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The immune system of people living with HIV (PLWH) is persistently exposed to

antigens leading to systemic inflammation despite combination antiretroviral

treatment (cART). This inflammatory milieu promotes T-cell activation and

exhaustion. Furthermore, it produces diminished effector functions including

loss of cytokine production, cytotoxicity, and proliferation, leading to disease

progression. Exhausted T cells show overexpression of immune checkpoint

molecules (ICs) on the cell surface, including programmed cell death protein 1

(PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T-cell

immunoglobulin and mucin-domain containing-3 (TIM-3), T-cel l

immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain

(TIGIT), and lymphocyte activation gene-3 (LAG-3). The ICs also play a crucial

role in T-cell exhaustion by reducing the immune response to cancer antigens.

Immunotherapy based on immune checkpoint inhibitors (ICIs) has changed the

management of a diversity of cancers. Additionally, the interest in exploring this

approach in the setting of HIV infection has increased, including AIDS-defining

cancers and non-AIDS-defining cancers in PLWH. To date, research on this topic

suggests that ICI-based therapies in PLWH could be a safe and effective

approach. In this review, we provide an overview of the current literature on

the potential role of ICI-based immunotherapy not only in cancer remission in

PLWH but also as a therapeutic intervention to restore immune response against

HIV, revert HIV latency, and attain a functional cure for HIV infection.
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Introduction

Combination antiretroviral treatment (cART) has significantly

improved the immune status of people living with HIV (PLWH)

and has dramatically reduced HIV morbidity and mortality,

transforming HIV infection into a chronic disease (1). However,

cART is not curative and PLWH require lifelong treatment due to

the establishment of the HIV reservoir in long-lived CD4 T cells

allowing the virus to persist in a quiescent state evading immune

detection (2). After many years of research in HIV infection, there is

an undeniable need for therapeutic strategies that can enhance

antiviral immunity and reduce the viral reservoir that is critical for

permanent HIV remission.

Long-term persistence of HIV has been associated with T-cell

exhaustion, which consists of T-cell functional impairment with loss

of cytokine production, cytotoxicity, proliferation (3), and

consequent disease progression (3–5). Exhausted T cells are

characterized by an overexpression of immune checkpoint

molecules (ICs) on the T-cell surface such as programmed cell

death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen-

4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-

3 (TIM-3), T-cell immunoglobulin and immunoreceptor tyrosine-

based inhibitory motif domain (TIGIT), lymphocyte activation gene-

3 (LAG-3), CD160, and 2B4 (3, 6–8). Interestingly, Banga et al. have

demonstrated that PD-1 expressing memory CD4 T cells from lymph

nodes are the main source of infectious viruses in PLWH (9).

Similarly, another study reported that in PLWH with uncontrolled

viremia, CTLA-4 expressing CD4 T cells contain higher HIV DNA

levels compared with their CTLA-4 negative CD4 T-cell counterparts

(10). Fromentin et al. have shown that co-expression of immune

checkpoint molecules such as PD-1, LAG-3, and TIGIT in CD4 T

cells leads to HIV latency during ART regimen (11).

PLWH have an increased risk of developing multiple cancers

due to co-infection with certain oncogenic viruses, certain

unhealthy lifestyle behaviors, and persistent immune alterations

despite cART. These cancers include AIDS-defining cancers, such

as non-Hodgkin lymphoma, cervical cancer, or Kaposi sarcoma, as

well as non-AIDS-defining cancers such as Hodgkin lymphomas,

anal cancer, lung cancer, and hepatocellular carcinoma, among

others (12). Furthermore, non-HIV-related hematological

malignancies such as acute leukemia, multiple myeloma, and

myeloproliferative neoplasms are emerging among PLWH (13).

ICs also play an important role in T-cell exhaustion in cancer

patients by decreasing the immune response against cancer antigens

(3, 14). Antibodies (Abs) that specifically block ICs, also named

immune checkpoint inhibitors (ICIs), including anti-CTLA-4, anti-

PD-1, and anti-PD-L1, are transforming cancer therapies by

enhancing anti-cancer immunity. This leads to increased survival

rates in patients with various types of cancers, even in PLWH.

Considering the success of ICIs in cancer therapy and taking into

account that T-cell exhaustion in cancer is similar to that observed

in HIV infection, the potential role of ICI-based therapies in

improving T-cell responses has gained interest. ICIs can be used
Frontiers in Immunology 02
in the control of HIV infection as an adjuvant to standard cART to

improve HIV immune response and revert virus latency.

