of the pathogenicity of autoantibodies. For instance,

researchers have created these models by transferring cerebrospinal

fluid (CSF) or immunoglobulins from patients with anti-NMDA

receptor encephalitis to mice (283). These studies have shed light on a

critical process: the continuous production of autoantibodies by self-

reactive B cells. Two major pathogenic pathways have been

documented in autoimmune encephalitis: one involving the

selective and reversible reduction of NMDA receptor surface

density and synaptic localization upon exposure to autoantibodies

from anti-NMDAR encephalitis patients (279, 288), and the other

pathway involves complement activation, demonstrated in CASPR2

antibody-associated encephalitis cases (289). Despite extensive

research and increasing clinical insights, a notable proportion of

patients still do not benefit from existing treatments. A recent study

reported a translational rodent model of NMDARE (n-methyl-D-

aspartic acid receptor (NMDR) encephalitis), using active

immunization and offers a valuable tool for delving into the

pathophysiology of AE (290). This development holds promise for

advancing the diagnosis and treatment of this debilitating

neuropsychiatric condition with a relatively rapid onset of

the phenotype, enabling in-depth investigations into its

pathophysiology. Additionally, the NMDARE mouse model has the

potential to serve as an effective translational platform for pre-clinical

testing of both existing and future therapeutic interventions.
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Clinical trials

Autoimmune encephalitis (AE) is a rare and serious medical

condition that involves inflammation of the brain (51, 291), and

treatment options are based on autoimmune disease management

principles (274, 277, 292). Immunotherapy, such as corticosteroids,

intravenous immunoglobulins, and plasmapheresis, is the first-line

therapy, rituximab and cyclophosphamide (second line therapy)

and other immunosuppressive drugs used when needed (293).

Controlled clinical trials for AE are lacking due to the rarity of

the disease (294–296). However, ongoing trials, such as one

evaluating bortezomib (NCT03993262), a proteasome inhibitor,

in severe AE, hold promise for establishing guidelines and

advancing to larger phase III trials (295). In refractory AE, blood-

brain barrier penetrating novel immunotherapies are crucial (297).

Tofacitinib, a JAK3/1 inhibitor, has shown potential in treating

refractory immune-mediated diseases, and recent studies suggest it

could be a promising option for some AE patients (298). However,

further research with a larger patient group is needed to fully

understand its effectiveness in AE. As tofacitinib penetrates the

BBB (242, 299) it has the potential to be effective in the CNS

autoimmune disorders, however further analysis of much larger

group of patients is required to make a conclusion for the use of

tofacitinib in AE. Despite progress in understanding AE (300), the

exact pathological mechanisms remain unclear, and therapeutic

options are currently limited.
Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a complex autoimmune

disorder with a wide-ranging impact on the body. Common

manifestations include joint pain, skin rashes (especially the

characteristic “butterfly” rash on the face), fatigue, and fever. SLE

is more frequent in women. The precise mechanism of SLE

pathogenesis is still unknown. SLE highlights the intricate

interplay between genetics, environmental factors, and immune

dysregulation. Cytokines are crucial in the development of SLE’s

pathophysiology (301, 302). Cytokines, including interleukin-10

(IL-10) and B-cell activating factor (BAFF), have a pivotal role in

the activation, survival, and differentiation of B cells. Additionally,

cytokines such as interleukin-2 (IL-2) and interleukin-21 (IL-21)

impact T-cell function and differentiation. Elevated levels of specific

cytokines such as interleukin-6 (IL-6), interleukin-17 (IL-17), and

tumor necrosis factor-alpha (TNF-alpha) are a common occurrence

in individuals with SLE (303, 304). Elevated type I interferons

(IFNs) correlate strongly with active SLE, driving autoantibody

production, immune complex formation, and tissue damage. JAK1

and TYK2, downstream signals of IFN, show significant

associations with SLE, especially TYK2 polymorphism (305).

[357]. In patients with SLE, there is a substantial increase in the

expression of CXCR4, a crucial receptor involved in immune

regulation (306, 307). This heightened expression is intricately

associated with the activation of the JAK/STAT pathway,

fostering the infiltration of immune cells into the kidneys, thereby
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aggravating the progression of the disease. These findings suggest

the potential use of JAK inhibitors for treating lupus (308).
Preclinical studies - animal models

Over time, a diverse range of murine models for lupus has been

created and utilized, each with its own limitations, contributing to

our understanding of systemic lupus erythematosus (SLE) (309).

Among these models, the MRL/lpr mice distinguish themselves by

their exceptional capacity to generate an extensive spectrum of

lupus-associated autoantibodies (ANA, anti-dsDNA, anti-Sm, anti-

Ro, and anti-La) alongside exhibiting features such as arthritis,

cerebritis, skin rash, and vasculitis (310).

