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Human leukocyte antigen (HLA) genes are associated with more diseases than

any other region of the genome. Highly polymorphic HLA genes produce

variable haplotypes that are specifically correlated with pathogenically different

autoimmunities. Despite differing etiologies, however, many autoimmune

disorders share the same risk-associated HLA haplotypes often resulting in

comorbidity. This shared risk remains an unanswered question in the field. Yet,

several groups have revealed links between gut microbial community

composition and autoimmune diseases. Autoimmunity is frequently associated

with dysbiosis, resulting in loss of barrier function and permeability of tight

junctions, which increases HLA class II expression levels and thus further

influences the composition of the gut microbiome. However, autoimmune-

risk-associated HLA haplotypes are connected to gut dysbiosis long before

autoimmunity even begins. This review evaluates current research on the HLA-

microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial

dysbiosis in the gut is an important determinant between autoimmune

comorbidities with systemic inflammation as a common denominator.
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GRAPHICAL ABSTRACT

Graphical representation of central hypothesis.
1 Introduction

The major histocompatibility complex (MHC) has long been

established as the human genetic region associated with the greatest

number of autoimmune diseases (1, 2). The MHC is broadly

categorized into three classes: class I, which encodes for HLA-A,

HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G genes; class II, the

focus of this review, which encodes for HLA-DR, HLA-DQ, and

HLA-DP genes; and class III, which includes components of the

complement system, immune regulators, and non-immune

associated genes (2–4). Classically, class I HLA are present on all

cells, while class II HLA are expressed on the surface of antigen

presenting cells (APC) like dendritic cells and macrophages. Class I

HLA-peptide combinations bind CD8+ T cell ab T cell receptors

(TCRs) for inspection of internally found antigens, like signals of

viral infection and cancer. Class II HLA present externally found

peptides to CD4+ T cell TCRs, such as bacteria and other foreign

pathogens. However, cross-class presentation has been observed to

bypass MHC restriction (4–6). The presentation of externally found

antigens to T cells instigates a cascade leading to destruction of the

perceived pathogen. HLA-peptide-TCR interaction specificity is

fundamental to an effective cell-mediated adaptive immune

response (7). The peptide repertoire available for presentation by

class II HLA largely depends on the structure of the binding pocket.

HLA DR and DQ loci are highly polymorphic and exhibit an

elevated amount of linkage disequilibrium. The combination of

these features contribute to creating distinctive and behaviorally
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differential HLA haplotypes (8). This review will cover

autoimmune-risk-associated class II HLA haplotypes DR4-DQ8,

DR3-DQ2, and DR1-DQ5. The most polymorphic regions of the

DR and DQ molecules are located within extracellular regions

making up the peptide-binding cleft, which cause structure-

altering changes at the amino acid level (9–12). These structural

variations alter peptide-binding and thus antigen-presenting

capabilities (7, 13, 14). The structural differences between

haplotype molecules result in unique sensitivities and can be the

determining factor for many autoimmune diseases, such as type 1

diabetes (T1D), celiac disease (CD), rheumatoid arthritis (RA), and

autoimmune thyroid disease (AITD), including Grave’s disease

(GD) and Hashimoto’s disease (HD) (9, 15–18).

Epidemiological data show an increase in the frequency of

autoimmune diseases over the past few decades that cannot be

explained by genetics alone (19–21). Many autoimmune disorders

share the same risk-associated HLA haplotypes often resulting in

comorbidity despite having differing etiologies (22–24). The

combination of high polymorphism and linkage disequilibrium

within the gene dense MHC region leads to difficulty in

determining the mechanism for the autoimmune associations

observed (1, 2). This gap is where the role of the gut microbiome

has become increasingly essential in defining the pathogenesis of

these autoimmune diseases (25–30). It has been theorized that the

dysbiosis seen in autoimmune diseases is associated with systemic

inflammation, resulting in loss of barrier function and permeability

of tight junctions, allowing for possible increased exposure of HLA
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proteins to bacterial antigens (31–33). HLA class II proteins are

expressed in the upper villi of small intestinal enterocytes at a steady

state in the presence of a healthy gut microbiome and are an integral

part of maintaining homeostasis; however, dysbiosis and

inflammation cause an increase in HLA class II expression in

small intestinal crypts and the colonic epithelium, which can in

turn influence the composition of the gut microbiome (32, 34–39).