The relevance of ICI-based therapies, in both cancer and

chronic infections including HIV, is reflected in recent reviews

addressing various aspects of this field (15–20). In the present

review, we give a general overview of the possible impact of ICI-

based treatments for cancer remission in PLWH as well as its

impact on the HIV-specific immunological response to revert T-cell

exhaustion and HIV latency. ICIs could represent a novel form of

latency reversion agents (LRAs): on one side reactivating HIV

transcription from latently infected cells which will improve HIV

recognition by the immune system, while also reinvigorating HIV-

specific T-cell responses. Together, this could support the

eradication of HIV-infected cells.
Immune checkpoint molecules and T-
cell exhaustion in HIV infection

T-cell exhaustion has been described as a hallmark of several

chronic infections. This includes HIV, in which antigens persist

with deleterious effects on the proliferative capacity and effector

functions of antigen-specific T cells. The immune system has

mechanisms to ensure a specific and controlled response to

antigens controlling T-cell hyperreactivity through the expression

of ICs. This includes the most studied ICs, PD-1 and CTLA-4.

Engagement of these molecules with their ligands provides signals

counteracting the activation of T cells after T-cell receptor (TCR)

stimulation (21, 22). These ICs are upregulated upon ongoing

antigen exposure which contributes to a loss of proliferating

capacity and reduced production of cytokines by T cells, therefore

leading these cells to a state of immune exhaustion. In addition,

some studies have shown that T-cell exhaustion also exhibits

impaired memory as well as metabolic and transcriptional cell

abnormalities (3, 23). Furthermore, it is recognized that

exhaustion can occur in immune cell types other than CD8 T

cells, such as CD4 T cells (23), NK cells (24), and B cells (25).

PD-1 and its ligand receptors, PD-L1/PD-L2, are the ICs most

responsible for T-cell exhaustion in chronic infections. However, other

ICs, such as CTLA-4, TIM-3, TIGIT, or LAG-3 can be expressed alone

or in combination to cause pronounced T-cell exhaustion. Immune

exhaustion is typically characterized by the co-expression of numerous

ICs by T cells. Generally, the higher the number of co-expressed ICs by

T cells, the more severe the exhaustion (3, 7). Several studies in HIV

infection have shown an increased expression of ICs both in CD4 and

CD8 T cells. This has been associated with reduced effector functions,

less virus-cell clearance, declining CD4 T-cell numbers, and disease

progression (4, 5, 8, 26–28).

Unquestionably, cART has significantly prolonged the life

expectancy of PLWH. However, it has been noted that

suppression of viral replication with cART does not revert the

increased expression of ICs such as PD-1, TIM-3, or TIGIT (26, 29),

even when cART is initiated in acute infection (30). Notably, in
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PLWH receiving cART, the expression of PD-1 on T cells is a

predictor of viral rebound following cART interruption (31) and

has been associated with poor recovery of CD4 T-cell counts

(32, 33).
Immune checkpoint molecules and
HIV persistence

The HIV reservoir remains the principal obstacle to achieving

eradication of HIV infection despite successful cART. This is

mainly due to the presence of resting long-lived memory CD4 T

cells harboring persistent replication-competent viruses. The

homeostatic proliferation of infected CD4 T cells also contributes

to the replenishment of the viral reservoir (34). Interestingly, it has

been suggested that T-cell exhaustion is another crucial factor for

HIV persistence (35). Khoury et al. have reported a significant

correlation between the frequency of PD-1 expression on CD4 T

cells and HIV persistence in rectal and blood tissues in PLWH

receiving cART (36). Moreover, it has been shown that CD4 T cells

expressing PD-1 in blood and lymph nodes from cART-suppressed

PLWH are an important source of viral latency (9, 37, 38).

Furthermore, it has been described that the expression of T-cell

exhaustion markers, including PD-1 and LAG-3, during acute HIV

infection prior to the use of cART, correlates with HIV reservoir

size and can predict viral rebound after treatment interruption (31).

Consistent with these results, other studies have demonstrated that

blood CD4 T cells expressing PD-1 alone (39) or co-expressing

LAG-3 and TIGIT (11) showed a high level of integrated HIV DNA.

In a recent study, Horn et al. have described that high levels of HIV

DNA and PD-1 expression on CD4 T-cell subsets persist in

peripheral blood and the terminal ileum of PLWH despite cART

(40). Similarly, it has been shown that double-positive PD-1+CTLA-

4+ memory CD4 T cells from the blood of PLWH on cART have a

high frequency of HIV DNA+ cells, favoring HIV persistence (41).

There is still a great deal to be discovered about how ICs induce

virus latency. Evans et al. have suggested that the inhibitory effects

of ICs, such as PD-1, on T-cell activation lead to a reduction of HIV

transcription and RNA translation, therefore promoting HIV latent

infection (39). Similar results have been found for CTLA-4, with

higher levels of HIV latency in CTLA-4+ than in CTLA-4- T cells.

Furthermore, downmodulation of CTLA-4 expression on T cells

induced by HIV-Nef protein results in transition from latent to

productive infection of these cells, supporting the role of CTLA-4 as

a modulator of HIV latency (10).
A glance at therapies based on
blocking immune checkpoints
molecules in cancer

Exhausted T cells have been found in several malignancies,

which create an immunosuppressive environment in tumor tissues,

similar to what happens in HIV infection (3). Dysfunctional anti-

tumor T-cell responses have been linked to the elevated and
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TIGIT, or LAG-3) in a variety of malignancies. These ICs, which

regulate T-cell function through various pathways, induce

tolerance, exhaustion, and produce inhibitory signals that reduce

the immune response against tumor cells (3, 14, 42–44).

