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Killer instincts: natural killer
cells as multifactorial
cancer immunotherapy
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Hunter Cancer Research Institute, Halifax, NS, Canada, 3Department of Pathology, Dalhousie
University, Halifax, NS, Canada
Natural killer (NK) cells integrate heterogeneous signals for activation and

inhibition using germline-encoded receptors. These receptors are

stochastically co-expressed, and their concurrent engagement and signaling

can adjust the sensitivity of individual cells to putative targets. Against cancers,

which mutate and evolve under therapeutic and immunologic pressure, the

diversity for recognition provided by NK cells may be key to comprehensive

cancer control. NK cells are already being trialled as adoptive cell therapy and

targets for immunotherapeutic agents. However, strategies to leverage their

naturally occurring diversity and agility have not yet been developed. In this

review, we discuss the receptors and signaling pathways through which signals

for activation or inhibition are generated in NK cells, focusing on their roles in

cancer and potential as targets for immunotherapies. Finally, we consider the

impacts of receptor co-expression and the potential to engage multiple

pathways of NK cell reactivity to maximize the scope and strength of

antitumor activities.

KEYWORDS
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1 Natural killer cell biology

Natural killer (NK) cells are agile lymphocytes capable of immune polarization and

rapid responsiveness to eliminate virally infected or malignant cells. Though they were

initially described for their ability to discern “self” from “non-self” cells based on expression

of class I major histocompatibility molecules (MHC) (1), NK cells’ function and underlying

molecular toolkit is now understood to be much broader. Upon receiving signals from

healthy, stressed, infected, or transformed cells, and in response to environmental signals,

NK cells either perform cytotoxicity, stimulate subsequent immunity, regulate immunity,

or do nothing at all (2, 3). This “polyvalency” to integrate signals for activation and

inhibition creates a unique form of diversity in the immune system by using germline-
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encoded receptors, making NK cells attractive candidates for cell-

based cancer immunotherapies (4, 5).

NK cells differ from other group one innate lymphoid cells

(ILCs) by their relatively high expression of the transcription factor

eomesodermin (EOMES), and the ability to mediate direct cytolysis

of target cells via degranulation to release perforin and granzyme

(6). In contrast to other lymphocytes, NK cells do not express

antigen-specific clonotypic receptors (1, 7–10). Instead, NK cells use

a constellation of germline-encoded activating and inhibitory

receptors (Table 1). These receptors are differentially expressed,

co-expressed, and armed among the NK cells that comprise an

individual’s NK cell repertoire, and can range from relatively

immature and inexperienced to adaptive and highly functional

cells. This creates diversity to respond to the extensively variable

phenotypes created by transformation, infection, and disease (7, 10,

13). Indeed, though HLA loss eliminates a dominant inhibitory

signal to NK cells, other inhibitory mechanisms within the tumor

microenvironment can also interfere with NK cell inhibition; these

include metabolic dysregulation (14), inhibitory cytokine release

(15), regulatory immune populations (16), and even biophysical

properties of the cancer cells themselves (17).

Cells become targets for NK cell-mediated killing when they

acquire DNA mutations, express ligands associated with

uncontrolled proliferation, stress, transformation, or are bound by

antibodies (4, 18–23). Clinical presentation of a tumor often occurs

after transformed cells have evolved mechanisms to escape

immune-mediated recognition, and the patient’s NK cells and

other immune mechanisms no longer fully control tumor growth

(4, 24). Sustained expression of inhibitory checkpoints, shed ligands

which block activating receptors, and metabolic dysregulation can

impair NK cell-mediated recognition and elimination of tumors (4,

25). Concurrently, tumors can recruit other immune cells that

regulate and suppress anti-tumor immune responses, and

promote tumor invasion and growth (26) and/or establish

physical stromal barriers that can prevent cellular and drug

penetration into the tumor’s core (27–30).

NK cells are key effectors against hematologic malignancies, and

agents of antibody-dependent cellular cytotoxicity (ADCC) in

response to monoclonal antibody therapies (31–33). The presence

of NK cells in solid tumors is associated with improved overall

survival in a variety of cancers (4, 34, 35) and NK cells contribute to

the efficacy of cancer treatment, including an abscopal effect

following low-dose radiation, rescue of activity in the presence of

immune checkpoint blockade, or activation by chemotherapy (36,

37). Recognizing the anti-cancer potential of NK cells, current

clinical trials aim to deliberately support NK cell activation or

deliver NK cells expanded ex vivo as cellular immunotherapy,

including those that employ additional engineering to support

strong anti-cancer activity (5, 38–40). In each of these contexts,

inflammatory signals, or mechanisms to otherwise strengthen

activating signals received by NK cells may tip the balance toward

immune-mediated cancer control.

NK cell receptors meet target cell ligands in clusters at an

immunologic synapse, whose formation is catalyzed by adhesion

molecules (primarily ICAM and LFA-1) working in a coordinated
Frontiers in Immunology 02
TABLE 1 NK cell receptors, cognate ligands and their known signaling
domains/ proximal adapters.

Receptor Gene Ligand Signaling
domains &
proximal
adapters

Inhibitory KIR Conserved epitopes on
HLA I (“KIR ligands”)

ITIM, Src
phosphatases

KIR2DL1 KIR2DL1 HLA-C2 alleles
(Lys80)

KIR2DL2 KIR2DL2 HLA-C1 alleles
(Asp80)*; HLA-C2
alleles (Lys80)

KIR2DL3 KIR2DL3 HLA-C1 alleles
(Asp80)

KIR3DL1 KIR3DL1 HLA-B alleles
carrying the Bw4
motif*; HLA-A alleles
carrying the Bw4
motif

KIR3DL2 KIR3DL2 HLA-A*03, HLA-
A*11 carrying specific
peptides

KIR2DL4 KIR2DL4 HLA-G

KIR2DL5 CD155

Activating KIR HLA-C2, HLA-C1,
HLA-F, certain
configurations of
HLA-peptide
combinations

ITAM, SFK

KIR2DS1 KIR2DS1 HLA-C2 alleles
(Lys80) carrying
specific peptides

KIR2DS2 KIR2DS2 HLA-C1 (Asp80)
HLA-A*11

KIR2DS3 KIR2DS3 Unknown

KIR3DS1 HLA-F

KIR2DS5 Unknown

Other receptors binding HLA and HLA-like molecules

ILT2, ILT4
(LILRB1,
LILRB2, LIR-1,
LIR-2)

LILR# HLA-G ITIM

NKG2A/CD94 KLRC1 HLA-E ITIM

NKG2C/CD94 KLRC2 HLA-E ITAM, DAP12

NKG2D KLRK1 ULBP1-6, MIC-A,
MIC-B

YINM, DAP10

Death Receptors (Ligands NK cells) (in target cell):
FADD, Caspase
8TRAIL-R1,

TRAIL-R2,
TRAIL-R3,
TRAIL-R4,
osteoprotegrin

TNFRSF10A,
TNFRSF10B,
TNFRSF10C,
TNFRSF10D,
TNFSFR11B

TRAIL

(Continued)
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effort alongside the reorganization of cytoskeletal components (41, 42).

Single receptor-ligand engagement is insufficient to activate the cell

and often, concurrent signals for activation and inhibition occur.

Synergy between multiple receptors is necessary for cross-

phosphorylation of membrane-proximal kinases to initiate a signal

cascade that can lead to NK cell activation and degranulation (43).

Inside the cell, phosphatases and kinases compete to respond to

incoming signals in a dynamic tug-of-war whose outcome can be

impacted by environmental features, immunogenetic variation and

concurrently-received signals (Figure 1) (44).

Recognizing the anti-cancer potential of NK cells, current

clinical trials aim to deliberately support NK cell activation or

deliver NK cells expanded ex vivo as cellular immunotherapy,

including those that employ additional engineering to support

strong anti-cancer activity (5, 38–40, 45, 46). With engineering,

local cytokine support, inflammatory signals, or mechanisms to

otherwise strengthen the activating signals received by NK cells may

tip the balance toward immune-mediated cancer control. In this

review, we discuss the receptor-ligand pairs that govern NK cell

interactions with transformed and cancerous cells, their pathways

for intracellular signaling, and how alone or in combination, they

present opportunities for cancer immunotherapy.
2 Receptor driven signaling in
natural killer cells

Most interactions between NK cells and neighbouring cells

result in non-activation or inhibition, as NK cells survey

neighboring, and not necessarily damaged, cells. Provision of

inhibitory signals prevents the NK cell exhaustion that might

otherwise result from persistent activation, and facilitates

maintenance of NK cell education (47). Inhibitory signals are

conveyed via engagement of classical and non-classical MHC I

molecules, and immune checkpoints (7, 48). Major MHC I-binding

receptors include members of the family of killer immunoglobulin-

like receptors (KIRs) and the natural killer group 2 (NKG2) family

member-A (NKG2A) (49, 50). Other inhibitory receptors may also

control NK cell activation, including classical immune checkpoint

receptors: TACTILE (CD96), PD-1, TIM-3, LAG-3 and TIGIT (51).