Promising outcomes in mouse models have been demonstrated

by various JAK inhibitors. Ruxolitinib reduced severe skin lesions in

MRL/lpr mice, but its effect on other lupus manifestations remains

unclear, requiring further research (311). Tofacitinib demonstrated

reduced disease activity, nephritis, and autoantibody titer in MRL/lpr

and NZB/NZWF1 mice, suggesting potential as a therapy for SLE

(312–315). Baricitinib, a selective JAK1/2 inhibitor, significantly

suppressed lupus-like symptoms and restored disrupted podocyte

structures (316). Another potential therapy, Deucravacitinib (BMS-

986165), showed reduced IFN expression in SLE patient cells and

decreased type I IFN-regulated gene expression in NZB/W mice

(317). These results underscore the promise of JAK inhibitors as

innovative solutions for SLE, yet additional research and clinical trials

are required in human patients.
Treatment of SLE patient – clinical
trials

Immunosuppressive medications and glucocorticoids are the

two most common current SLE treatments, marked by notable side

effects and limited efficacy. Under these circumstances, SLE still has

a high rate of morbidity and mortality. Identification of bioactive

agents has positioned the JAK/STAT pathway as a more suitable

contender for SLE’s pathogenesis.

The first JAK1 inhibitor, GSK2586184 (Solcitinib), was assessed

for its effectiveness, safety, and tolerability in adults with SLE

(ClinicalTrials.gov NCT01777256). However, the study revealed

various safety issues in participants (318, 319). Consequently, the

trial was deemed futile, and recruitment was stopped after 50

patients. Based on the safety and efficacy statistics from the study,

further research on GSK2586184 in SLE patients is not

recommended. Tofacitinib (CP-690550) was then evaluated and

showed promise in treating SLE [380]. Another recent randomized,

double-blind, placebo-controlled study (NCT02535689)

demonstrated that tofacitinib is safe and well-tolerated in patients

with mild-to-moderate SLE. Tofacitinib reduced IFN type I

signature, improved lipid profile, restored endothelial function,

and enhanced cardiometabolic and immunologic parameters

associated with premature atherosclerosis. Additionally, the drug’s

protective benefits were more pronounced in individuals with the

STAT4 risk allele, which is linked to more severe SLE and an
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increased risk of cardiovascular (CV) events (320). A case report

evaluating the efficacy of tofacitinib in three patients with

recalcitrant cutaneous lupus reported favorable outcomes,

showing significant improvement (321). Ongoing and approved

trials of tofacitinib in SLE aim to gather more data on targeting the

JAK pathway’s effectiveness, with potential implications for

cardiovascular function across autoimmune disorders and the

broader population.

Baricitinib selectively inhibits JAK1 and JAK3 subtypes. A

double-blind placebo-controlled study in 314 lupus patients with

skin and joint manifestations (NCT02708095) showed positive

results. After 24 weeks of baricitinib (4 mg) treatment, 67% of

patients achieved resolution of arthritis or rash (322), along with

reduced expression of key lupus-related cytokines, improved SLE

disease activity, anti-dsDNA antibody levels, and diminished

swollen and sore joints (323). It showed potential in treating

cutaneous and articular involvements (322, 324, 325), but its

efficacy in lupus nephritis is still being investigated in a phase 2/3

trial (NCT05686746). Phase III trials for moderate to severe SLE

adult patients (NCT03616964 & NCT03616912) had inconclusive

outcomes. A follow-up study for long-term safety (NCT03843125)

was terminated due to insufficient evidence of positive benefit.

Further pre-clinical data are needed to better understand

baricitinib potential efficacy and mechanism in treating lupus-

related phenotypes.

Filgotinib (GLPG0634) treatment, a selective JAK1 inhibitor,

showed disappointing outcomes in a cutaneous lupus

erythematosus trial, failing to significantly improve CLASI scores

(326). Its use in lupus membranous nephropathy yielded

unsatisfactory results with only limited conclusions due to a small

number of participants (327). Presently, no planned trials involve

filgotinib in SLE patients. In contrast, Upadacitinib (ABT-494), a

second-generation selective JAK1 inhibitor, has been approved for

conditions like rheumatoid arthritis (328), psoriatic arthritis (329),

and atopic dermatitis. Limited data on its efficacy in SLE exists, with

only one case report showing resolution of accelerated nodulosis

(330). Phase II trials (NCT04451772) have been completed to

evaluate the safety and efficacy of upadacitinib in SLE, and phase

III (NCT05843643) trials anticipated to commence soon

[www.clinicaltrials.gov last accessed June 6, 2023].