Notably, the increase in HLA class II expression levels is active-

disease dependent; for example, celiac patients with exposure to

gliadin show HLA upregulation whereas celiac patients in remission

have HLA class II levels of controls (40). However, certain HLA

haplotypes, specifically the known risk HLA discussed here, are

associated with gut dysbiosis before autoimmunity occurs (36, 39,

41, 42). Such evidence suggests that certain HLA may be

predisposing an individual to systemic inflammation originating

from the gut microbiome by clearing beneficial microbes and

creating the potential for dysbiosis early in life. The tripartite

HLA-microbiome-autoimmunity link is not trivial. This review

summarizes current research on the impact class II HLA

haplotypes have on the microbiome and its correlation to

autoimmune disease onset. Our hypothesis is that bacterial

dysbiosis in the gut leads to systemic inflammation which leads

to autoimmunity (Graphical Abstract). The sources and types

of inflammation can vary, causing different autoimmune

disease outcomes.
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2 DR-DQ haplotype structure
and nomenclature

Class II HLA DR and DQ loci represent the greatest genetic

determinants of multiple autoimmune diseases. HLA-DR is a

heterodimer consisting of an a (DRA) and b (DRB) chain, each

of which have two extracellular domains, an intramembranous

domain, and a cytoplasmic tail (Figure 1). DRA has two potential

a polypeptide chains for the HLA-DR heterodimer, but the allelic

differences do not result in function-altering polymorphisms (43,

44). The HLA-DR b chain can be encoded by DRB1, DRB2

(pseudogene), DRB3, DRB4, and DRB5 genes (43). Many DRB1

allelic variations are associated with multiple autoimmune diseases

and are the basis for the HLA-DR naming system. For example,

HLA-DR4 is the name for the DRB1*04 allele group. HLA-DQ is

also a highly variable ab heterodimer forming a type 1 membrane

protein. DQA and DQB can both be encoded by two paralogs:

DQA1, DQA2, DQB1, DQB2, respectively. Both DQA1 and DQB1

are highly polymorphic resulting in hundreds of possible

combinations (43).

HLA DR4-DQ8 is the nomenclature used to represent that an

individual has the gene products of HLA DRA1-DRB1*04:01/02/04/

05/08 and DQA1*03:01-DQB1*03:02/04 (11). DR3-DQ2.5

represents gene products of DRB1*03:01/02/03/04-DQA1*05:01-

DQB1*02:01. DR1-DQ5 represents DRB1*01:01/02-DQA1*01:01-
FIGURE 1

Illustration of class II HLA protein structure with antigen in peptide binding pocket.
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DQB1*05:01. DR5-DQ7.5 represents DRB1*05:01-DQA1*05:05-

DQB1*03:01. For clarification, the HLA naming system (e.g.,

DRB1*04:01) is the gene locus name (e.g., DRB1), followed by an

asterisk, the serologic designation of the allelic group (e.g., 04), a

colon, and then the numeric designation of the specific HLA protein

(e.g., 01). The naming system can be further expanded to a six-digit

identifier that includes another colon followed by a two-digit

number that represents a synonymous DNA substitution in the

coding region (e.g., DRB1*04:01:01). For this review, the four-digit

naming system will be sufficient.

Because DQA1 and DQB1 can both have polymorphisms,

unique DQ heterodimers can be formed by pairing a and b
chains from the same chromosome (cis) or opposite chromosomes

(trans). While the cis form of DQ has been studied predominantly,

trans variants are functional and surface expressed (45). This trans

molecular formation means that a person heterozygous for DR4-

DQ8 and DR3-DQ2.5 can produce a DQ2.3 (DQA1*03:01-

DQB1*02:01) molecules from the a chain of DQ8 and the b chain

of DQ2.5 (46). For this review, all DQ can be assumed to be cis

unless specifically reported as trans.
3 Class II HLA
autoimmunity association

3.1 Type 1 diabetes

Type 1 diabetes (T1D) is characterized by autoimmune

destruction of pancreatic b-cells, resulting in a lifelong exogenous

insulin dependency that affects millions of people worldwide (47).

While there are over 50 known regions of the genome to show

association with genetic risk for T1D, the greatest genetic

determinants are MHC class II DRB1, DQA1, and DQB1 (48).