Many of these inhibitory receptors convey signaling via

immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which,

when phosphorylated, recruit phosphatases including the Src

homology-containing tyrosine phosphatases (SHP)-1, SHP-2, and

SH2 domain-containing inostitol-5-phosphatase (SHIP) (52–54).

These phosphatases compete directly with activating signals

received by Src-family kinases (SFKs), including Lck, Fyn and Syk

(55, 56).

SFKs are key mediators of NK cell activation, dephosphorylated

at rest and quickly phosphorylated upon receptor clustering to

activate signal intermediaries (57). A subset of KIRs, the Fc receptor

CD16a, and the natural cytotoxicity receptors (NCRs) convey

activating signals via immunoreceptor tyrosine activating motifs

(ITAMs), which activate SFKs, and other signaling intermediaries

including ZAP-70 and Vav-1, then phospholipase C, PI3K, Rho-
TABLE 1 Continued

Receptor Gene Ligand Signaling
domains &
proximal
adapters

Fas FasL

TNF superfamily members (TNFSF)

4-1BB (CD137) TNFRSF9 4-1BBL TRAF1/2 (11)

CD40 TNFRSF4 CD40L TRAF1-6 (12)

Natural Cytotoxicity Receptors (NCRs) ITAM, DAP12

NKp30 NCR3 B7-H6, BAT-3,
heparan sulfates

NKp44 NCR2 PDGF, heparan
sulfates, PCNA

NKp46 NCR1 viral hemagglutinins,
heparan sulfates,
vimentin, ecto-
calreticulin

SLAM family receptors ITSM, SAP,
EAT

SLAMF1
(SLAM, CD150,
IPO-3)

SLAMF1 SLAMF1

SLAMF2 (CD48,
BLAST-1)

CD48 SLAMF4
CD2

SLAMF3
(CD229, Ly9)

LY9 SLAMF3

SLAMF4
(CD244, 2B4,
ERT)

CD244 SLAMF2

SLAMF6 (NTB-
A, Ly108,
CD352)

SLAMF6 SLAMF6

SLAMF7
(CRACC,
CD319)

SLAMF7 SLAMF7

SLAMF8
(BLAME,
CD353)

SLAMF8 Unknown

Other receptors involved in NK cell activation and inhibition

CD16a FCGR3A antibodies bound to
target cells

FcϵRIg, DAP12,
and CD3z

DNAM-1 CD226 CD155 (PVR)*,
CD112

ITAM

TIGIT TIGIT CD155 (PVR)*,
CD112

ITIM

CD96
(TACTILE)

CD96 CD155 YXXM and
ITIM

TIM-3 HAVCR2 Gal-9, Ceacam-1,
HMGB1,
phosphatidylserine

Tyrosine
residues

LAG-3 LAG3 MHCII, LSECtin KIEELE

PD-1 PDCD1 PD-L1, PD-L2 ITIM
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family GTPases (58, 59). Additional activating receptors include the

NKG2 family members NKG2C and NKG2D, which signal via

DAP12 and DAP10, respectively, and therefore bypass the need for

SFKs, instead shunting directly to activating downstream mediators

including Vav-1, PI3K, Rho-family GTPases and phospholipase C

(60–63). Immunoglobulin tail tyrosine motifs (ITTs), used by

DNAM-1, are phosphorylated by SFKs and similarly drive

downstream activation (64, 65). Hence, although they are

initiated separately, multiple activating pathways converge on

SFKs, so their signaling can be additive.

Immunotyrosine-based switch motifs (ITSMs), encoded in

SLAM-family receptors and PD-1, combine the features of

ITAMs and ITIMs by associating with SH2 domain-containing

proteins, including SHP-1, SHP-2, and SHIP-1, (which convey

inhibitory signaling), and SLAM-associated protein (SAP) and

Ewing’s sarcoma-activated transcript 2 (EAT2), which support

activation (66). Activation signals proceed via SFKs. Inhibitory

SH2 domain-containing proteins prevent these signals in two

ways: directly, by occupying the docking site on the ITSM, and

indirectly, by the phosphatase activity of SHIP, SHP-1 and SHP-2

(66). In this way, one ITSM-containing receptor can switch between

signaling for inhibition or activation.
Frontiers in Immunology 04
The outcome of concurrent activating and inhibitory signals

result in adjustments to the levels of transcription factors, including

NF-kB, which mediate NK cell activation-related genes (67). These

genes regulate NK cell functions such as cytotoxicity, microtubule

organization and granule polarization (67). In some cases, NK cells

are induced to become “adaptive” or memory-like NK cells: a state

driven by epigenetic changes where NK cells are noted for their long

lifespans, ability to recall previous challenges, and rapid, potent

responses (68–70).

The redundancy of the intracellular signaling cascades

downstream of the major NK cell inhibitory and activating

receptors enables crosstalk and integration of signals. Hence, with

combined and simultaneous signalling from different receptors,

each NK cell can balance and calibrate an appropriate response.
2.1 Human leukocyte antigen class I:
a major ligand for NK cell receptors
and NK cell education

Human leukocyte antigens (HLA) are the most polymorphic

gene in the human genome, and expressed on all healthy nucleated
FIGURE 1

Intracellular signaling and integration downstream of the major NK cell receptors. Most NK cell receptors signal via transmembrane domains, including
immunotyrosine-based inhibitory motifs (ITIM), immunoreceptor tyrosine-based switch motifs (ITSM), tyrosine-based signaling motif (YINM),
immunotyrosine-based activation motifs (ITAM) and immunoglobulin tail tyrosine (ITT). (Left) Inhibitory signals received by NK cells are facilitated by the
recruitment and activation of inhibitory SHP-1, SHP-2, and SHIP through ITIM and ITSM. (Right) Activating receptor clustering at the immunologic
synapse facilitates the activation of intracellular domains by src-family kinases (src, lyn, fyn), or other kinases, including SAP and EAT2. Signals compete to
activate or inhibit downstream intermediaries that can lead to transcription factor-mediated cytotoxicity and cytokine production.
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cells at variable densities that reflect cellular health and HLA allelic

diversity (71, 72). HLA-A, HLA-B and HLA-C are together

classified as “conventional HLA I”, or class Ia molecules,

and represent the most polymorphic HLA I alleles (72).

Unconventional HLA I molecules, classified as class Ib, include

HLA-E, HLA-F, and HLA-G (71). These exhibit relatively low

polymorphism, and have important roles in tolerance, inhibition,

and pregnancy, with HLA-E remaining relatively conserved

between human and primates (72–76). Each HLA I, except for

HLA-F, is comprised of three alpha domains, and stabilized by b2
microglobulin and by peptides presented in the binding groove of

its variable domain (57). HLA-F is less understood, but can

associate with b2 microglobulin and exhibits at least two

configurations: closed, where it seems to not present peptides,

and open, where it presents uncommonly long peptides in an

open-ended binding groove (77).

HLA I is co-evolving with the killer immunoglobulin-like receptors

(KIR) and members of the NKG2 family (78). Their interactions can

signal for activation or inhibition, depending on the specific receptors

ligated, bound peptides, immunologic experience, and compound

allelic partnerships (3, 79) (Figure 2A, B). Groups of conventional

HLA I molecules display conserved public epitopes that enable

groupings of HLA I molecules as “KIR ligands”: HLA-C molecules

expressing Asp or Lys at position 80 define the HLA-C1 or C2

subgroups, respectively, and account for all HLA-C molecules (80,

81). A subset of HLA-A and B molecules each contain the HLA-Bw4

motif, and some specific alleles of HLA-A (HLA-A*03 and *11) can act
Frontiers in Immunology 05
as NK cell ligands, and the balance of HLA-A and -B alleles are not

known to engage with any KIR (79, 82, 83).

KIR molecules with long cytoplasmic tails signal for inhibition

via ITIMs encoded in their transmembrane regions. HLA-C1

engages KIR2DL3 and HLA-C2 engages KIR2DL1 (84).