The discovery that T-cell exhaustion is a reversible

phenomenon has made cr i t i ca l advances in cancer

immunotherapy. Therapy based on the blockade of ICs to

reinvigorate T-cell responses has revolutionized cancer treatment.

ICIs are monoclonal antibodies (mAbs) directed against ICs

expressed by immune cells that prevent the inhibition of anti-

cancer T cells, primarily CD8 T cells, enhancing the specific

responses to tumors. In the past few years, it has been shown

how the administration of ICIs can reactivate the exhausted

immune system and increase survival in patients with a wide

variety of cancers (45).

Several molecules have been approved for the management of

advanced malignancies, including non-small cell lung cancer

(NSCLC), melanoma, and head and neck cancer, among others

(46–49). Ipilimumab, an ICI that selectively targets CTLA-4 and has

shown promising results in the treatment of melanoma, was the first

ICI approved by the FDA for use in cancer immunotherapy (47).

Other mAbs for cancer therapy have been approved, including anti-

PD-1 (nivolumab, pembrolizumab, and cemiplimab) and anti-PD-

L1 (atezolizumab, durvalumab, and avelumab), with anti-tumor

activity in several types of cancer, such as melanoma, lung cancer,

Hodgkin lymphoma, metastatic anal cancer, cutaneous squamous

cell carcinoma, and breast cancer, among others (46, 49–53).

Importantly, combined administration of anti-CLTA-4 and anti-

PD-1 has demonstrated to be a successful tool for the therapy of

several cancers (44, 54–57). Currently, there are next generation

ICIs other than CTLA-4 and PD-1/PD-L1. One example is anti-

LAG-3 (relatlimab) which has been recently approved for

metastasic melanoma treatment in combination with nivolumab

(58). Others such as anti-TIGIT or anti-TIM-3, as well as new

combinations of ICIs, are being explored to potentiate anti-tumor

immune response in different cancer types including solid tumors,

multiple myeloma, endometrial cancer, and gastric cancer, among

others (NCT02913313, NCT03119428, NCT02817633,

NCT03099109, NCT02608268, NCT01968109).

The inhibiting activity of ICIs on molecules with an immune

system regulatory function means that ICI therapies are not without

risk of toxicity and may result in a range of immune-related adverse

effects (irAEs). The most common irAEs occur in the skin,

endocrine system, gut, and lungs. Severe grades of irAEs, such as

pneumonitis, neurotoxicity, and cardiovascular and renal toxicity

have been well described in cancer patients receiving ICIs. Most of

these irAEs can be treated successfully with immunosuppressor

drugs, including corticosteroids (59–61). If corticosteroids are

ineffective, other treatments such as infliximab or vedolizumab

have been evaluated to treat these ICI side effects (62, 63).

Another aspect to consider when using ICIs for cancer

treatment is the safety of their use in patients with specific

associated comorbidities, such as concomitant chronic infections

(64, 65) or immune-related disorders (64, 66). Overall, there is

consensus that cancer patients with different comorbidities may
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benefit from ICI treatment. Nevertheless, precautions should be

taken to reduce the occurrence of major side effects in these

patients. Additionally, these precautions vary depending on the

specific comorbidity.
Therapeutic potential of immune
checkpoint inhibitors in HIV infection

Given the success of immunotherapy in the treatment for

cancer, ICI-based immunotherapy is an intriguing field that is

gaining attention as a coadjuvant to improve the immune

response to HIV infection. Unfortunately, there is no vaccine or

cure for this viral infection, and as stated previously, T-cell

exhaustion is a primary characteristic of chronic HIV infection.