The haplotypes most strongly associated with T1D susceptibility in

those with European ancestry are DRB1*04:01-DQA1*03:01-

DQB*03:02, DRB1*04:05-DQA1*03:01-DQB1*03:02, and

DRB1*04:02-DQA1*03:01-DQB1*03:02, and then DRB1*04:04-

DQA1*03:01-DQB1*03:02 conferring weaker disease susceptibility

(9, 49). These well-known associations have predominantly been

studied in European-centric populations and they may not be

translatable to other ethnic backgrounds. For example in the

Japanese population DR4-DQ8 is not prevalent; DRB1*04:05-

DQA1*03:03-DQB1*04:01 (DR4-DQ4) and DRB1*09:01-

DQA1*03:02-DQB1*03:03 (DR9-DQ9) are the most susceptible

haplotypes for T1D (50). Three haplotypes, DR4-DQ8, DR3-

DQ2.5, and DR4-DQ4, which combine the risk haplotypes for

Caucasian and Japanese populations are the most highly

associated with T1D in the Taiwanese population (51). For the

Caucasian population, the development of diabetes-associated

autoantibodies and T1D is significantly more common in

children with heterozygous HLA DR3-DQ2/DR4-DQ8 compared

to homozygous DR4-DQ8/DR4-DQ8 and DR3-DQ2.5/DR3-DQ2.5

(11, 12, 52). In Finland, children with high-risk HLA DR3-DQ2/

DR4-DQ8 genotypes have a 45-fold increased risk for T1D

compared to those with neutral or protective genotypes (17). The

age of T1D diagnosis and type of autoantibody first observed are
Frontiers in Immunology 04
also strongly associated with HLA genotypes (53, 54). Insulin

autoantibodies (IAA) and insulinoma-associated-2 autoantibodies

(IA2A) are strongly correlated with DR4-DQ8 (12, 55).

Approximately 1 in 20 heterozygous for DR3-DQ2/DR4-DQ8 will

be diagnosed with T1D by the age of 15 (11). The proportion of

HLA DR3-DQ2/DR4-DQ8 heterozygous T1D subjects decreases

with increasing age at diagnosis (12). Seroconversion and

development of T1D is associated with specific residues at both

the DR and the DQ loci, the motif lysine, alanine, glycine at DRB1

b71, b74, b86 residues, which corresponds with DRB1*04:01, and

glutamine, alanine, and aspartic acid at DQ a44, b57, and b135
residues, respectively, which correspond to DQA1*03:01-

DQB1*03:02 (56, 57). An alanine at DQ b57 is most strongly

associated with T1D (58).

In addition to DR4-DQ8, among the highest risk HLA

haplotypes for T1D is DRB1*0301-DQA1*05:01-DQB1*02:01

(DR3-DQ2.5) (9). For the Caucasian population, the development

of diabetes-associated autoantibodies is significantly associated with

both the homozygous DR3-DQ2.5 and heterozygous DR3-DQ2.5/

DR4-DQ8 (11, 12, 52). As previously discussed, the age of T1D

diagnosis and type of autoantibody first observed are also strongly

associated HLA haplotype; autoantibodies, IAA and IA2A, are

associated with DR4-DQ8 and early seroconversion, but glutamic

acid decarboxylase autoantibodies (GADA) are found in individuals

have later seroconversion and are strongly associated with DR3-

DQ2.5 (12, 52–55). Recent evidence suggests that GAD peptides

bind to DR3-DQ2.5 molecules and in turn induce CD4+ T cell

cytokine expression (59). In addition to the cis DR3-DQ2.5/DR4-

DQ8 heterodimer, the heterozygote DR3-DQ2.5/DR4-DQ8 in trans

heterodimer form encoded by DQA1*05:01-DQB1*03:02 is also

very high risk for T1D (9). At a young age the risk for T1D is

highest with heterozygous HLA-DR3-DQ2.5/DR4-DQ8,

approximately 1 in 20 with this HLA haplotype pairing will be

diagnosed with T1D by the age of 15 (11). The strongest amino acid

association with T1D onset is an alanine at residue DQ b57, which
is seen in both DQ2 and DQ8 (58, 60).
3.2 Celiac disease

Celiac disease (CD) is autoimmune enteropathy characterized

by the immunogenicity of gliadin peptides derived from dietary

gluten. The chief HLA determinant of CD development is HLA-DQ

(61). While HLA-DQ2.5 discussed in the next section has the

highest risk association, DQ8 specifically, DQA1*03:01-

DQB1*03:02, represents about 2–10% of the Caucasian CD

population (62). The determining factor for HLA-associated CD

susceptibility is the preferential binding of negatively charged

gliadin-derived glutamate residues to certain binding pockets of

DQmolecules, specifically P1 and P9 for DQ8 and P4, P6 and P7 for

DQ2.5 and DQ2.2 (61, 63).