KIR2DL2 preferentially binds with HLA-C1 molecules, but some

alleles also exhibit binding affinity with HLA-C2 (85, 86). HLAs

harbouring the Bw4 motif bind with KIR3DL1; the remainder of

HLA-B molecules and most of the HLA-A molecules are not known

to encode a ligand for KIR (87). KIR3DL2 binds to HLA-A*03 and

A*11 molecules, but only when they present certain peptides,

including exogenous CpG DNA and peptides derived from

Epstein-Barr virus (82, 83, 88). Inhibitory KIR2DL4 and

immunoglobulin-like transcript (ILT)-2 and -4 molecules on NK

cells bind HLA-G and signal via ITIM (89). HLA-G is an

unconventional HLA molecule whose expression is normally

limited to immune privileged sites including the cornea (90) and

placenta (91), but has also been found upregulated, and associated

with poorer prognosis in several cancers, including colorectal

cancer (92), pancreatic cancer (93), breast cancer (94), and

ovarian cancer (95). Soluble HLA-G has been found to dampen

NK cell function, including impairment of NK cell migration to

inflamed tissues (96).

KIR molecules with a short cytoplasmic tail recruit the ITAM-

containing molecule DAP12 to the immunologic synapse.

Activating KIR, including KIR2DS1, KIR2DS2, and KIR3DS1

are each known to bind with HLA I molecules, albeit with lower
FIGURE 2

NK cell receptors engaging HLA I and conveying activating or inhibitory signals. KIRs engage conserved epitopes on groups of HLA I molecules.
(A) KIR receptors with long (L) cytoplasmic tails generally convey signals for inhibition via an ITIM, except for KIR2DL4. (B) KIR receptors with short (S)
cytoplasmic tails and KIR2DL4 convey signals for activation by engaging DAP12, or FcϵRIg, respectively, which contain ITAMs. Beyond KIR, ILT-2 and
4, and NKG2A (heterodimerized with CD94) bind with MHC I and convey inhibitory signals via ITIMs. NKG2C (heterodimerized with CD94) and
NKG2D engage with HLA-E or HLA orthologs which include ULBPs, MIC-A and MIC-B. (C) Finally, NKG2C associates with DAP12 and NKG2D signals
via DAP10, a YNIM-containing receptor, each to signal for activation. Green, pink, and purple symbols indicate CAR-NK targets, mAb targets, and
small molecule targets, respectively.
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affinity than their inhibitory counterparts (97, 98). Additional

activating KIRs (KIR2DS3, KIR2DS5) also have ITAMs and may

contribute to activation and may bind with specific alleles (99),

though the impact of these ligands and their corresponding signals

have not been well established.

KIR2DS1 binds HLA-C2 (Lys80) and, at high levels, individuals

that are homozygous for HLA-C2 have KIR2DS1+ NK cells that are

hyporesponsive (97, 100, 101). This has implications in

hematopoietic cell transplantation, where HLA-matching is only

beneficial in the absence of homozygous HLA-C2 (102, 103).

Moreover, for the treatment of B-cell malignancies, addition of

rituximab to chemotherapy did not improve survival outcomes in

patients with KIR2DS1-HLA-C2/C2 (104), suggesting that KIR2DS1

and HLA-C status could be a predictive marker for efficacy of

rituximab due to the potential of hyporesponsive NK cells (104).

Although KIR are not known to recognize HLA-presented

peptides specifically, the biochemical features and structural/

allosteric variations that they introduce can influence receptor

binding and consequent signaling (57, 105). This is the case for

KIR2DS2, which binds conditionally to HLA-C1 and HLA-A*11

alleles, when they present viral peptides, including those derived

from viral helicases (3, 106), though their role in cancer is unclear.

Similarly, KIR3DS1 is activated specifically by the open (peptide

presenting) configuration of HLA-F (107).

The NKG2 family members engage with HLA-E, but in a

manner distinct from conventional KIR-HLA interactions (108).

NKG2A, an ITIM-containing receptor, and NKG2C, which

engages ITAM-containing DAP12 for signaling, both bind with

HLA-E and heterodimerize with CD94 (49, 50, 109–111). HLA-E

molecules present the leader peptides of conventional HLA

molecules but also present antigenic peptides, including

neoantigens, to both T and NK cells (105). In healthy tissues,

HLA-E expression is low (112), but high HLA-E expression is

linked to poor patient outcomes in several cancer types, including

gastric cancer (113, 114), colorectal cancer (113), pancreatic cancer

(93), breast cancer (94), renal cell carcinoma (115), ovarian cancer

(116), and glioma (111, 117), suggesting a dominant impact of NK

inhibition on limiting anti-cancer activity. Indeed, high expression

of NKG2A, both alone and with high HLA-E expression, is

associated with poorer patient survival in liver cancer (118).

Likewise, co-expression of the high-density HLA-E allele (HLA-

E*01:03) and NKG2A associates with Epstein-Barr virus-associated

lymphoma (119). Given the known impacts of HLA-E expression

on cancer development, it is likely that these are exacerbated by

NKG2A expression on NK cells in other cancer types, though this

remains to be studied extensively.

In addition to signaling during target cell engagement, KIR-

HLA and NKG2A:HLA-E interactions are central to a process

called NK cell “education”, “tuning” or “licensing” (120–122).

Each of KIR and NKG2A are expressed on only a subset of NK

cells, their HLA ligands may or may not be available in the host, and

the avidity of receptor-ligand binding is variable. Therefore, the

extent to which each NK cell can be inhibited by “self” HLA varies.

An individual’s NK cell repertoire therefore consists of both

educated and uneducated cells (85, 123). Resultantly, the reactive

thresholds of individual NK cells differ, and create a spectrum of
Frontiers in Immunology 06
responsiveness and anti-tumor effector function that varies within

and between individuals (3, 122, 124).

NK cells that are most sensitive to inhibition by “self” HLA I

exhibit a greater mobilization of activating receptors in the actin

meshwork (8), greater DNAM-1 expression (125), a greater density

of granzyme B (9) and lower levels of SHP-1 (53)– making them

more easily activated in the absence of strong inhibition. Sensitivity

to inhibition, however, is the Achille’s heel of educated NK cells in

cancer therapy because HLA I on tumors often persists, or becomes

upregulated in response to IFN-g (126). Strategic selection of KIR

and HLA allelic combinations and NK education status, or blocking

signals for inhibition, will therefore be critically important for the

success of NK cell-based immunotherapy (3, 124).

During cancer development, there is extensive pressure on HLA

expression driven by immune activity: T cell-mediated recognition

may select for clones lacking HLA expression, but this may create a

target for NK cells by interrupting signals for inhibition.

Downregulation of classical HLA I expression is reported for

several solid cancers, including melanoma, cervical, breast,

colorectal and lung cancers (127–130). HLA I loss may represent

partial or complete losses of HLA gene loci (129, 131), or

components of the HLA processing and presentation pathway

(127, 131). Frequently, loss of heterozygosity for the HLA-ABC

genes, and other genes involved in HLA I processing and

presentation, is observed following acquired resistance to immune

checkpoint inhibitors like anti-PD1/PD-L1 (127, 132, 133).

KIR is highly polymorphic; an individual’s KIR configuration

has been associated with both the risk of developing cancer and

their ability to respond to cancer therapies. KIR expression is not

known to change as a function of cancer, but the presence of self-

sensitive KIR can enable inhibition of otherwise-activated NK cells.

Beyond strategic donor selection to optimize KIR/HLA genotype

for potent NK cell alloreactivity, both KIR and NKG2A can be

directly targeted through monoclonal antibodies. Lirilumab, an

anti-KIR2DL1/2/3, has been tested in a phase I clinical trial

against multiple myeloma, and supports alloreactivity of NK cells

(134). Monalizumab (anti-NKG2A), in combination with

Cetuximab, has shown anti-tumor effects in a clinical trial of

patients with squamous cell carcinoma of head and neck with

high expression of HLA-E and NK cell infiltration. Taken together,

this implies the important role of selecting/regulating KIR/NKG2A

in cancer treatment.
2.2 NKG2D and stress ligands

Perhaps the best known member of the NKG2 family, NKG2D,

is unique in that it forms homodimers (135), and signals for

activation via DAP10 (62). Ligands for NKG2D are structural

homologs that co-evolved alongside HLA I molecules and include

MHC class I chain-related molecule A and B (MICA/B), and UL16

binding proteins 1,2,3,4,5 and 6 (ULBP1-6) (Figure 2C) (136, 137).

NKG2D ligands are typically expressed at low cell surface densities,

but their density on the cell surface increases in response to DNA

damage (138), oncogene activation (138), infection, excessive

proliferation, and oxidative stress, earning them the title of “stress
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ligands” (138). The NKG2D receptor itself is responsive to

cytokines associated with immune priming (ie. IL-2, IL-15),

which increase basal phosphorylation of DAP10, priming the cell

to deliver activating signals (139). Together, NKG2D and its ligands

generate a robust system to detect hallmark features of stressed cells.