The unique therapeutic approach that has demonstrated a complete

eradication of HIV has been hematopoietic stem cell

transplantation. This has occurred in four HIV-infected

individuals with hematological malignancies who received a

hematopoietic stem cell transplantation from donors homozygous

for CCR5D32 (67–70). However, hematopoietic stem cell

transplantation has a high risk of morbidity and mortality, is too

complex, costly, and would therefore be inaccessible as a worldwide

therapeutic strategy for the eradication of HIV. The most realistic

approach is the functional cure that focuses on developing

immunotherapy to boost host immunity and achieve a complete

suppression of virus replication without cART. Thus, blocking ICs

as a strategy to reinvigorate HIV-specific T-cell responses has raised

considerable interest as explained below.
Ex vivo and in vitro studies

Different ex vivo studies have demonstrated that PD-1/PD-L1

or CTLA-4 blockade in cultured cells from PLWH can reinvigorate

the proliferative ability and functionality of HIV-specific CD4 and

CD8 T cells (6, 27, 71). Similarly, blockade of PD-1 or TIM-3

molecules restores cytokine production by HIV-specific CD8 T cells

(4, 26, 29). Porichis et al. have shown that PD-1 blockade along with

IL-10 treatment reinvigorated CD4 T cells and improved NK

function, suggesting that inhibition of T-cell exhaustion can

reinvigorate not only adaptive but also innate immune responses

in HIV (72). Holder et al. reported that treating NK cells from

PLWH with anti-TIGIT mAbs increased NK cell activity against

HIV-infected CD4 T cells (73). Moreover, a very recent ex vivo

study using cells from PLWH on ART has demonstrated that the

combined blockade of multiple ICs, including PD-1, PD-L1, LAG-3,

CTLA-4, TIM-3, and TIGIT, had a synergistic effect increasing the

frequency of HIV-specific CD4 and CD8 T-cell responses when

compared with the blockade of a single IC (74).

Brunet-Ratnasingh et al. measured the ability of different HIV-

specific CD4 T-cell subsets to respond to PD-L1 blockade and

found that follicular helper T (Tfh) cells, previously described as an

important source of replication-competent HIV (75), showed low

responsiveness to PD-L1 blockade while Th1, Th17, and Th22 cells
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significantly increased their responsiveness (76). This finding

highlights the importance of considering the different lineages of

HIV-specific CD4 T cells to better evaluate the potential role of ICIs

for reverting T-cell dysfunctionality in PLWH.

Another interesting effect of ICIs in PLWH is the reversion of

HIV latency in CD4 T cells, as demonstrated in two ex vivo studies

indicating that blocking the PD-1/PD-L1 pathways with anti-PD-1

antibodies enhanced viral production and resulted in a decrease in

HIV latency (39, 77). Also, an in vitro study has demonstrated that

when compared to other commonly used latency-reverting drugs

such as vorinostat and bryostatin, the level of latency reversion

following simultaneous blockade of different ICs such as PD-1,

CTLA-4, TIGIT, and TIM-3 was much higher (78).
Preclinical studies

Studies in animal models of simian immunodeficiency virus

(SIV) infection have demonstrated that PD-1 or PD-L1 blockade

resulted in enhanced virus-specific CD8 T-cell effector functions

(79, 80) and reduced viral load (79). In ART-treated SIV-infection,

the PD-1 blockade resulted in a reduction of replication-competent

virus reservoirs as well as increased expansion of CXCR5-

expressing and granzyme-B-producing CD8 T cells. It also offered

better control of SIV-viremia following ART interruption (81). Very

recently, it has been reported that in vivo PD-1 blockade after ART

interruption in SIV-infected macaques was able to: a) enhance SIV-

specific CD8 T-cell functions; b) induce an expansion of memory

CD4 and CD8 T cells and cytolytic NK cells; and c) control viremia

after interruption of ART (82). Combinatorial approaches including

blockade of PD-1 and LAG-3 (7) or PD-1 and TIM-3 (83) in mice

have shown that these dual blockades were able to reinvigorate CD8

T-cell responses. Importantly, in ART-treated SIV-infection the

dual CTLA-4/PD-1 blockade was able to reduce the SIV reservoir

size (84). This result is in accordance with another study in which

blockade of CTLA-4 led to increased viral replication at mucosal

sites of SIV-infected macaques (85).

Overall, the above-mentioned studies provide evidence that the

blockade of some ICs, such as anti-PD-1 and/or CTLA-4 could have

the potential to reverse T-cell exhaustion by improving HIV-

specific immune functionality and to revert HIV-latency in

PLWH (Figure 1).

Table 1 summarizes the ex vivo and in vivo findings reported to

date focused on the role of immune checkpoint blockade in the

setting of HIV/SIV infections.
ICIs in PLWH with malignancies

The knowledge regarding ICI-based therapies could also be

applied to PLWH with cancer, with the benefit that several ICIs

have previously been established for cancer therapy with successful

outcomes. However, most clinical trials studying ICIs in cancer

patients have excluded patients with chronic infections such as HIV

based on the concern that this population lacks sufficient T-cell
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immunity to benefit from therapy, as well as the risk of potential

severe side effects associated with reestablishing HIV immunity

with this therapy. Fortunately, accumulated experience to date from

case series and clinical trials has shown that ICIs are safe in PLWH

and that the incidence of adverse effects (irAEs) is not higher than

in the general non-HIV-infected population, as discussed below.

Only some of these studies have reported some incidence of irAEs

in PLWH treated with ICIs, including hypothyroidism,

pneumonitis, rash, uveitis, and allergic lung disease (93–95).

Importantly, thyroiditis and autoimmune hepatitis were observed

in a trial with anti-PD1, leading to the early termination of the

trial (96).