Globally, CD seroprevalence is 1.4% and 1.8% in North

America. However, a study recently found that the highest

prevalence is 3.1% within those from northwest India (64, 65).

Within the Caucasian population, DQ2.5 is the predominant HLA

predictor of CD susceptibility, approximately 95% of those with CD
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are positive for DQA1*05:01-DQB1*02:01 (DQ2.5); the remaining

CD population has either DQA1*03:01-DQB1*03:02 (DQ8) or

DQA1*02:01-DQB1*02:02 (DQ2.2) (66). DQ2.5 also has the

strongest risk association with CD within the Indian population

(67). DQ2.5 was the greatest CD-associated HLA in Moroccan,

Libyan, Greek, and Italian CD populations; however, approximately

73.9%, 80.7%, 81.3%, and 78.2% of the populations, respectively,

were DQ2.5 positive (68). The determining factor for HLA-

associated CD susceptibility is the preferential binding of

negatively charged gliadin-derived glutamate residues to certain

binding pockets of DQ molecules, specifically P4, P6 and P7 for

DQ2.5 and DQ2.2 (63). While DQ2.5 is the predominant isoform

seen in association with CD susceptibility and the majority of the

remaining CD population carry DQ8, DQA1*02:01-DQB1*02:02

(DQ2.2), linked to DRB1*07:01 (DR7), represents about 3.4% of the

CD population (69). Generally, DQ2.2 is associated with very low

CD risk; however, when heterozygous with DQ2.5 or trans

configuration creates DQ2.5, a high risk association is observed

(69, 70). Risk for CD is associated with DQ2.2 predominantly when

individuals also carry DR3-DQ2.5 or DR5-DQ7.5 because the

DQA1*05:05 of DQ7.5 is nearly identical to the DQA1*05:01 of

DQ2.5 which means the DQB1*02:02 of DQ2.2 and DQA1*05:05 of

DQ7.5 can make a DQA1*05:05-DQB1*02:02 (DQ2.5)

heterodimer (70).
3.3 Autoimmune thyroid diseases

Autoimmune thyroid diseases (AITD) include both Graves’ disease

(GD), which is an autoimmune hyperthyroidism, and Hashimoto’s

disease (HD), which is an autoimmune hypothyroidism. HD is

characterized by positive autoantibodies to thyroglobulin and thyroid

peroxidase, whereas GD is characterized by autoantibodies against the

thyroid stimulating hormone receptor, thyroglobulin, and thyroid

peroxidase (71). The chief genetic determinant of GD susceptibility is

DRB1*03:04-DQA1*05:01-DQB1*02:01 (DR3-DQ2.5); however, the

DQB1*02:01 locus appears to be associated through linkage

disequilibrium as opposed to actual influence on susceptibility (18,

72, 73). The strongest amino acid association with GD is an arginine at

residue DR b74, which is integral to the binding and presentation of

thyroglobulin (18, 72, 74). The positive charge provided by arginine in

this positive likely facilitates auto-antigen presentation (75). Though

less convincingly, DR3 is also associated risk of HD susceptibility and,

in those with HD and T1D, DR3 is responsible for joint susceptibility

(18, 75).
3.4 Autoimmune arthritis

The association of DRB1*04 and genetic predisposition for

rheumatoid arthritis (RA) has been observed since the late 1980s

(76, 77). RA is the autoimmune destruction of the synovium in the

small joints characterized by the presence of autoantibodies:

rheumatoid factor, anti-cyclic citrullinated peptide-2, and anti-
Frontiers in Immunology 05
carbamylated protein (78, 79). Within the Caucasian population

of RA patients, significant associations are seen with DRB1*04:01,

DRB1*04:04, DRB1*04:05 and 95% of those with severe arthritis

expressed DRB1*04:01 (80, 81). Those homozygous for DR4 have

the highest risk association for RA (82). While allotypes of DR4 are

high risk for RA, DRB1*04:02 is not associated with the disease (80).

The determining factor for HLA-associated RA susceptibility is a

positive charge at the DRb71 amino acid residue—DRB1*04:01 and

DRB1*04:04 have a positively charged lysine or arginine,

respectively, at this position whereas DRB1*04:02 has a negatively

charged glutamic acid (80). It is important to note that while certain

DR4 alleles have long been observed in Caucasian RA studies, there

is no statistical significance in the prevalence of DR4 in RA patients

versus controls within the Iranian population and no association

between RA-associated autoantibodies and risk HLA in the

Japanese population (79, 83).