Presented on a target cell, NKG2D ligands signal for NK cell

activation, and NKG2D is central in cancer immunosurveillance. In

mouse models, antibody-mediated neutralization of NKG2D

interrupted immunosurveillance that otherwise prevented

carcinogen-induced tumors (140). Likewise, elimination of

NKG2D using microRNA silencing rendered mice more

susceptible to cancer growth (140–142). In humans, histological

studies have confirmed high and co-expression of NKG2D ligands

in cancers of the breast (142, 143), colon (144, 145), gastric system

(146, 147), lung (148, 149), skin (150), ovary (151, 152), pancreas

(153), prostate (148, 154), and kidney (148). For NKG2D,

diminished receptor expression is known to occur in response to

hypoxia and diminished STAT3 activity (155), and in response to

shed soluble ligands released following protease-mediated cleavage,

which block the receptors from signaling (156).

Existing and nascent approaches to cancer therapy alter the

expression of NKG2D ligands and encourage NK cell-mediated

tumor killing. For example, ionizing radiation (157, 158), histone

deacetylase (HDAC) inhibitors (159), and chemotherapy (158, 160)

each prompt increased levels of NKG2D ligands. Furthermore,

agents that prevent ligand matrix metalloproteinase activity by

small molecule inhibitors can potentiate NK cell response by

preventing ligand shedding (161).

The NKG2D receptor is a logical target for immunotherapy,

and it is now being incorporated into immunotherapeutic

approaches including NKG2D-CAR-NK, NKG2D-CAR-T cells

(162, 163), CAR-T cells with a DAP10 intracellular domain (164),

and bi-specific killer-engagers (BiKEs) (165, 166). While these

therapies have indeed enhanced NK cell mediated anti-tumor

activity, complete tumor control will require combination

therapies that extend beyond the targeting of NKG2D alone.
2.3 TNF- receptor superfamily ligands

The tumor necrosis factor receptor superfamily (TNFRSF) is a

group of proteins that primarily regulate cell activation,

differentiation, and survival, either as membrane-bound factors or

cleaved, soluble factors. Here, we focus our discussion on those

studied for their roles in NK cell function and reactivity, including

the death receptor ligands Fas and TNF-related apoptosis inducing

ligand (TRAIL), and costimulatory members 4-1BB and CD40L

(Figure 3). TNFRSFs engage TNF superfamily (TNFSF) ligands,

which can often be in membrane bound and soluble forms (167).

This family of receptors and ligands signal primarily through NF-kB
to induce proinflammatory function, or induce apoptosis of the

target cell (168). Notably, while other TNFSF members have been

reported to be expressed by NK cells, or to impact their function

[i.e. GITR (CD357) (169), LIGHT (CD258) (170) and CD70 (171)],

relatively little is known on their roles and targetability in cancer;

these remain open questions and opportunities.
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2.3.1 Death receptor ligands (TRAIL and FasL)
“Death receptors” include Fas and TNF-related apoptosis

inducing ligand (TRAIL) receptor; they are present on putative

target cells and facilitate the induction of apoptosis when bound by

death receptor ligands (172–174) (Figure 3A). The typical role for

these receptor-ligand partnerships is to facilitate normal cell

turnover and immunoediting; for instance, to remove aged or

damaged cells, or reduce an expanded population of effector cells

once an infection is cleared (175). Each of FasL and (TRAIL) can be

provided by NK cells, and exist as membrane-bound or soluble

ligands (176). The role of soluble TRAIL is not well understood and

only membrane-bound FasL, not soluble FasL, is capable of

inducing target cell apoptosis (177).

FasL has a single known receptor: Fas, and TRAIL has multiple

receptors: TRAIL-R1, TRAIL-R2, TRAIL-R3, TRAIL-R4 and the

soluble decoy receptor osteoprotegrin (OPG) (178). Fas, TRAIL-R1,

and TRAIL-R2 each contain a death domain that bind Fas-Associated

Death Domain (FADD) adaptor, which recruits the Death Inducing

Signaling Complex (DISC) to initiate caspase-8 activation and

apoptosis (179, 180). Fas and TRAIL receptor signalling can also

initiate activation of NF-kB which, in contrast to the pro-apoptotic

signaling generated by the death receptors, can paradoxically

contribute to target cell survival and proliferation (181, 182). For this

reason, TRAIL-R3, TRAIL-R4 and OPG, which lack a death domain

and have been classified as decoy receptors, may contribute to cancer

cell survival and proliferation (183). Targeting apoptosis, but not

cellular activation, will therefore be critical in therapies that aim to

leverage death receptor signaling for cancer killing.

Agonists have been developed to target TRAIL receptors on

cancer cells; they have been demonstrated as safe, but relatively

ineffective as monotherapy [reviewed in Snajdauf et al., 2021 (184)].

For example, mapatumumab and conatumumab, TRAIL-R1

agonistic antibodies are well-tolerated, but ineffective as

monotherapy to patients with solid tumors (185–188). However,

stable disease was enabled in the presence of mapatuxumab

combined with apoptosis-inducing chemotherapy, or the tyrosine

kinase inhibitor sorafenib (184, 189), highlighting how the

simultaneous targeting of multiple death pathways might prevent

tumor escape. Similar agonistic approaches may be possible for

targeting Fas, but preclinical models have revealed a potential

unexpected benefit of blocking Fas: survival of tumor-infiltrating

T cells, which may, in turn, enhance the efficacy of immunologic

checkpoint blockade (190). Altogether, the available, but limited

studies, reveal a potential role for death receptor signaling in cancer

immunotherapy, but little is known specifically of the roles of NK

cells in these pathways.
2.3.2 Costimulatory TNFSF members
Costimulatory molecules of the TNFSF are best studied for their

roles in T cells, and although many can also impact NK cell

function, relatively few experiments have explored this. Here, we

highlight two TNFSF members with known costimulatory function

in NK cells, acknowledging that further research is required to

classify whether additional TNFSF members are expressed,

functional and relevant on NK cells (Figure 3B).
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CD137 (4-1BB) is a transmembrane glycoprotein expressed on

NK cells that engages 4-1BBL during NK cell activation to enhance

cytotoxicity and expansion by increasing the expression of effector

molecules including granzyme B, perforin and FasL (191–193).

These functional enhancements are a result of increased MAPK

signaling resulting in NF-kB activation within NK cells (193). The

inclusion of 4-1BBL on feeder cells (in combination with IL-21) is

used in expansion of NK cells for clinical trials (190). Addition of 4-

1BBL promotes upregulation of activating receptors including the

NCRs, CD16, and SLAM family members, alongside inhibitory

KIR, all via STAT3 activation (194).

CD40 ligand (CD40L, CD154) is best understood as a ligand

upregulated on T cells and macrophages, but can be upregulated on

NK cells in response to IL-2 stimulation and during NK cell

expansion (195–197). The significance of CD40L on NK cells

remains to be investigated, but when CD40L is provided by T

cells, the result is signals for activation and maturation in antigen

presenting cells. Indeed, in mouse models, depletion of NK cells and

blockade of CD40L had a similar effect on antigen presentation in

the tumor draining lymph nodes: both resulted in lower cytotoxic T

cell priming, but whether CD40L is obligately provided by NK cells
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was not studied (198). Nevertheless, these, and other co-stimulatory

TNFSFR members expressed on NK cells could represent good

candidates for immunotherapy.
2.4 Natural cytotoxicity
triggering receptors

The natural cytotoxicity triggering receptors (NCRs) are a

group of HLA III genes that primarily generate activating signals in

response to ligand binding through a transmembrane-encoded

ITAM, or association with ITAM-containing adapter molecules

(199) (Figure 4A). The NCRs do not themselves encode ITAMs,

and instead recruit and signal through ITAM adapter molecules,

including DAP12, CD3z and FcϵRIg (199). Each exist as splice

variants, with some isoforms conveying inhibitory signals via an

ITIM-like sequence (200). Although there are others, three NCRs

that have been studied in the context of cancer are NKp30, NKp44,

and NKp46.

NCR ligands typically become available as a result of cellular

stress, inflammation, and transformation (199). They are often
FIGURE 3

TNF receptor superfamily receptor family member receptor and ligand partnerships and NK cells. (A) Death receptors expressed by target cells are
induced for apoptosis when their ligand is provided by NK and other cellular sources. (B) Costimulatory TNFRSF members, 4-1BB and CD40L
potentiate NK cell response against target cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1269614
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nersesian et al. 10.3389/fimmu.2023.1269614
expressed on tumor cells, or released during oncogenesis, and likely

evolved to respond to ligands available in disease contexts. Cancer-

derived ligands are not the exclusive binding partners for the NCRs,

but for simplicity, we focus on those involved in cancer

pathology here.
Fron
• B7-H6 is a B7 costimulatory family member that is

overexpressed and associated with poorer outcomes in

cancer (201, 202). B7-H6 and BAT-3 can be shed from

the membrane and antagonize NCR binding to prevent NK

cell activation (203).