Although the information about the benefits and safety of ICIs

in the treatment of malignancies in PLWH is still scarce, there are

some case series, retrospective cases, and cohort reports on PLWH

diagnosed with malignancies and treated with ICIs. Two recent

systematic reviews have summarized the case reports evaluating the

safety and efficacy of ICIs in PLWH, as well as the impact in HIV

progression markers in some of the studies (97, 98). Overall, the use

of ICIs in PLWH was safe, and rates of adverse events were between

9% to 12%. These percentages were similar to those observed in

cancer therapies in the HIV-negative population (97, 98). Regarding

efficacy of ICIs against cancer in PLWH, it was highly variable

depending on the tumor type, with response rates varying from 27%

to 63% (97). In addition, the effect of ICIs on HIV disease markers

was very modest, with 24% to 56% of patients showing increases in

CD4 cell count (97, 98). In addition, data on HIV reservoirs and

HIV-specific responses was available only in 7% (13/176) of PLWH

of which 23% (3/13) showed improvement of HIV-specific CD8 T-
Frontiers in Immunology 05
cell response, and 15% (2/13) showed a decrease of HIV

reservoir (98).

Interestingly, the most recent data from a retrospective study by

El Zarif et al. have provided insight on the safety of ICIs among 390

PLWH with cancer that were treated with anti-PD1 or anti-PD-L1.

This study demonstrated minimal ICI-related adverse events: 20%

of patients had irAEs of any grade, and only 8% of patients had high

grade irAEs. These data support that ICIs are safe to use in PLWH

and can therefore benefit from this treatment (99).

Among the different ICIs, the most investigated in the context

of PLWH with malignancies have been anti-PD-1 and anti-PD-L1.

Several studies, ranging from case reports to multicenter cohorts,

have demonstrated the safety of anti-PD-1 and anti-PD-L1 in

PLWH suffering from different cancers. Idossa et al. and Alloghbi

et al. reported three cases of PLWH on cART treated with anti-PD-

1 for metastatic prostate cancer (treatment with pembrolizumab for

two cases) and for advanced cutaneous squamous cell carcinoma

(treatment with cemiplimab for one case), respectively. All patients

responded to therapy and showed no major toxicities (100, 101).

Additionally, in two different case series studies of PLWH on

cART and treated for a variety of malignancies, an excellent

tolerability of anti-PD-1 and/or anti-PD-L1 therapy was observed,

and all patients showed stable CD4 T-cell counts and no

reactivation of HIV load during ICI therapy (93, 94). Similar

results, with no evidence of ICI-related serious irAEs or negative

effects on CD4 counts or viral load, were observed in two

multicenter studies enrolling 20 and 30 PLWH on cART,

respectively, one using anti-PD-1 (95) and the other anti-PD-L1

(102). Furthermore, a study by Galanina et al. showed an increase of
A

B

FIGURE 1

Potential role of immune checkpoint inhibitors (ICIs) to revert T-cell exhaustion (A) and to revert HIV latency (B) in PLWH. Some ICIs widely used in
cancer therapies are being evaluated for restorating T-cell functions as well as reverting HIV-latency in PLWH.
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CD4 T-cell counts in nine PLWH on cART who received anti-PD-1

for treating Kaposi sarcoma (103).

In addition, some of the case reports published to date have

provided evidence that PLWH on cART who have received ICIs

such as anti-CTLA-4 (91) or anti-PD-1 (39) for treatment of

melanoma can display an increase in HIV transcription

(measured by HIV-RNA in CD4 T cells), suggesting an in vivo

effect of these therapies in the reversion of virus latency. Moreover,

two different studies in PLWH on cART treated with anti-PD-1 for

lung cancer showed not only a decrease in HIV reservoir size but

also a decrease of CD4 and CD8 T-cell exhaustion with an increase

in HIV-specific CD8 T-cell response (86, 87). Another case report

in PLWH on cART with melanoma showed enhancement of HIV-

specific CD8 T-cell response after treatment with the anti-PD-1

pembrolizumab (88). Interestingly, Lau et al. evaluated the impact

on HIV-specific response and changes in HIV reservoir in three

PLWH on cART after receiving repeated cycles of different ICIs

(anti-PD-1, anti-PD-L1, anti-CTLA-4, or a combination of some of

them) depending on their specific malignancy. These authors found

that all participants showed some degree of HIV-latency reversion

(evidenced by increased cell-associated unspliced HIV RNA).

However, a decrease in the HIV reservoir was observed in only

one patient, and an increase in virus-specific CD8 T-cell responses

in another (89). On the other hand, Baron et al. reported a limited

effect on the HIV reservoir using monotherapy with anti-PD-1 in

PLWH cART with cancer, with a concomitant increase in

expression of other ICs on T cells, suggesting the existence of

compensatory mechanisms limiting the efficacy of ICI

monotherapy (104). This suggests that combination therapy with

several ICIs may be a better strategy to pursue a cure for HIV.