In healthy volunteers, Deucravacitinib demonstrates favorable

pharmacokinetics and safety traits (331) and is now FDA approved

to manage moderate-to-severe plaque psoriasis (332). A recent

phase II trial in adult SLE patients (NCT03252587) reported

positive outcomes, with a higher SLE Responder Index 4 (SRI-4)

response compared to placebo (333). The trial met all secondary

endpoints, indicating deucravacitinib efficacy and acceptable safety.

The ongoing phase 3 trials, (NCT05617677 & NCT05620407) are

assessing its efficacy and safety. A study (NCT03920267) is also

assessing its long-term safety and efficacy in SLE.

JAK inhibitors of the first generation address multiple JAK

isoforms, yielding diverse impacts yet also triggering a spectrum of

side effects (330). Although SLE clinical trials have demonstrated

potential benefits, none of the JAK-STAT inhibitors listed in Table 4

have yet garnered approval for use in SLE clinical practice.

Tofacitinib and baricitinib have shown the most promising
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outcomes so far. Nonetheless, while their safety and effectiveness

profiles present encouraging data, further clinical trials are

imperative for future validation.
SOCS mimetics in SLE

Cytokine imbalance and the diminished SOCS1 expression both

hold significant roles in the advancement of SLE. Restoring or
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enhancing SOCS1 expression or function could potentially

modulate cytokine signaling, reduce inflammation, and attenuate

the progression of SLE. SOCS1 mimetics could be a safe alternative.

Reduced SOCS1 expression in individuals with systemic lupus

erythematosus (SLE) and in lupus mouse models is established

(334–336). This decline in SOCS1 expression exhibits a negative

correlation with the extent of inflammation. The decreased

expression of SOCS1 contributes to the dysregulated cytokine

signaling and excessive immune activation seen in SLE.
TABLE 4 SLE clinical trials of JAK inhibitors, chronological by the start date.

Intervention Specificity
of
Inhibition

Conditions NCT
Number

Phase Study
Status

Enrollment Start
Date
(M/D/Y)

Completion
Date
(M/D/Y)

GSK2586184 (Solcitinib) JAK1 SLE NCT01777256 2 Terminated 51 3/1/2013 3/31/2014

Tofacitinib (Tasocitinib or
CP-690550)

JAK3>JAK1>>
(JAK2)

SLE NCT02535689 1 Completed 34 8/28/2015 4/26/2018

Baricitinib (INCB028050
or LY3009104)

JAK1/JAK2 SLE NCT02708095 2 Completed 314 3/24/2016 11/9/2017

Tofacitinib JAK3>JAK1>>
(JAK2)

SLE;
Discoid Lupus
Erythematosus

NCT03159936 Early | 1 Terminated 5 4/3/2017 6/10/2020

Filgotinib JAK1 Cutaneous
Lupus
Erythematosus

NCT03134222 2 Completed 47 4/28/2017 6/9//2020

Tofacitinib JAK3>JAK1>>
(JAK2)

SLE; Cutaneous
Lupus

NCT03288324 1 | 2 Completed 13 8/23/2017 12/1/2022

Filgotinib & Lanraplenib JAK1 Lupus
Membranous
Nephropathy
(LMN)

NCT03285711 2 Completed 9 9/18/2017 5/18/2020

Deucravacitinib (BMS-
986165)

TYK2 SLE NCT03252587 2 Completed 363 9/21/2017 10/28/2021

Baricitinib JAK1/JAK2 SLE NCT03616964 3 Completed 778 8/2/2018 10/20/2021

Baricitinib JAK1/JAK2 SLE NCT03616912 3 Terminated 830 8/2/2018 3/9/2022

Deucravacitinib TYK2 SLE NCT03920267 2 Active Not
Recruiting

261 3/26/2019 3/31/2025

Elsubrutinib &
Upadacitinib (alone or in
combination (ABBV-599))

BTK
JAK1
BTK & JAK1

SLE NCT03978520 2 Completed 341 7/25/2019 7/14/2022

Baricitinib JAK1/JAK2 SLE NCT03843125 3 Terminated 1147 9/8/2019 4/1/2022

Elsubrutinib &
Upadacitinib (alone or in
combination (ABBV-599))

BTK
JAK1
BTK & JAK1

SLE NCT04451772 2 Active Not
Recruiting

260 7/27/2020 12/28/2023

Baricitinib JAK1/JAK2 Lupus or SLE
Nephritis

NCT05686746 2 | 3 Recruiting 80 6/1/2022 9/1/2023

Tofacitinib JAK3>JAK1>>
(JAK2)

SLE; Cutaneous
Lupus

NCT05048238 1 Recruiting 10 9/30/2022 12/2023

Deucravacitinib TYK2 SLE NCT05617677 3 Recruiting 490 1/12/2023 12/17/2027

Deucravacitinib TYK2 SLE NCT05620407 3 Recruiting 490 1/12/2023 12/17/2027

Upadacitinib (ABT-494) JAK1>>(JAK2) SLE NCT05843643 3 Not Yet
Recruiting

1,000 6/30/2023 10/31/2027
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Hematologic abnormalities, including abnormal blood cell counts,

and the generation of autoantibodies are influenced by SOCS1

insufficiency. Aberrations in SOCS1 also contribute to lupus

nephritis, a grave complication of SLE, influencing organ

performance in regions like the skin, central nervous system,

heart, and kidneys (335, 337).