• BAT-3 normally contributes to stabilizing p53 and

contributing to tumor suppression (204). It may also be

released in exosomes derived from cancer cells; in this

configuration they can drive NK cell activation against

cells that have lost normal p53 function (205).

• Heparin sulfates are components of the extracellular

matrix that are exposed during cellular migration and

tumor metastasis (206).

• Platelet-derived growth factor (PDGF) is involved in

angiogenesis and cellular proliferation and is frequently

expressed by tumor cells (207–209). There are at least five

dimeric isoforms; among them, PDGF-DD is established as

the ligand for NKp44 [reviewed in (199)].
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• Proliferating cellular nuclear antigen (PCNA) is involved

in DNA replication, repair, and remodelling (210). Among

the ligands for NKp44, PCNA is the only one known to

generate inhibitory signals. Evidence supports a protective

immunoregulatory role in pregnancy, and the

overexpression of PCNA by tumors may enable escape

from NK-mediated immunosurveillance (211).

• Vimentins are structural components of mesenchymal

cells, and they have been used as a biomarker of

epithelial-to-mesenchymal transitioning, which is

associated with metastasis, in an array of solid tumors

(212, 213).

• Ecto-calreticulin is externalized calreticulin, which is

typically released from the endoplasmic reticulum in

response to stress. Most notably, this occurs in response

to chemotherapy-induced cell death and senescence (18).
NKp30 binds B7-H6 (205), BAT-3 (205), and heparin sulfates

(214, 215). NKp30’s transmembrane domain associates with the

ITAM-containing adaptors CD3z and FcϵRIg. There are at least six
splice variants of NKp30, which differ in their tissue distribution,

engagement with adapter molecules, and outcomes upon ligand

binding, notably on production of IFN-g and IL-10 (216). Variants

a-c are the most common, with a and b favouring IFN-g production
FIGURE 4

Germline encoded NK cell receptors and ligands that contribute to cancer cell killing. (A) Natural cytotoxicity receptors bind an array of ligands;
shown are the most important to tumor cell recognition. (B) CD16a, binds the constant region/fragment crystallizable (Fc), portion of antibodies that,
when bound to target cells, enable cross linking of receptors. (C) SLAM family members can signal for activation or inhibition via an immunotyrosine
switch motif. Green, pink, and purple symbols indicate CAR-NK targets, mAb targets, and small molecule targets, respectively.
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and NKp30c associating with IL-10 production (216). B7-H6 has

been proposed as a biomarker for development and progression in

an array of cancers (217–219); by extension, leveraging this

expression as a target for immunotherapy may be possible.

NKp44 signals for activation when bound by PDGF and

heparan sulfates, and signals for inhibition upon binding to

PCNA (199, 215, 220, 221). Three splice variants are described

for NKp44, where the transmembrane domain in the NKp44b and

NKp44c isoforms associate with DAP12 to signal for NK cell

activation (222). NKp44a signals via an ITIM-like domain and

binds PCNA, and at high surface densities, this splice isoform can

inhibit NK cell function (200, 223). Dominant expression of this

“inhibitory” NKp44 isoform is associated with poorer survival in

patients with acute myelogenous leukemia (223), and PCNA is

currently being explored as a biomarker and target for monoclonal

antibodies (224).

NKp46 associates with CD3z and FceRΙg (225, 226). Key cancer
associated ligands for NKp46 include heparan sulfates (215),

vimentin (199, 225), and ecto-calreticulin (18). NKp46 expression

is correlated with the degree of NK cell response generated (227)

and IFN-g produced via NKp46 signaling alters the deposition of

fibronectin limiting metastasis in murine melanoma (228). Like

NKp30, the ligands for NKp46 have been proposed as biomarkers

for cancer severity and progression (229), endorsing these as

potential targets for NK cell-based immunotherapies.

Targeting NCRs or their ligands for cancer immunotherapy is

an area of active exploration that warrants investigation in NK cell-

based cancer immunotherapy. Current studies are investigating the

potential of using BiKEs or CARs that use the NCRs to enhance

tumor recognition (230, 231). For example, a trifunctional natural

killer cell engager (TriKEs) targeting the AML antigen, CD123,

while simultaneously binding NKp46 and CD16a on NK cells has

demonstrated efficacy in murine models and nonhuman primates

(232) and is currently being tested in early clinical trials

(NCT05086315). A similar strategy – coupling NKp46

engagement to anti-CD20, CD16 and the IL-2R beta chain has

likewise generated promising preclinical results (233). NKp30 has

been targeted on tri-specific engagers, coupling NKp30 engagers

with Fab and anti-EGFR to create a potent pathway for tumor cell

lysis and NK cell cytokine production (234). These strategies are in

their infancy, but illustrate the promise of targeting such conserved

NK cell ligands for immunotherapeutic purposes.
2.5 CD16a and antibodies

CD16a is expressed on NK cells, monocytes, and macrophages,

and is the major receptor engaged for ADCC (Figure 4B) (235).

CD16a encodes an ITAM motif, which recruits the signaling

adapters FcϵRIg, and CD3z to signal NK cells for proliferation,

survival, cytokine production and degranulation (43, 236). Notably,

CD16a activates NK cell degranulation, even in the absence of other

activating signals (237).
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Antibodies can function by neutralizing targets or opsonizing

them for phagocytosis or killing. Target cell binding by antibodies

enables cross-linking of CD16a; these antibodies can be produced

endogenously by plasma cells or delivered as therapy (21). In NK

cells, CD16a Fc receptor crosslinking triggers ADCC (238). NK cell-

mediated ADCC is a central mechanism to the killing primed by

anti-HER2 (trastuzumab) (239) anti-GD2, (dinutuximab) (240),

and anti-CD20 (rituximab) (241). In mice deficient for CD16a, or in

which CD16a engagement with antibodies is blocked, tumor growth

is exacerbated (239). Noteworthy, CD16a is susceptible to cleavage

by metalloproteases within the tumor environment, and these

soluble fragments could block CD16a on NK cells and create an

additional opportunity to evade ADCC (242). Strategies to

strengthen antibody binding and Fc receptor signaling are being

explored and include antibody Fc engineering to maximize binding

and activation, non-cleavable CD16 molecules, bi-specific

antibodies, and antibody-drug conjugates (37, 238, 243).
2.6 SLAM receptors

Signalling lymphocytic activating molecule (SLAM)-family

receptors are a group of type I transmembrane receptors, expressed

on hematopoietic cells (244), especially during and shortly after

differentiation (Figure 4C) (245). SLAM-family receptors expressed

on NK cells include SLAMF1, SLAMF2 (CD48), SLAMF3, SLAMF4

(2B4), SLAMF6, SLAMF7 (CRACC) and SLAMF8– with CD48,

2B4, and CRACC being the most prominent (246).

These SLAM-family receptors, excluding CD48 and SLAMF8,

signal through ITSMs (247). SLAM-family receptors are homotypic,

except for the partnership of 2B4 and CD48 (248, 249). CD48 and

2B4 also, uniquely, bind in both trans (ie. with other ligand-

expressing cells) or in cis (ie. on the NK cell surface) (250, 251).

Cis binding conveys baseline 2B4 ITSM phosphorylation, and a

higher signalling threshold for activation due to competition with

ligands for binding in trans (248, 250, 251).

SLAM-family receptors can be expressed on hematologic (252)

and solid tumors (245, 249). Indeed, CD48-2B4 signalling has been

linked to early NK cell activation by monocytes, followed by

exhaustion (253). NK cell monocytes isolated from hepatocellular

carinoma highly express CD48, and blocking this CD48-2B4

interaction leads to relatively decreased NK cell activation and

sequential exhaustion (253). Monocytes isolated from

hepatocellular carcinoma have high CD48 expression and blocking

the 2B4-CD48 interaction decreased NK cell activation and

exhaustion (253). This provides evidence that a multitarget

approach might be necessary for checkpoint therapy, and that

targeting SLAM-family receptors (whether inhibiting or activating

these receptors) is not a one-size-fits all for each tumor. Additionally,

both CD48 and CRACC are highly expressed on multiple myeloma,

and these are now being investigated as targets for monoclonal

antibody therapies (254). Monoclonal CD48 has shown promising

pre-clinical results at decreading multiple myeloma tumor growth

(252). Undoubtedly, the extensive expression of SLAM family
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members and their ability to contribute to NK cell activation will

promote further investigation toward their clinical use.
2.7 DNAM-1, TIGIT and CD96

The DNAX-accessory molecule-1 (DNAM-1) and TIGIT

receptors are commonly expressed on NK cells and T cells, and

to interact with the same ligands: CD155 and CD112 (64, 255, 256).