It is important to note that, currently, there are only a few

clinical trials being carried out in PLWH with advanced-stage

cancer (Table 2). All of these studies are in their early phases: the

first is the AIDS Malignancy Consortium (AMC) 095 study, a phase

I trial (NCT02408861) evaluating the safety and optimal dose of

therapy with nivolumab (targeting PD-1) alone or in combination

with ipilimumab (targeting CTLA-4) in PLWH on cART with

advanced solid tumors. Interestingly, a substudy of this clinical

trial showed that combination therapy with anti-PD-1 and anti-

CTLA-4 in seven of the participants was able to revert HIV latency

and in two patients was able to decrease cells containing replication-

competent virus (as estimated by the quantitative viral outgrowth

assay (QVOA)). These findings suggest a synergistic effect of dual

therapy of ICIs on HIV latency reversion and support the

hypothesis that combination therapy with several ICIs could be

useful to significantly impact HIV reservoirs (92).

The second study, a phase I clinical trial (NCT02595866) from

the Cancer Immunotherapy Trials Network [(CITN)-12 trial] is still

recruiting PLWH on cART with relapsed malignant neoplasms to

evaluate the side effects of pembrolizumab. In a sub-study with 32

participants of this trial, Uldrick et al. reported that the PD-1

blockade slightly reverted HIV latency after the first cycle of anti-

PD-1 treatment (105). There are two other ongoing trials; one
TABLE 1 Summary of ex vivo and in vivo studies reporting immune
checkpoint blockade in the setting of HIV/SIV infections.

IC
molecule

Effect of ex
vivo blockade

Effect of in
vivo blockade

PD-1

- Reinvigorated CD4 T-
cells functionality and
enhanced NK functions
(72)
- Reduced HIV latent
infection (39, 77)

- Reduced viral reservoir and
increased expansion of CD8 T
cells expressing CXCR5 and
granzyme-B in SIV infection (81)
- Enhanced SIV-specific CD8 T-
cell responses and B-cell
responses as well as reduced viral
load and increased survival (79)
- Enhanced SIV-specific CD8 T-
cell responses as well as
proliferation of memory CD4
and CD8 T cells and cytolytic
NK cells (82)
- Reverted HIV-latency (39, 86,
87) as well as mildly increased
HIV-specific CD8 T-cell
responses (86)
- Increased virus-specific CD8 T-
cell response after PD-1 blockade
alone (88) or in combination
with anti- CTLA-4 (89)

PD-L1

- Increased the
proliferation of HIV-
specific CD8 T cells (71)
- Increased responsiveness
of HIV-specific Th1,
Th17, and Th22 (76)

- Increased SIV-specific CD8 and
CD4 T-cell responses (80)
- Increased of HIV specific CD8
T-cell responses (90)

CTLA-4

- Increased activity of NK
against HIV-infected CD4
T cells (73)
-

- Reverted HIV-latency (91)
- Reverted SIV-latency after dual
blockade of CTLA-4 and PD1
(84)
- Reverted HIV-latency after dual
blockade of PD-1 and CTLA-4
(89, 92) and also increased HIV-
specific CD8 T-cell response (89)

TIGIT

- Restored HIV-specific
CD8 T-cell response after
dual blockade of PD-1
and TIGIT (8)
- Reverted HIV-latency
with multiple blockade of
ICs: PD-1, CTLA-4,
TIGIT, and TIM-3 (78)

- Increased IL-2 production by T
cells in SIV infection after dual
blockade of TIGIT and PD-1 (8)

TIM-3

- Increased proliferation
of HIV-specific T-cell
responses (29)
- Increased HIV-specific
CD8 T-cell responses with
dual blockade of TIM-3
and PD-1 (83)

- Reinvigorated CD8 T-cell
responses in mice after dual
blockade of TIM-3 and PD-
1 (83)

LAG-3

- Increased frequency of
HIV-specific CD4 and
CD8 T cells after blockade
of LAG-3 and other
ICs (74)

- Reinvigorated CD8 T-cell
responses in mice after dual
blockade of LAG-3 and PD-1 (7)
PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1;
CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; TIGIT, T-cell immunoglobulin and
immunoreceptor tyrosine-based inhibitory motif domain; TIM-3, T-cell immunoglobulin and
mucin-domain containing-3; LAG3, lymphocyte activation gene-3.
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(NCT03354936) is aimed to evaluate the safety of nivolumab or

pembrolizumab (anti-PD-1) combined with ipilimumab (anti-

CTLA-4) in PLWH with cancer; the other trial (NCT03304093)

evaluates both the safety and efficacy of nivolumab in PLWH on

cART with non-small cell lung cancer (NSCLC).

Finally, there are other ongoing clinical trials that aim to

evaluate the side effects of combination therapy of ICIs with other

types of anti-cancer drugs in PLWH on cART. Among these trials

are: a) the phase I trial NCT04514484 assessing the side effects of

the combination of nivolumab with cabozantinib (a kinase

inhibitor) in PLWH with different types of malignancies; b) the

phase II trial NCT04929028 that studies the side effects of

nivolumab in combination with different chemotherapy drugs

(e.g., capecitabine and fluorouracil) in participants with ADIS-
Frontiers in Immunology 07
related anal carcinoma; c) the phase II trial NCT04499053 that

evaluates adverse events in PLWH with NSCLC after treatment

with durvalumab (anti-PD-L1) and platinium-based chemotherapy;

and d) the phase I trial NCT04902443 that investigates the safety

and tolerability of combined therapy of nivolumab plus

pomalidomide in PLWH with virus-associated malignancies.