Research by Sukka-Ganesh and Larkin was aimed to identify a

therapeutic potential to target SOCS1 in the treatment of SLE by

using mice and studying SLE patients and clinical samples. The study

findings revealed that after 48 hrs. of stimulation with anti-CD3, LPS,

or IFN-g, SOCS1 and SOCS3 expression peaked in murine splenic

samples. Furthermore, the peripheral blood mononuclear cells

(PBMCs) from SLE patients exhibited notably lower levels of both

SOCS1 and SOCS3 mRNA and protein compared to control subjects.

The study also demonstrated that reduced SOCS1 levels in SLE

patients were associated with increased inflammatory markers and

upregulated expression of major histocompatibility complex (MHC)

class II molecules. Moreover, patients receiving steroid exhibited

elevated levels of SOCS1 compared to untreated, and the human

PBMCs treated with steroid showed dose- and time-dependent

upregulation of SOCS1 mRNA (336).

The therapeutic potential of SOCS1-KIR in modulating lupus-

associated pathologies has been recently evaluated in Fas-deficient

MRL/lpr mice. The application of SOCS1-KIR led to diminished

skin lesion severity, lowered production of autoantibodies, and

moderate enhancements in kidney pathology. At the cellular level,

the introduction of SOCS1-KIR through peritoneal administration

augmented the expression of Foxp3 in overall splenic and follicular

regulatory T cells, lowered the ratio of effector memory to naive T

lymphocytes in both CD4+ and CD8+ cell populations, and

diminished the occurrence of germinal center B cells. These

observations suggest that SOCS1-KIR treatment triggers changes

in lymphocyte dynamics, hinting at the therapeutic potential of

peptide administration for alleviating SLE-related pathology

(193) (Figure 6).
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FDA and EMA approved JAK inhibitors

JAK inhibitors, also known as Jakinibs, belong to a class of

small-molecule medications. These inhibitors hold promise in

treating autoimmune conditions and have proven effectiveness

against inflammatory diseases such as rheumatoid arthritis and

psoriasis, among others. Administered orally, they initially targeted

multiple JAK enzymes, but newer iterations are more discerning.

Despite their swift action, drawbacks exist, encompassing side

effects (gastrointestinal problems, liver irregularities, anemia,

changes in blood lipids), high expense, and heightened

susceptibility to infections and malignancies. Long-term safety

data is still being collected. Figure 7 roadmap showcases the

expanding use of JAK inhibitors in treating distinct autoimmune

and inflammatory disorders, underlining their growing significance

in therapeutic interventions that have obtained approval from both

the European Medicines Agency (EMA) and the United States Food

and Drug Administration (FDA) in chronological order based on

first approval: Ruxolitinib (338–340), Tofacitinib (341–344),

Baricitinib (343, 345, 346), Fedratinib (347), Peficitinib (348),

Upadacitinib (328, 329, 349, 350), Delgocitinib (351), Filgotinib

(352), Abrocitinib (353), Deucravacitinib (332), Pacritinib (354).
Conclusions

The field of autoimmune research is constantly progressing.

Currently, there are 2,254 planned studies focused on autoimmune

diseases (https://clinicaltrials.gov). Examining and refining Jakinibs

through development and testing has illuminated the specific

functions that different JAKs play in various human diseases.

SOCS-KIR peptides show promise as cutting-edge therapeutic

options for autoimmune disorders, thanks to their small size,

stability, and low immunogenicity, which make them favorable

candidates for safe therapeutic development. SOCS1-KIR, when
frontiersin
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internalized by cells, has shown strong therapeutic potential in EAE,

autoimmune uveitis, psoriasis, and diabetes models. In contrast,

SOCS1 antagonist (pJAK2 (1001–1013)) has been shown to

enhance immune responses against various viruses. SOCS

mimetics and antagonists hold promise as potential therapeutics

for regulating the immune system in both negative and positive

ways. However, it remains imperative to conduct additional

research and clinical trials to gain a comprehensive understanding

of their mechanisms of action, safety, and effectiveness across

various autoimmune conditions before considering their

widespread utilization in clinical practice. Scientists and the

medical community are diligently striving to devise and apply

inventive methodologies aimed at targeting JAK-STAT pathways

and creating mimetics that target SOCS. SOCS1 mimetics hold

promise for treating disorders associated with excess inflammation

or SOCS1 deficiency upon fully established safety studies.
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