DNAM-1 is an activating receptor that signals via ITT; TIGIT is an

inhibitory immune checkpoint that encodes an ITIM (65, 257)

(Figure 5). CD96 (TACTILE) also contains an ITIM, and binds to

CD155, but not CD112 (257), and is thought to have secondary

roles in cell-cell adhesion (257). Recently, KIR2DL5, an ITIM-

containing KIR, has also been identified as a receptor for

CD155 (258).

Each of CD155 and CD112 bind TIGIT and DNAM-1, signaling

for inhibition through TIGIT or activation through DNAM-1.

CD155 and CD112 both bind TIGIT with a higher affinity that

DNAM-1 (259, 260). CD155 and CD112 are expressed at low levels

on healthy cells and are upregulated in response to inflammation,

cellular stress, reactive oxygen and nitrogen species (261–263), and

following chemotherapy (264). Overexpression of these ligands on

the tumor is usually associated with poorer prognosis for patients:

increased tumor expression of CD112 correlates with increased

tumor size and stage, in cancers of the gallbladder (265), colon

(266), ovary (267), and pancreas (268). Likewise, tumor

overexpression of CD155 is associated with poor prognosis and
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progression of multiple cancers (269) including breast cancer (270),

gastric cancer (271), non-small cell lung cancer (272), melanoma

(273), colorectal cancer (274), and sarcoma (275).

TIGIT modulates DNAM-1 mediated activation through the

competitive binding of their shared ligands (276). Further, TIGIT

directly inhibits DNAM-1 activation through cis interactions that

interfere with DNAM-1 homodimerization (277). TIGIT blockade

enhances NK cell responsiveness both in vitro and in vivo,

particularly when DNAM-1/CD155 interactions remain intact (277,

278). In mouse models, blockade of CD96/CD155 binding results in

reduced metastatic spread in vivo– in part by enabling DNAM-1/

CD155 binding through loss of CD96 competitive binding (279, 280).

Through alternative splicing, CD155 can be released in a soluble

form (sCD155), which binds to DNAM-1 with greater affinity than

TIGIT or membrane-bound CD155, and block binding and signaling

for activation via DNAM-1 (281). High expression of sCD155 is

associated with poor prognosis and increased cancer progression in

lung, breast, liver, and gynecological cancers (282–284). sCD155

binding can also result in the endocytosis of DNAM-1, making it

less available to generate signals for activation (285, 286).

The opposing roles these receptors play is evident in cancer

progression; in acute myeloid leukemia, high expression of DNAM-

1 is associated with longer progression-free survival and overall

survival (287), while increased TIGIT expression was correlated

with NK cell dysfunction and poorer patient outcomes (288).

Further, CD96 expression was linked with an increased

immunosuppressive immune signature and poor patient

prognosis in gastric cancer (289).
FIGURE 5

DNAM-1, TIGIT, CD96 and other immunologic checkpoints that contribute to NK cell regulation within a tumor. The adhesion molecule CD112 is
recognized by both DNAM-1 and TIGIT. Engagement with DNAM-1 results in activation via ITT signaling, conversely binding to TIGIT results in net
inhibition signed through an ITIM. CD155, another adhesion molecule, binds to DNAM-1, TIGIT and CD96; signaling through CD96 through the
signaling motifs tyrosine-based sorting motif (YXXM) and ITIM. TIM-3 can bind a variety of ligands including Gal-9, HMGB1 and CEACM1 to signal for
inhibition. LAG-3 is known to bind HLA II and Gal-3. PD-1 binds PD-L1 and CTLA4 binds to CD80/CD86 to signal for inhibition. Pink symbols
indicate mAb targets.
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Targeting TIGIT, and thereby blocking its inhibitory interaction

with CD155 and/or CD112, has been the focus of recent research,

with several monoclonal antibodies currently undergoing clinical

trial. A phase II trial assessing tiragolumab in combination with

atezolizumab demonstrated an objective response rate of 37%, with

an objective response rate of 66% in patients with a high PD-L1

status. However, some adverse events were observed, with two

treatment-related patient deaths (290). Phase III trials are currently

under way for both small cell and non-small cell lung carcinoma

(NCT04256421; NCT04294810), as well as trials of tiragolumab

against other malignancies, such as melanoma (NCT05116202;

NCT03554083), pancreatic cancer (NCT03193190), gastric cancer

(NCT0493322; NCT05251948), and cervical cancer (NCT04300647).

Of course, administration of these antibodies can impact other

lymphocytes, and understanding the specific roles of NK cells

compared with other lymphocytes are needed.
2.8 Immunologic checkpoints
primarily known for T cell impacts:
TIM-3, LAG-3, PD-1

Immunologic checkpoints are best studied in the context of T cells

in cancer but have similar functions in NK cells (51). Immunologic

checkpoints known to impact T cells may also inhibit NK cells. These

include T cell immunoglobulin and mucin-domain containing-3

(TIM-3), lymphocyte activation gene (LAG-3), programmed cell

death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated

antigen 4 (CTLA-4) (Figure 5). Like the NCRs, these immunologic

checkpoints have and share several ligands associated with cellular

transformation and cancer. The ligands are discussed below, first

alone, and then in the context of their receptors.
Fron
• Galectin-9 (Gal-9) is a C-type lectin that is bound by

carbohydrate moieties found on membrane-bound

proteins across several lymphocytes, including T cells and

NK cells (291, 292). Gal-9 is expressed on the cell surface,

and can be cleaved by metalloproteinases and secreted in

soluble form (293). Gal-9 is involved in cell adhesion and

migration (294, 295) and binds to TIM-3 on lymphocytes

(296, 297).

• High mobility group box 1 (HMGB-1) is a nuclear protein

that binds to and stabilizes DNA at steady state, but can

translocate to the cytoplasm of stressed cells and act as a

damage-associated molecular pattern (DAMP) that drives

activation of innate immunity via toll-like receptors (298).

• Carcinoembryonic Antigen-Related Cell Adhesion

Molecule 1 (CEACAM-1) is an immunoglobulin

superfamily member most commonly found on epithelial

cells, but also on immune cells with regulatory functions

(299, 300). In cancer, expression of CEACAM-1 has been

associated with both better and worse prognosis (301). In

melanoma specifically, its expression is associated with

aggressive metastasis (302) and immune exclusion (303).
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• Phoshatidylserine is a component of the inner leaflet of

healthy cell membranes, and contributes to maintenance of

membrane integrity, cell signaling, adhesion and trafficking

and apoptosis (304). When externalized – a consequence of

apoptosis and cell death (305) – phosphatidylserine signals

to phagocytose the damaged cell (304). Phosphatidylserine

signaling generally promotes immune regulation, ostensibly

to limit inflammation and prevent autoimmunity (306); in

cancer, phosphatidylserine can interfere with lymphocyte-

mediated tumor killing (307).

• HLA II presents exogenous antigens to helper (CD4+) T

cells. HLA II is typically expressed on the surface of

professional antigen presenting cells (308), and can be

presented by cancer cells and antigen presenting cells in

the tumor microenvironment (309).

• Lymph node sinusoidal endothelial cell C-type lectin

(LSECtin) is an adhesion molecule that promotes tumor

invasion and metastasis. LSECtin has a regulatory role,

acting on cellular microRNAs to diminish immune cell

activation (310).

• Programmed death ligand-1 and -2 (PD-L1/PD-L2) are

type 1 transmembrane proteins of the immunoglobulin

superfamily, commonly expressed on hematopoietic and

non-hematopoietic cells such as endothelial cells,

keratinocytes, and pancreatic islet cells (311). PD-L1 and

PD-L2 expression is limited under homeostasis but

upregulated in response to environmental stimuli, disease,

and inflammatory cytokines including IFN-g, TNF, and
IL-6, likely to limit the extent of inflammation (312–314).

PD-L1 overexpression has been observed in lung cancer,

lymphoma, and pancreatic cancer (312, 315, 316) and

associated with poorer outcomes, including worse overall

survival and decreased progression free survival (317–319).

• CD80 and CD86 are members of the B7 receptor-ligand

family and are expressed by antigen presenting cells and T

regulatory cells (Tregs) (320, 321).
Reinvigoration of T cells has been the major goal of monoclonal

antibodies against TIM-3, LAG-3 and PD-L1/L2, but NK cells may

be also rescued by their inhibition in the cancer microenvironment.