Taken together, the data provided by the above mentioned

studies, while limited and variable, clearly advocates for the use of

ICI therapy in the PLWH population suffering from cancer.

Moreover, ICI therapy in PLWH could have an additional benefit

on HIV disease parameters, restoring virus-specific T-cell responses

and reactivating virus production from the reservoir, mimicking the

“shock and kill” concept proposed as one of the main strategies to

purge the viral reservoir and cure HIV infection.
TABLE 2 Summary of ongoing clinical trials on immune checkpoint therapies in PLWH with malignancies.

Targeting
IC

molecule

NCT
number

Outcome measures related with
HIV infection

Intervention/
Treatment

Study
type/
Phase

PD-1
CTLA-4

NCT02408861

In PLWH with advanced solid tumors:
• Maximum dose of nivolumab
• Immuno-virological evolution of HIV infection (HIV-RNA load, T-cell counts, and HIV
reactive cells)

Nivolumab
and ipilimumab

Interventional/
Phase I

PD-1 NCT02595866

In PLWH with refractory, relapsed, or disseminated malignant neoplasms:
• Frequency of AEs
• Frequency of irAEs
• Frequency of ART-related ECIs
• Proportion of patients who achieve complete or partial response
• Progression-free and overall survival

Pembrolizumab
Interventional/
Phase I

PD-1 NCT04929028

In PLWH with high risk and low risk HIV-associated anal cancer:
• Frequency of AEs
• Change in CD4 T-cell counts and HIV-load
• Changes in cART adherence

Nivolumab
combined with

chemotherapy and
radiotherapy

Interventional/
Phase II

PD-1
CTLA-4

NCT03354936

In PLWH with cancer (any):
• Frequency of clinical and biological AEs
• Overall response rate, progression free survival rate
• Immuno-virological evolution of HIV-infection (CD4 and CD8 T-cell counts, HIV-RNA
load, residual plasma HIV-RNA, HIV-specific T-cell responses, and inflammation/
activation/exhaustion markers)

Nivolumab,
pembrolizumab, and

ipilimumab
Observational

PD-1 NCT03304093

In PLWH with NSCLC:
• Disease control rate
• Progression free survival/overall survival
• Frequency of AEs
• Duration of response
• Immuno-virological evolution of HIV- infection (HIV-RNA load, HIV-DNA, residual
HIV replication, and T-cell activation/exhaustion markers)

Nivolumab
Interventional/
Phase II

PD-L1 NCT04499053

In PLWH with NSCLC:
• Frequency of AEs
• Radiological response
• Blood tumor mutational burden
• Immuno-virological evolution of HIV- infection (HIV-RNA load, cytokine profile, and
immune biomarkers)

Durvalumab
combined

with chemotherapy

Interventional/
Phase II

PD-1 NCT04514484

In PLWH with advanced solid tumors:
• Frequency of dose limiting toxicities
• Immuno-virological evolution of HIV- infection (HIV-RNA load, CD4 and CD8 T-cell
counts, activation and exhaustion markers)
• Changes in infiltrating immune cell markers and angiogenesis markers

Nivolumab
combined

with cabozantinib

Interventional/
Phase I
PLWH, people living with HIV; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; AEs, adverse
events; irAEs, immunological-related adverse events; ECI, events of clinical interest; NSCLC: non-small cells lung carcinoma; CSF, cerebrospinal fluid.
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ICIs in PLWH without malignancies

Regarding the novelty and interesting field of the use of ICIs for

HIV treatment in PLWH without cancer, the safety and/or efficacy

of ICIs has been evaluated in some clinical trials. Two of the trials

have already published results: a) the phase I trial (NCT02028403)

has demonstrated that PD-L1 blockade with the BMS-936559

molecule was well tolerated and induced an increase of HIV-

specific polyfunctional CD8 T-cell responses in PLWH on cART

(90); b) the phase I trial (NCT03407105) using the anti-CTLA-4

ipilimumab in PLWH with uncontrolled viremia did not observe

significant changes in CD4 T-cell counts and only a moderate

decrease of HIV-RNA load after ICI treatment (106); c) the phase I/

IIa double-blind placebo-controlled trial (NCT03787095) in PLWH

on cART evaluated the efficacy of cemiplimab (anti-PD-1) and the

functional profile of HIV Gag-specific CD8 T-cell responses.

However, this study was stopped because two out of four

participants showed irAEs at the lowest dose of cemiplimab (96).