For RA patients who lack DR4, DRB1*01:01/02 (DR1) is

notably associated with RA susceptibility (77). Like DRB1*04:01/

04, DRB1*0101 carries a positively charged arginine at the DRb71
amino acid residue, which is a determining factor for HLA-

associated RA susceptibility (80). A small study shows that the

majority multi-drug resistant RA patients have DRB1*01:01/02

(84). HLA-DRB1*04:01, DRB1*04:05, and DRB1*01:01 share a

common motif at residues b11, b13, b71, and b74, specifically an

alanine at position 74 and a positively charged lysine or arginine at

position 71, influencing the DRB1 P4 binding pocket (85). Also,

homozygote DR1-DQ5 is also strongly associated with juvenile

idiopathic arthritis (JIA) with an odds ratio of 3.6, which increases

to 6.4 when individual was breastfed for fewer than 8 months (86).

JIA was also associated with DR5-DQ7 in individuals who breastfed

under 8 months (86).
4 Autoimmune comorbidity

Despite differing etiologies, as discussed, many autoimmune

disorders share the same risk-associated HLA haplotypes often

resulting in comorbidity. Individuals with T1D are 4.9 times

more likely to have RA as adults than the general population

(87). A 2011 study suggests that 12.3% of the T1D population

assessed have AITD and 24.6% have CD (88). However, that

number was an overestimation. A 2023 study found that while

18.6% of the T1D population tests positive for CD, 12.6% were

serologically false positive and only 6% are actually confirmed CD

patients (89), which is in agreement with prevalence found in many

other studies (90). Globally, biopsy-confirmed CD prevalence is

0.7%; however, biopsy-confirmed CD prevalence is 1.6% in the

general AITD population and 2.6% in the hyperthyroid community

(64, 91). For those with CD, 26% of the population have AITD

compared to 2–5% of the general population; individuals with CD

are 2.4 times more likely to develop an AITD and 5.9 times more

likely if they are female (92, 93). The odds of having RA is also

higher in CD, occurring nearly 2 times as often compared to the

general population (94).
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5 Evidence for autoimmunity-
associated dysbiosis

5.1 Type 1 diabetes

While T1D is caused by autoreactive T cells, a link between T1D

and notable microbial patterns and intestinal inflammation is

evident (36, 95, 96). The microbiome of T1D children lack

diversity and have higher levels of butyrate-producing and

mucin-degrading bacteria than healthy children (38, 97).

Microbiome differences of those with future T1D diagnosis can

be seen as early as one year of age (42). Research from the Finnish

Type 1 Diabetes Prediction and Prevention Study (DIPP), a

prospective, general-population cohort, shows high abundance of

Bacteroides dorei and Bacteroides vulgatus between 12 and 15

months before seroconversion (37). Active T1D cases are

associated with higher relative abundance of Ruminococcus and

Prevotella copri and lower relative abundance of Bifidobacterium,

Lactobacillus, Roseburia, and Faecalibacterium (Table 1) (98–100).

The microbial composition observed in T1D patients likely leads to

intestinal permeability, causing intestinal inflammation (101).

Intestinal permeability results in increased exposure of intestinal

immune cells to bacteria antigens. Intestinal biopsies from T1D

children showed an increase in class II HLA molecule expression,

and high levels of CD25+ cells (102). Increased exposure to

commensal bacteria and excessive immune response over time

could result in aberrant self-tolerance mechanisms. T1D patients

exhibit immune dysregulation with higher percentages of Th1,

Th17, and TNFa+ T cells (103).
5.2 Celiac disease

CD has obvious connections to gastrointestinal distress, gliadin

peptides induce upregulation of zonulin and the shielding of gliadin

peptides from destruction by lysosomes increases peptide secretion

into the intestinal lamina propria, perpetuating inflammation and

intestinal permeability (29, 63). Studies focusing on fecal microbiota
Frontiers in Immunology 06
show lower abundance of Bifidobacterium and Lactobacillus species