TIM-3 signals for inhibition via five conserved tyrosine residues,

and Bat-3 is associated with its transmembrane domain at steady

state (322, 323). Known ligands for TIM-3 include Gal-9, HMGB-1,

CEACAM-1, and phosphatidylserine. NK cells expressing TIM-3

have suppressed cell-mediated cytotoxicity and can be rescued with

TIM-3 blockade (324, 325).

The specific role for Gal-9’s interactions with TIM-3 on NK

cells is unclear, with reports of both stimulation for IFN-g
production by the NK-92 cell line (296) and immunoregulation

in viral infections and pregnancy (326, 327), suggesting that its role

may be nuanced or influenced by microenvironmental features. In

T cells, Gal-9/TIM-3 binding triggers release of Bat-3, which

liberates an immunosuppressive signal (328). TIM-3 signaling

results in inhibition of T cell proliferation and cytokine

productions, potentially leading to T cell death (291, 292).
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In cancer, the impacts of TIM3:Gal-9 interactions on NK cells

are similarly controversial, with reports alternately ascribing pro-

and anti-tumor roles. TIM-3:Gal-9 interactions are associated with

NK cell exhaustion and decreased cytotoxicity in AML and

gastrointestinal tumors (329, 330). Increased Gal-9 expression is

associated with worse overall survival, decreased progression-free

survival, and increased metastasis in cancers of the liver (331),

kidney (332) and virus-associated cancers (333). Conversely, and

consistent with an activating role for TIM-3:Gal-9 interactions,

higher expression of Gal-9 is associated with less tumor

dedifferentiation and metastasis in cervical cancer (334). Gal-9

drives apoptosis of melanoma, leukemia, and lymphoma cell lines

(335, 336). Higher Gal-9 expression is associated with superior

outcomes in patients with gastric cancer (337) and triple-negative

breast cancer (338).

LAG-3 is a member of the immunoglobulin superfamily

receptors, and binds MHC class II, and LSECtin (339–343). On T

cells, LAG-3 is induced by cell activation, ostensibly to enable

control of ongoing lymphocyte responses (344, 345), associates

with the TCR and binds HLA II with higher affinity than CD4, to

regulate signaling and inhibit proliferation (344–346). LAG-3 is

known to be expressed by NK cells (347) with the highest

expression being reported on activated, adaptive, and mature NK

cells (348).

The expression of MHC II in the tumor microenvironment is

typically associated with improved immune cell infiltration and

patient outcomes (349, 350). Expression of LAG-3, on the other

hand, is well established as a marker of increased tumor progression

and aggressiveness across cancer types (351–353). As a result,

therapies directly targeting LAG-3 are currently being explored,

both as monotherapy and in combination with immune checkpoint

blockade. While studies evaluating LAG-3 therapies rarely profile

NK cells, one study evaluating the response of patients with

melanoma to a combination of anti-LAG-3 and anti-PD-1 found

that adaptive LAG-3+ NK cells were most prominent in those who

responded to immunotherapy (348). This data supports the role for

NK cells influencing response to checkpoint inhibitors.

Interestingly, this has also been suggested by earlier work where

NK cells isolated from a murine model with LAG-3 deficiency

exhibited defects in NK cell mediated anti-tumor immunity (354).

Additional research is needed to better understand the role and

importance of LAG-3 in NK cell cancer killing.

PD-1 is expressed most prominently on T cells, and has recently

been described to be present, but at lower densities on mouse and

human NK cells (355, 356). Interference with PD-1/PD-L1/2

signaling with monoclonal antibodies on these mouse NK cells

increases their target cell cytotoxicity, confirming a parallel function

to that described for T cells (357, 358). PD-1 expression on human

NK cells is not yet well understood and seems to be limited to the

adaptive NK cell subset (359–361). Nonetheless, blockade of the

PD-1/PD-L1 pathway improves NK cell responsiveness both in

vitro and in vivo (362, 363). Blocking PD-L1+ NK cells with anti-

PD-L1 improves degranulation and cytokine production, as well as

control tumor in vivo, indicating that NK cells may contribute to the

success of checkpoint inhibition independent of PD-1

expression (364).
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Monoclonal antibodies that interfere with PD-L1/L2-PD-1

interactions have become part of treatment for an array of

tumors. Durvalumab and atezolizumab (both anti-PD-L1

monoclonal antibodies) are approved as first-line treatments for

non-small cell lung cancer (365). Further, durvalumab is approved

for bladder cancer and atezolizumab is approved for treatment of

triple-negative breast cancer and liver cancer (366–369).

Pembrolizumab (anti-PD-1) is also approved for use in MSI-H/

dMMR cancers (319). Whether and to what extent these impact

NK cell function with impacts on cancer control in patients

is unknown.

CTLA-4 is a member of the B7/CD28 family and is constitutively

expressed on regulatory T cells, as well as upregulated on other T cell

subsets upon activation (370). CTLA-4 inhibits CD28 signalling

(371), and T cell activation, through the competitive binding of its

ligands CD80/CD86 (372). Expression of CTLA-4 has been reported

in both activated mouse and human NK cells (355, 373, 374). In

healthy human donors, CTLA-4 expression on NK cell populations is

low, and associated with decreased production of activating cytokines

and an increase in IL-10 production (355). CTLA-4 expression was

found on mediastinal lymph node-derived NK cells of NSCLC

patients (375) and on tumor infiltrating NK cells in early-stage

lung cancer (376).

The exact role of CTLA-4 expressing NK cells has not yet been

fully elucidated. Nonetheless, NK cells have been shown to play

a role in the success of anti-CTLA-4 therapies. In melanoma,

patients’ response to ipilimumab correlated with an activated

NK cell signature (377). Further, ipilimumab was shown to

directly bind NK cells through immunofluorescence microscopy.

Along with directly binding ipilimumab, NK cells further target

CTLA-4 expressing Tregs in vivo and target them through ADCC

(378, 379).

Monoclonal antibodies against CTLA-4 are currently in the

clinic both alone and in combination with other checkpoint

inhibitors. Ipilimumab was first approved as a single-therapy

treatment in melanoma (380) and has since been approved as a

combination treatment with nivolumab in several cancer types,

including colorectal (381), liver (382), renal cell (381), and lung

cancer (383). Tremelimumab has recently been approved in

combination with durvalumab for the treatment of patients with

unresectable liver cancer (384).

Altogether, the immunologic checkpoints that impact T cells

may also inhibit NK cells (and be rescued by immune checkpoint

blockade). Whether these classical checkpoints are effective targets,

or other mechanisms of NK cell inhibition would enable superior

anticancer activity remains to be defined.
3 Leveraging the multifaceted features
of NK cells for immunotherapy

Though most studies consider the role of NK cell receptor-

ligand partnerships in isolation, individual NK cells express

constellations of receptors, and their potential impacts should be

considered as a composite response. For instance, even strong
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signals for activation can be outweighed by concurrent signals for

inhibition via KIR-HLA interactions (33). Moreover, NK cell

function, receptor expression and arming are impacted by local

signals, and can change as the environment does (8, 385). Finally,

strategies to intervene and manipulate NK cells must also consider

the impacts on other cells; for instance, delivery of receptor agonists

and cytokines may have impacts beyond their direct impacts on NK

cells (386, 387).

Although immunotherapies have dramatically changed outcomes

for people with cancer, there remains significant mortality from the

disease, refractory cancers, and relapse of cancers with acquired

therapeutic resistance (388–390). The tumor microenvironment is

often highly immunosuppressive, and tumor cells themselves

diversified, so effective treatment with a single-targeting agent is

challenging. The variety of functional capabilities and mechanisms of

effector:tumor engagement that direct NK cell function make them

intriguing targets for immunotherapy, because they may provide a

mechanism for agile and ongoing recognition of plastic cancer cells.

Already, NK cells are recruited by standard of care treatments and

immunotherapeutic strategies, including those that use monoclonal

antibodies against tumor antigens and immunologic checkpoint

blockade. Strategies exist to expand, engineer, and transfer

allogeneic NK cells. Hence, it is feasible to recruit and use NK cells

as immunotherapy; the next challenge will be to adequately direct

them for cancer killing. We expect this will be achieved by targeting

multiple NK cell features simultaneously.

Standard approaches to treatment may be combined with NK

cell-targeting therapies to achieve more complete tumor control.

Fas agonism, for example, is rendered less-toxic in the context of

chemotherapy, so combining these agents may create a synergistic

impact to allow greater tumor recognition and control (243).

