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Palmatine treats urticaria by
reducing inflammation and
increasing autophagy

Tian Xiao, Xingzhi Yu, Liping Yang and Xiaohua Duan*

Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming,
Yunnan, China
Introduction: Chronic spontaneous urticaria (CSU) is mainly manifested as

wheals and erythema on the skin accompanied by itching, which will cause

emotional anxiety and seriously affect the quality of life in patients. Palmatine

(PAL) is a main chemical component of Yajieshaba, which has been found to

effectively alleviate the symptoms of food allergy. However, its role and

mechanism in CSU remain unclear. The present study aimed to investigate the

protective effect of PAL on CSU rats.

Methods: We replicated the CSU rat model by intraperitoneal injection of

ovalbumin (OVA) in rats on days 0, 2, 4, and 14, with a double dose given on

the last challenge. PAL, loratadine and saline were given by gavage from day 5 to

day 14. We observed the skin pathologic changes, mast cell degranulation,

immune factor levels, inflammatory response and autophagy-related protein

expression in CSU rats.

Results: We found PAL treatment to be effective in alleviating CSU-like skin

lesions and reducing itching and mast cell degranulation in rats. Compared with

the OVA group, the levels of immune and inflammatory factors were significantly

reduced, neutrophil recruitment was alleviated, suggesting a reduced

inflammatory response. The autophagy results showed that PAL further

increased the expression of LC3, Beclin-1 and p-LKB1, p-AMPK, Atg5, Atg12

and Atg5-Atg12, while P62 and p-p70S6K1 expression decreased. They

collectively suggested that autophagic flux was activated after PAL treatment.

However, there was an increase in the expression of LC3I, probably due to the

fact that PAL induced its accumulation in order to provide substrate for the

generation of more LC3II.

Discussion: Overall, PAL had a protective effect on CSU in normal rats, activated

the expression of autophagy and improved the inflammatory response.
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1 Introduction

Urticaria is a frequent allergic skin disease that occurs in the

spring (1). The prevalence of urticaria in adults is about 15-23%,

with the cause being undetermined in 70% of these patients (2).

Chronic spontaneous urticaria (CSU) is defined as the unprovoked

appearance of wheals, erythema, and severe skin pruritus, lasting

less than 24 hours (as opposed to urticarial vasculitis) and relapsing

for more than 6 weeks (3, 4). Patient anxiety is aggravated by itching

and facial changes during the acute phase, with this anxiety in turn

exacerbating the characteristics of CSU, thereby seriously affecting

patient quality of life (5). Failure to intervene in a timely and

effective manner is also associated with further exacerbation of

damage to the patient’s immune system, which can be life-

threatening in severe cases (6). The extensive use of

antihistamines and/or glucocorticoids to treat CSU can result in

neurological adverse effects, such as recurrent disease, dependence,

dizziness and drowsiness (7). Therefore, it is urgent to treat the

symptoms of patients and improve their quality of life.

Clinically, CSU is characterized as an immunoglobulin E (IgE)

antibody-mediated type I allergic reaction (8). Stimulants in the

external environment can trigger the production of IgE, which

binds to mast cells and eosinophils (9), activating mast cell

degranulation and stimulating eosinophils, which release

inflammatory mediators such as histamines and cytokines, resulting

in a sensitized state (10). These cytokines and other mediators induce

capillary dilation, alter permeability, and stimulate the infiltration of

tissue fluid into the dermis, resulting in edema and the formation of

bright wheals (11). Simultaneously, these mediators will irritate the

peripheral nerves, causing symptoms such as pruritus (12). Thus,

altering the properties of mast cells and reducing inflammation

remain key steps in the treatment of CSU.

Skin is extremely poor in nutrient resources (13). Autophagy

recycles damaged cells at the onset of skin diseases through several

steps, including vesicle formation, membrane elongation and fusion,

lysosomal degradation, and recycling (14). Normal cells are supplied

with energy during this process of renewal, maintaining homeostasis

of the skin environment (15). Autophagy also plays a crucial role in

selectively inhibiting IgE-induced mast cell degranulation and is a key

target for the treatment of allergic diseases (16). Activation of

autophagy has also been shown to drastically reduce inflammatory

vesicle activity and inhibit the secretion of pro-inflammatory signals

by immune cells (17), thus reducing inflammation caused by allergies

(18). Pruritus in damaged skin has been shown to result from

stimulation of the neuronal system by inflammatory mediators

released by immune cells, with the induction of autophagy found to

significantly alleviate this cascade of reactions (19). Paeoniflorin was

shown to accelerate the elimination of CSU inflammatory responses

and effectively improve the pathological symptoms of CSU by

activating the LKB1/AMPK autophagy pathway (20). Overall, these

findings indicate that autophagy plays an important role in CSU.

New medicines have been derived from traditional or ethnic

medicines worldwide (21). Dai medicine, as one of the four major

ethnic medicines in Chinese traditional medicine, has a long history

and is a valuable wealth summarized and formed by the Dai people

through long-term exploration and practice (22). Yajieshaba is one
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of the classic prescriptions of Dai medicine that has been developed

into hospital preparations (23). Yajieshaba is widely used to treat

diseases triggered by allergies, such as food allergies and intestinal

inflammation (24). Palmatine (PAL), one of the main active

ingredients of Yajieshaba, has been found to significantly reduce

inflammatory factors in the sera of ovalbumin (OVA)-sensitized

mice and to effectively alleviate the symptoms of food allergy (25).