in CD patients than healthy controls, both of which are considered

to have anti-inflammatory effects (29, 104–106). Research from the

Celiac Disease Genomic Environmental Microbiome and

Metabolomic (CDGEMM) study, a prospective cohort of healthy

infants with a first-degree relative who has CD, shows microbiome

composition patterns up to 15 months before disease onset—

increased abundance of Dialister invisus, Parabacteroides sp.,

Porphyromonas sp., Ruminococus bicirculans, Lachnospiraceae

and decreased abundance of Streptococcus thermophilus,

Faecalibacterium prausnitzii, and Clostridium clostridioforme

(107). Microbiome differences between those with a future

diagnosis of CD and healthy matched controls can be seen as

early as one year of age (41). Children progressed to CD diagnosis

not only have a distinct microbiome composition compared to

healthy controls but also have an increased IgA response, resulting

in more IgA-coated bacteria, suggesting altered bacterial clearance

(108). A recent study shows that changes in the gut microbiome,

specifically abundance of Veillonellaceae, may have causal effects on

CD development, while Pasteurellaceae abundance differences may

be caused by the disease itself (109). Since CD occurs in the small

intestine, intestinal location specific studies reveal the importance of

location in microbial composition—higher abundance of

Escherichia coli, Prevotella salivae, and Neisseria are associated

with CD when sampling the duodenum (110).
5.3 Autoimmune thyroid disease

The gut-thyroid axis is a relatively new discussion point in study of

autoimmune thyroid disease (AITD). Evidence that suggests dysbiosis

is seen across AITD patients and the disruption of the gut microbial

composition affects thyroid hormone metabolism (111, 112). Serum

lipopolysaccharide and zonulin are significantly higher in GD patients

than healthy controls and fecal transplant from GD patients into a

mouse model significantly increases the incidence of GD (113, 114).

However, specific microbiome community dynamics and potential for

microbial biomarkers remains conflicted. The ratio of Firmicutes to
frontiersin.org
TABLE 1 Autoimmune disease association with HLA genetics, bacteria, and each other.

Disease Genetic Risk (HLA) Comorbidity Positive Association with Disease
Negative Association with
Disease

Autoimmune
Arthritis

DR4-DQ8
DR1-DQ5
DR5-DQ7 (JIA specific)

T1D, CD Collinsella, Eggerthella, Faecalibacterium,
Prevotella copri

Bifidobacterium, Bacteroides

Autoimmune
Thyroid Disease

DR3-DQ2.5 CD, T1D Lactobacillus, Bacteroides fragilis Lactobacillus, Bacteroides fragilis

Celiac Disease DR3-DQ2.5
DR4-DQ8
DR7-DQ2.2 (with DR3-
DQ2.5 or DR5-DQ7)

AITD, RA, T1D Dialister invisus,
Parabacteroides sp.,
Porphyromonas sp.,
Ruminococus bicirculans, Lachnospiraceae,
Veillonellaceae, Pasteurellaceae

Bifidobacterium, Lactobacillus

Type 1 Diabetes DR4-DQ8
DR3-DQ2.5

RA, AITD, CD Ruminococcus, Prevotella copri,
Bacteroides dorei,
Bacteroides vulgatus

Bifidobacterium, Lactobacillus,
Roseburia, Faecalibacterium
AITD, Autoimmune thyroid disease; CD, Celiac disease; JIA, Juvenile idiopathic arthritis; RA, Rheumatoid arthritis; T1D, Type 1 diabetes.
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Bacteroidetes is seen elevated in one study but significantly decreased

in the AITD patients of a different study (115). Specifically, Bacteroides

fragilis is observed as both higher and lower in abundance in AITD

patients compared to healthy controls depending on the study

(Table 1) (113, 115). Lactobacillus is proposed as both a potential

probiotic for AITD amelioration and a potential major player in AITD

pathogenesis (115, 116). Larger and more extensive microbiome

studies may be required if a potential microbial biomarker for the

gut-thyroid axis is determined.
5.4 Autoimmune arthritis

Despite emphasis on joint inflammation, the majority of RA

patients also exhibit gastrointestinal disorders and significant gut

microbiome differences are observed in RA patients versus controls

(Table 1) (117–119). Patients with RA have a decreased microbial

diversity and distinct microbial patterns (120). Collinsella,

Eggerthella, and Faecalibacterium segregate with RA in random

forest modeling (121) Collinsella and Eggerthella correlate with

increased intestinal permeability, mucosal inflammation, and

immune response, and Collinsella is confirmed to correlate with

increased proinflammatory cytokine IL-17A, gut permeability, and

RA disease severity (119, 121). Specifically, Prevotella copri is more

abundant in new-onset RA patients, while Bacteroides and

Bifidobacterium are decreased in the same population (120).