Moreover, there are four ongoing clinical trials with anti-PD-1

in PLWH on cART without cancer (Table 3). The first trial

(NCT03239899) evaluates the safety and tolerability of

pembrolizumab in PLWH as well as its effect on viral load, CD4

T-cell counts, T-cell phenotype, HIV-specific T-cell responses, and

cytokine and antibody profile on cerebrospinal fluid (CSF). The

second trial (NCT03367754) is recruiting PLWH on cART with

poor CD4 recovery and will evaluate, as the primary outcome, the

safety of a single dose of pembrolizumab, and as the secondary

outcome the changes in PD-1 expression on T cells. The third, a

phase I/II trial (NCT05187429), is studying the safety of a single

dose of nivolumab as the primary outcome, as well as the effect on

PD-1 expression on T cells, HIV-specific T-cell responses, and viral

rebound after analytical treatment interruption (ATI) as the

secondary outcome in PLWH. Finally, the fourth trial

(NCT04223804) is a double-blind placebo-controlled phase I trial

that will test the pharmacokinetics and pharmacodynamics of

different doses of budigalimab (ABBV-181, anti-PD-1) in PLWH

on ART willing to undergo an ATI.
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Concluding remarks

There is compelling evidence regarding the role of ICs in the

attrition of HIV-specific T-cell responses, poor CD4 T-cell recovery,

and the viral persistence in PLWH despite cART. Over the past

years, there have been many interesting findings related to

understanding T-cell exhaustion and how to reinvigorate the

HIV-specific immune response by employing mAbs blocking ICs.

Without a doubt, persistent HIV latency remains the main obstacle

for achieving HIV remission, and different approaches targeting

this latency are under intensive investigation. Based on new data,

ICI-based therapies used for cancer could be considered not only

helpful to target cancer in PLWH but also beneficial to combat

immune exhaustion/dysfunction and HIV-latency in PLWH. This

approach could be especially attractive as adjuvant therapy in

combination with cART with the goal to attain better long-term

health outcomes in PLWH. The results provided by current studies

are still modest, and further investigation is warranted to accurately

measure the effectiveness of this approach in HIV functional cure or

remission. Nevertheless, results from ongoing clinical trials will

significantly contribute to clarifying the ability of ICI-based

therapies to restore HIV-specific immune response and revert

HIV latency.
Search strategy and selection criteria

Relevant scientific literature was surveyed to review evidence and

prepare the manuscript. We searched PubMed for English language

papers published until September 2023. Search terms included: “HIV

disease progression”; “HIV pathogenesis”; “immune exhaustion and

HIV”; “immune exhaustion and cancer”; “HIV cure”; “HIV and

inflammation”; “AIDS-defining cancers”; “non-AIDS-defining

cancers”; “ immune checkpoint molecules and HIV”; “ immune

checkpoint molecules and cancer”; “IC and HIV”; “IC and cancer”;

“immune checkpoint inhibitors and HIV”; “immune checkpoint

inhibitors and cancer”; “immune checkpoint blockers and HIV”;
TABLE 3 Summary of ongoing clinical trials on immune checkpoint therapies in PLWH without malignancies.

Targeting
IC molecule

NCT
number

Outcome Measures
Intervention/
Treatment

Study type/Phase

PD-1 NCT03239899
• Safety and tolerability of a single dose of pembrolizumab
• Changes in HIV-specific antibody responses in CSF
• Changes in cytokine profile of CSF

Pembrolizumab Interventional/Phase I

PD-1 NCT03367754
• Frequency of AEs
• Changes in magnitude of T-cell expression of PD-1

Pembrolizumab Interventional/Phase I

PD-1 NCT04223804
• Frequency of AEs grade 3 or higher and irAEs
• Safety, pharmacokinetics, and pharmacodynamics of multiple
doses of drug

Budigalimab Interventional/Phase I

PD-1 NCT05187429

• Frequency and severity of AEs
• PD-1 receptor occupancy in T cells from peripheral blood and
inguinal lymph node
• HIV-specific CD4 and CD8 T-cell responses
• Changes in HIV-RNA load during ATI

Nivolumab
Interventional/Phase I and
Phase II
PLWH, people living with HIV; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; AEs, adverse
events; irAEs, immunological-related adverse events; ATI, analytical treatment interruption; CSF, cerebrospinal fluid.
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“immune checkpoint blockers and cancer”; “ICIs and HIV”; “ICIs and

Cancer”; and “ICIs and HIV and cancer”. Two authors (JMB and CR)

screened abstracts for relevance and reviewed full-text articles deemed

relevant to the topics addressed in the manuscript. In addition, we

searched the database ClinicalTrials.gov for clinical registered trials

related to immune checkpoint inhibitors. Search terms included: “HIV

and ICIs”; “HIV and anti-PD1”; “HIV and anti-PD-L1”; “HIV and

anti-CTLA-4”; “HIV and anti-TIGIT”; “HIV and anti-Tim-3”; and

“HIV and anti-LAG-3”.
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