In addition, an herbal formulation developed to treat food allergies

was found to counteract allergic reactions to peanuts by attenuating

IgE-mediated degranulation of RBL-2H3 and human skin mast

cells, and PAL was found to significantly inhibit the degranulation

of RBL-2H3 cells (26). Interestingly, PAL has been found to exert

significant anti-inflammatory effects in a wide range of diseases,

including kidney inflammation, liver inflammation, osteoarthritic

inflammation, pneumonia, and mucosal inflammation (27–31).

PAL treatment was found to significantly enhance the

transformation of LC3-II, the degradation of p62 and the

expression of the autophagic proteins ATG5 and ATG7 in a cell

model of alcoholic liver injury, thereby inhibiting hepatocyte

apoptosis (32). Of interest, Electrospun nanofibrous scaffolds,

PCL/GE/PALs, developed as excipients for loading PAL, were

found to contribute to the sustained release of PAL at skin

lesions, and this would suggest the possibility of topical

administration of PAL (33). These findings suggested that PAL

may be effective in the treatment of CSU.

The present study evaluated the immunomodulatory activities of

PAL in a rat model of OVA-induced CSU. The effects of PAL on CSU-

associated pathologic changes in skin and inflammatory factors were

investigated. The potential mechanisms of action of PAL were

explored, such as whether its activity involved the induction of

autophagy. These findings may provide a compelling rationale for

the clinical application of Yajieshaba and PAL in the treatment of CSU.
2 Material and methods

2.1 Animals

Twenty-four male Sprague-Dawley (SD) rats, aged 8 weeks and

weighing about 20 g, were obtained from Changzhou Cavens

Laboratory Animal Co. Ltd. (Animal Qualification Certificate No.:

SCXK (Su) 2022-0010). The rats were maintained at a temperature of

18-25°C and a relative humidity of 40-60%, with a 12 h light/dark

cycle and free access to food and water. All animal experiments were

approved by the Professional Committee for animal ethics of Yunnan

University of Chinese Medicine (Approval No. R-062022157). The

experimental animals were cared for and used according to the

guidelines of the American National Institute of Health, with every

effort made to minimize animal numbers and suffering.
2.2 Experimental schedule and model
replication

After one week of acclimatization, the rats were randomly

divided into four groups of six rats each. Rats in the OVA, OVA
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+loratadine (LOR) and OVA+PAL groups were intraperitoneally

injected with an alum suspension containing 1 mg OVA (S7951,

Sigma Aldrich, St. Louis, MO, USA) on days 0, 2, and 4 and with an

alum suspension containing 2 mg OVA on day 14. Rats in the OVA,

OVA+LOR, and OVA+PAL groups were intragastrically injected

with saline, 0.9 mg/kg LOR (HY-17043, MCE, Shanghai, China),

and 40 mg/kg PAL (AFBF2751, ABPHYTO, Chengdu, China),

respectively, once a day on days 5-14. Rats in the Control group

were intraperitoneally and intragastrically injected with saline

according to the above schedule (Figure 1A). LOR, a second-

generation histamine, was chosen as a positive control because it

is used in the first-line treatment of CSU (34).
2.3 Blood and tissue samples

Orbital blood was obtained from each rat 1 h after the last

administration of drug, and the blood samples were placed in PU

tubes. After blood sampling, the rats were euthanized by cervical

dislocation specified in the AVMA Guidelines for the Euthanasia of

Animals: 2020 Edition. Skin tissue samples were obtained from the

shaved back of each rat. During the study period, none of these

animals developed humane endpoint indications, such as

non minus;feeding, dyspnea, convulsion or hypothermia, or

died prematurely.
2.4 Endpoint indicators

2.4.1 Scratching behavior
Beginning 10 min after the last injection of OVA, rat scratching

behavior was monitored for 20 min. Indicators of scratching
Frontiers in Immunology 03
included scratching the head with a front paw, scratching the

trunk with a back paw, and mouthing all parts of the body.

2.4.2 Hematoxylin-eosin staining
The skin tissue samples were fixed overnight in 4%

paraformaldehyde at 4°C, dehydrated using a gradient of low to high

concentrations of ethanol, and soaked in xylene twice for 1 h each.

Tissue samples were embedded in paraffin and cut into 5 mm thick

sections. The paraffin sections were baked in an electrically heated oven

at 60°C for 3 h, deparaffinized with xylene, dewaxed using a gradient of

high to low concentrations of ethanol in water, and washed with

distilled water. The samples were stained using dyes from the HE

staining kit (KGA224, KeyGEN Biotech, NanJing, China). The sections

were dehydrated and dried using a gradient of low to high ethanol

concentrations, and the specimens were transparent to xylene and fixed

with neutral gum. Randomly selected fields of view were photographed

using a phase contrast microscope (Olympus Corporation, Japan) and

a 100× magnification field of view.