Prevotella is also substantially more prevalent in children with a

future diagnosis of JIA, while Bifidobacterium and Bacteroides

species are reduced in the same cohort (86). A recent study in

mice and colonic tissue shows increased intestinal permeability and

zonulin-1 expression upon exposure to fecal bacteria from pre-RA

human individuals (122). A recent small human RA study following

bowel cleansing and fasting found a link between intestinal

microbes and inflammation specific to RA, suggesting dysbiosis as

a primary player in disease activity (123).
6 Evidence for HLA-
associated dysbiosis

The fundamental role of class II HLA is to bind to foreign

peptides and present them on the plasma membrane for recognition

by CD4+ T helper cells. Within the gut, this antigen presentation

leads to B cell production of secretory IgA. IgA mediates microbial

composition by inhibiting bacterial adhesion to epithelial cells,

regulating bacterial epitope expression, and facilitating the

elimination of bacteria from the gut via peristaltic and

mucociliary actions (124, 125). Structural variety associated with

HLA allelic polymorphisms alters microbiome composition by

linking MHC-peptide binding affinity differences to which

bacteria get eliminated by IgA (36, 126, 127). With regard to gut

microbiome composition, HLA polymorphisms significantly alter

biases in antibody-mediated selection against microbiota and in

turn correlate to unique microbial communities (14). Evidence

shows that populations with functionally similar HLA also feature

similar microbial patterns (128). Many studies group HLA
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haplotypes by autoimmune risk group. Therefore, most analysis

available look at both DR3-DQ2 and DR4-DQ8 as either pooled

homozygotes and/or heterozygotes. Future research could benefit

from analyzing risk haplotypes against each other to verify their

similarities and differences in influence over the microbiome.

Compared to low-risk or neutral haplotypes, high-risk HLA DR3-

DQ2 and DR4-DQ8 are associated with higher abundance of

Prevotella copri at the species level, Agathobacter, Bacteroides,

Blautia, Dorea, Enterococcus, Intestinimonas, Klebsiella,

Veillonella at the genus level, and Enterobacteriaceae, which

includes Klebsiella, Lachnospiraceae, which includes Agathobacter,

Blautia, and Dorea, and Ruminococcaceae, which includes

Intestinimonas, at the family level (36, 129–132). Bifidobacterium

and Lactobacillus stand out as either negatively associated or in

lower abundance in DR3-DQ2 and DR4-DQ8 compared to

protective or neutral alleles (36, 39, 133, 134). Of note, the large

general population cohort, All Babies in Southeat Sweden (ABIS),

found that when controlling for breastfeeding, DR5-DQ7 is a

significant factor in an infant’s likelihood to be colonized by

Lactobacillus at all (135). This correlation may be associated with

DQ7.5 trans configuration with DQ2.2 to create DQ2.5, the primary

risk allele for CD. Aside from the association of increased relative

abundance of Bifidobacterium in homozygous the DR1-DQ5

population (39), there has been limited examination into the role

of DR1-DQ5 in microbiome community constructs to date.
7 Discussion

Many autoimmune disorders share the same risk-associated HLA

haplotypes often resulting in comorbidity despite differing etiologies

(22–24). The role of the gut microbiome has become increasingly

essential in defining the pathogenesis of these autoimmune diseases

(25–30). It has been theorized that dysbiosis seen in autoimmune

diseases is associated with systemic inflammation, resulting in loss of

barrier function and permeability of tight junctions, allowing for

possible increased exposure of HLA proteins to bacterial antigens

(31–33). HLA class II proteins are expressed in the upper villi of small

intestinal enterocytes at a steady state in the presence of a healthy gut

microbiome and are an integral part of maintaining homeostasis.

However, dysbiosis and inflammation cause an increase in HLA

class II expression in small intestinal crypts and the colonic

epithelium, which can in turn influence the composition of the gut

microbiome (32, 34–39). The fundamental role of class II HLA is to

bind to foreign peptides and present them on the plasma membrane

for recognition by CD4+ T helper cells. Within the gut, this antigen

presentation leads to B cell production of secretory IgA. IgA mediates

microbial composition by inhibiting bacterial adhesion to epithelial

cells, regulating bacterial epitope expression, and facilitating the

elimination of bacteria from the gut via peristaltic and mucociliary

actions (124, 125). Structural differences associated with HLA allelic

polymorphisms alter microbiome composition by linking HLA-

peptide binding affinity differences to which bacteria get eliminated

by IgA (36, 126, 127). The precedence for HLAmolecular “preference”