Recognizing that one of NK cells’ intrinsic functions is to respond

to “stress” ligands, it is unsurprising that inflammation-inducing

therapies can support NK cell activity. For example, radiation

induces CXCL8 production in pancreatic tumors, attracting

CD56dim NK cells; this associates with prolonged survival (35).

Other studies have reported NK cell mediated responses to

oncolytic virus infected cells (391), and chemotherapy (34). These

treatments all induce inflammatory responses, which may serve to

alter the immunosuppressive tumor microenvironment and attract

and activate NK cells.

Creating a supportive environment for NK cell function may be

facilitated by provision of immune modulating cytokines. Early

cytokine therapies included systemic delivery of IL-2 (392), but the

concentration of IL-2 needed to achieve meaningful clinical

responses was associated with severe adverse toxicities (393). In

addition to T cells, NK cells can be activated by IL-2, but high-dose

IL-2 can ultimately deprive NK cells of IL-2 as it instead supports

regulatory T cell activation and expansion (394). These initial

findings led to the attempted use of lower dosing, less potent

analogues, ex vivo cytokine treatment of NK cells, or more

specific cytokines signals, including IL-15, which strongly

supports NK cell proliferation and activation.

IL-15 is most potent in the context of its receptor, IL-15Ra. As
therapy, IL-15 and its receptors have been engineered to enhance

stability and efficacy. These constructs include the IL-15 super-
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agonist complex (ALT-803), which is a complex containing a

mutated IL-15 (N7D) and IL-15Ra (395). ALT-803 increases NK

cell proliferation in the ascites of ovarian cancer patients and

increases healthy donor NK cell function against ovarian cancer

cell lines (395). When combined with IL-12 and IL-18, IL-15 can

induce the adaptive, memory-like NK cell features, including

enhanced anti-cancer function (396). More recently, a

heteromeric fusion protein complex (HFPC) platform combined

IL-12, IL-15, and IL-18, that enhanced primary NK cell

proliferation more efficiently compared to the cytokines

administered (397).

Immune stimulating agents, including agonists of the stimulator

of interferon genes (STING) pathway can likewise achieve an

inflammatory and immune-permissive microenvironment (398).

STING silencing is a mechanism used by tumors to quiet immune

responses (399, 400), and activating STING can enhance NK-cell

mediated immunotherapy (401, 402) and NK cell trafficking via

CXCR3 (401, 402). IL-2 and STING-agonists together support T and

NK cell activation against treatment-refractory mouse tumor models

(401, 403). Potentially identifying a mechanism that contributes to

these responses, a recent single-cell approach identified that STING

mediates its anti-tumor immune stimulating impact, in part, through

CXCR3 upregulation and the subsequential recruitment and

activation of NK cells (402).

Beyond general signals for inflammation, NK cells can

contribute to antigen-specific anti-cancer responses via ADCC

driven by therapeutic monoclonal antibodies. More recently,

these have been created with cytokines and other agents to drive

activation and killing by NK cells simultaneously. One such fusion

protein, for example, combines the ALT-803 backbone with

rituximab (404). In mouse models, this compound, “N-803”

induces NK cells for increased secretion of cytokines, chemokines

and growth factors, cytotoxicity, and control of rituximab resistant

bone lesions when compared to those cultured or treated with

rituximab and ALT-803 while NK cells exhibited enhanced

expression of NKG2D, CD16, NCRs, and enhanced cytotoxicity

(405). Other fusion proteins focus on enhancing signaling through

activating receptors on NK cells. For example, CD123-NKCE, is a

TriKE recently developed to bind CD123 on acute myeloid

leukemia, while simultaneously signalling through NKp46 and

CD16a on NK cells (232). This engager prevented CD64-

mediated ADCC inhibition which is a usual mechanism of

evasion undertaken by acute myeloid leukemia cells. These

strategies direct NK cell mediated ADCC while also focusing on

enhancing the NK itself.

NK cells express the immune checkpoints, PD-1 and LAG-3,

and immune checkpoint blockade may enable NK cell anti-tumor

responses. In the blood of patients with metastatic melanoma

treated with relatlimab (anti-LAG-3) and nivolumab (anti-PD-1)

the “adaptive” NK cell subset exhibited the highest LAG-3

expression, and responding patient NK cells were activated with

treatment (348). A pre-clinical approach leverages the extensive

availability of PD-L1 in the tumor microenvironment and employs

NK cells equipped with a chimeric switch receptor linking PD-1 to

activating domains CD3z, DAP10, or DAP12 (406). These cells had
superior cytotoxicity towards PD-L1+ target cells compared to
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wildtype NK cells (406). In pre-clinical studies, inhibition of other

immune checkpoints TGFb and CIS (an NK cell IL-15 signalling

checkpoint encoded by CISH) simultaneously results in enhanced

NK cell activation and decreased MC38 colorectal cancer tumor

burden in mice (407). Similarly, CISH is another member of the

suppressor of cytokine signaling (SOCS) family encoded by CISH

that when targeted, improved NK cell effector functions (408).

A major advantage of NK cells is that they can be adoptively

transferred across allogeneic barriers and expanded extensively ex

vivo, opening the possibility of “off the shelf” cancer therapy.

Strategies to select and/or engineer NK cells with the greatest

anti-cancer potential are still in development and approaches that

maximize NK cell activation against tumors will likely be the most

effective against cancer. For example, recent work demonstrating

that isolating single-KIR+NKG2C+ NK cells from donors harboring

large adaptive NK cell subsets could be used to optimize response

against HLA-mismatched acute myeloid leukemia (409). Other

cellular sources for NK cells, including umbilical cord blood stem

cells or induced pluripotent stem cells (iPSCs) may provide further

flexibility and opportunities to tailor NK cells as adoptive cell

therapy [reviewed recently by (410, 411)]. For example, NK cell

metabolism could be reprogramed in iPSC derived NK cells through

the deletion of CISH, which normally opposes IL-15 signaling, to

enhance in vivo persistence and efficacy (412).

NK cell expansion protocols provide an ideal platform for

modulating NK cell populations through pharmacologic

interventions such as small molecule inhibitors. There are several

small molecule inhibitors available that target proteins used by NK cells

to regulate cell signalling. For example, glycogen synthetase kinase

(GSK)3 inhibitors can halt GSK3 mediated NFkB inhibition, thereby

promoting NK cell activation (413). Indeed, administering a GSK3

inhibitor, CHIR99021, to IL-15 expanded adaptive NK cells enhanced

cytokine production, natural cytotoxicity, and antibody-dependent

cytotoxicity (414). These small molecule inhibitors can also be

harnessed to enhance NK cell resistance against tumor-mediated

suppression. Canonical TGF-b signaling suppresses NK cell function

and remains a barrier to intra-tumoral NK cell activation (415). TGF-b
signaling is facilitated through SMAD3, which can be inhibited through

small molecule inhibitor SIS3 (416). Indeed, the use of SIS3 in vitro and

in vivo has demonstrated the ability to release E4BP4/NFIL3 NK cell

differentiation and promote NK cell mediated lung tumor

control (417).

Engineered chimeric antigen receptor (CAR)-NK cells allow

durable, antigen-directed targets alongside the anticancer activity of

NK cells and offer the combined advantages of NK cells and potent

antigen targeting through CAR. CAR-NK have exhibited

exceptional efficacy. In a clinical trial employing CD19-targeting

CAR-NK cells in patients with lymphoid malignancies, CAR-NK

cells were well-tolerated, and generated complete remission in 7/11

treated patients (38). Combined strategies to maximize key features

of NK cells are in their infancy, but possible and may further

enhance the efficacy of NK cellular therapy. For example, CAR-NK

cells have been further modified to enhance ADCC can by inclusion

of non-cleavable CD16 and a membrane-bound IL-15 fusion

molecule (358). There are many combinations that are feasible,

but following the biology of NK cells and the tumors against which
Frontiers in Immunology 15
they act may help to design rational, bespoke approaches to

comprehensive tumor targeting.
4 Concluding remarks

NK cells are equipped with a toolkit of germline-encoded

activating and inhibitory receptors, which act together to

integrate incoming signals. Since the receptors on the NK cells

that comprise a person’s repertoire are variable, they provide

extensive diversity to recognize a variety of target cell phenotypes.

NK cells are critical agents of immunosurveillance and participate

in existing approaches to treat cancer.

The next generation of immunotherapies are multivalent: they

simultaneously target more than one feature of tumors to prevent

immune escape. Strategies to quantify the strength of signaling

associations based on both NK cell receptors and the ligands present

will be required to prioritize targets. Understood, these will enable

development of multitargeted, precision NK cell-based

cancer immunotherapies.
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