for specific peptides can be seen in celiac disease, where HLA DQ2 and

DQ8 affinity for negatively charged residues results in class II MHC
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molecules binding and presenting gliadin peptides, leading to

autoimmunity. However, certain HLA haplotypes, specifically the

known risk HLA alleles discussed here, are associated with

microbiome community dynamics that implicate dysbiosis before

autoimmunity occurs (36, 39, 41, 42). Such evidence suggests that

certain HLA may be predisposing an individual to systemic

inflammation originating from the gut microbiome by clearing

beneficial microbes and creating the potential for dysbiosis early in

life. Increased exposure to commensal bacteria and excessive immune

response over time could result in aberrant self-tolerance mechanisms.

Patterns emerge when investigating the overlap between HLA-

associated and autoimmune-associated microbiomes. These

relationships are unsurprising when considering the common risk-

associated HLA haplotypes by autoimmunities. For example,

Prevotella copri is more abundant in RA, JIA, and T1D patients

compared to controls and is also associated HLA DR3-DQ2 and

DR4-DQ8 (98, 99, 120, 131). This pattern makes sense when

considering that HLA DR4-DQ8 is a risk-associated genotype for

both RA and T1D. Higher abundances of inflammatory microbes,

like Klebsiella and Veillonella, are associated with autoimmunity and

risk; while conversely, lower abundances of known anti-

inflammatory microbes like Bifidobacterium and Lactobacillus are

associated with both autoimmune disorders and risk HLA (29, 104–

106, 135–137). Causal relationships between microbiome

composition and autoimmune onset are starting to be investigated.

A recent study shows that abundance of Veillonellaceae may have

causal effects on CD development (109). Prior to seroconversion,

significantly higher abundance of Bacteroides species are observed in

children with future T1D and JIA autoantibody seroconversion (37,

86). Both of these bacteria are associated with risk HLA (36, 138)

Microbiome community differences can be seen as early as one year

of age between those who go on to acquire an autoimmune disease

versus those who do not (37, 41, 42). It is possible that the common

denominator here is the introduction of early-life inflammation

caused by HLA-specific dysbiosis.

It is important to note that all these studies focus on fecal

microbiota, meaning the microbial composition is likely exclusively

colonic and does not represent the small intestines. The field would

benefit from microbial sampling from within a variety of locations

in the gut. Also, there is limited current research into the gut-

thyroid axis. Larger and more extensive microbiome studies may be

required if a potential microbial biomarker for the gut-thyroid axis

is to be determined. Many of the large cohort studies in this review

focus on high-genetic-risk communities. To truly determine the

impact of genetics on the gut, the field would benefit from general

population studies that can compare risk vs. non-risk groups.

To validate the hypothesis that gut dysbiosis leads to early-life

inflammation and elevate the link between gut microbiome

composition and autoimmune disease onset, we propose an organ-

on-a-chip model of human intestines. Within this model system, HLA-

specific intestinal cultures could be generated to establish phenotypic

differences between risk, neutral, and protection-associated tissue. To

investigate innate immune response, we suggest quantifying cytokine

secretion and examining zonulin, mucin, and permeability levels at

baseline and following co-culture with either specific microbes of
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interest or a bacterial community culture (139, 140). It would be of

interest to explore an adaptive immune response, as well. It is possible

to characterize HLA-specific T cell response to commensal gut bacterial

peptides through the presentation of secreted bacterial peptides to T

cell stimulation assays measured with flow cytometry and ELISpot

(141). An HLA-specific intestinal organ-on-a-chip model could also be

used to measure T cell response by co-culturing peripheral blood

mononuclear cells within the bottom chamber of the microfluidic chip

and assessing T cell stimulation from the peptides that make it through

the epithelial barrier in the microfluidic system.

The tripartite HLA-microbiome-autoimmunity link is not trivial.

Risk HLA may be predisposing an individual early in life to dysbiosis

originating in the clearance of beneficial microbes and/or promotion

of inflammatory microbes, creating the potential systemic

inflammation later in life. While it may be enticing to put

emphasis on the dysbiosis and inflammation seen after

autoimmune onset because of the clear evidence that autoimmune-

induced permeability of tight junctions allows for increased exposure

of HLA proteins to bacterial antigens, it is important to consider

genetics and the initial role haplotype-specific peptide binding

affinities may play in defining an individual’s microbiome.
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