2.4.3 Measurement of cytokine concentrations in
skin tissues

Skin tissue samples were washed with pre-cooled PBS, weighed

and sheared. Tissue was added to PBS at a weight-to-volume ratio of

1:9 in a glass homogenizer and ground on ice. The homogenates

were centrifuged at 5000 × g for 10 min, and the supernatants

decanted. The concentrations of interleukin (IL)-4 (SEKR-0004;

Solarbio, Beijing, China), IL-6 (SEKR-0005; Solarbio), IL-12 (E-EL-

R0064c; Elabscience, TX, USA), IL-17A (E-EL-R0566c;

Elabscience), IL-23 (E-EL-R0569c; Elabscience), and interferon

(IFN)-g (E-EL-R0009, Elabscience) in skin tissues were

determined by ELISA at 450 nm using a microplate reader

(Berthold Technologies GmbH, Beijing, China).
B

C

A

FIGURE 1

Experimental protocol (A). The effects of PAL on scratching behavior (B) and skin histopathology (C). Black arrows: inflammatory cell infiltration.
Green arrow: capillary dilation. Blue arrows: collagen fiber bundles broken and lightened. Data are presented as mean ± standard deviation (SD).
###P<0.001 vs. Control group. *P<0.05 vs. OVA group. OVA, ovalbumin; LOR, loratadine; PAL, palmatine.
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2.4.4 Toluidine blue staining
Wax slices of skin tissue sections were soaked in 0.5% toluidine

blue solution (G1032, Servicebio, Wuhan, China) for 30 min at

room temperature, washed in distilled water and immersed in 0.5%

glacial acetic acid solution for 5 sec. The slices were dehydrated

using a gradient of low to high concentrations of ethanol, immersed

in clear xylene, cemented using neutral gum, and photographed

under a light microscope (Olympus Corporation, Tokyo, Japan).

Mast cells were counted in six samples per group at a magnification

of ×100.
2.4.5 Mast cell tryptase and eosinophil
protein X assays

Immunohistochemical assays were performed using ready-to-

use immunohistochemistry kits (KIT-5001, Maxim, Fuzhou, China)

containing express enzyme labeled sheep anti-Mouse, rabbit,

mouse/rabbit IgG, and rabbit anti-sheep IgG polymers. Paraffin

sections of skin tissue samples were deparaffinized, immersed in

0.01 mol/L citrate and microwaved for 20 min to extract antigens.

The sections were incubated in 0.03% H2O2 for 15 min to remove

peroxidases, and incubated for 20 min at room temperature in

normal goat serum blocking solution. The sections were incubated

with rabbit anti-TPSAB1 (1:50 dilution; 13343-1-AP, Proteintech,

Wuhan, China) or anti-EPX (1:100 dilution; bs-3881R, Bioss,

Beijing, China) antibody at 4°C overnight. The sections were

warmed to 37°C for 1 h and washed with phosphate buffer,

followed by incubations with secondary antibody (biotin-labeled

goat anti-rabbit IgG) and streptavidin for 30 min each at 37°C. The

sections were stained with DAB, counterstained with hematoxylin,

and sealed with neutral resin. The sections were photographed

under a light microscope (Olympus Corporation, Japan) at a ×200

magnitude, and the integrated optical density (IOD) of each field of

view was determined using Image-Pro Plus 6.0 software.
2.4.6 Serum concentrations of IgE, leukotriene
B4 and histamine

Blood samples in EP tubes were centrifuged at 3000×g for 10

min, and the serum samples removed, and frozen at -80°C (Thermo

Fisher Scientific, MA, USA). The serum concentrations of IgE

(SEKR-0019; Solarbio), LTB4 (CSB-E08035r; Cusabio, Wuhan,

China) and HIS (E-EL-0032c; Elabscience) were determined by

ELISA at 450 nm using a microplate reader (Berthold

Technologies GmbH).
2.4.7 Detection of autophagic vesicle number by
transmission electron microscopy

Skin tissue samples were incubated in overnight at 4°C in 3%

glutaraldehyde and fixed in 2% osmium tetroxide. The samples

were dehydrated using an acetone gradient, embedded in epoxy

resin, and cut into 70 nm ultrathin sections, which were incubated

in 2% aqueous uranyl acetate, 0.8% lead citrate for 3 h at 25°C. The

sections were washed in distilled water, and imaged at x12,000 using

a transmission electron microscope (Thermo Fisher Scientific). The

number of autophagic vesicles per unit field of view was calculated.
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2.4.8 Expression of Beclin-1, LC3, P62 and Ly6G
in skin tissues by immunofluorescence staining

Tissue sections embedded in paraffin were immersed twice in

xylene for 10 min each, dehydrated using high to low concentrations

of ethanol and washed twice in double-distilled water for 5 each. The

treated sections were placed in citrate buffer and microwaved for 5

min on high and 15 min on low for antigen repair. The tissue sections

were shaken dry and immediately surrounded with a histochemical

pen loop. The sections were incubated at room temperature for 10

min in incubated 0.1% TritonX-100, and washed three times with

PBS for 5 min each. The sections were incubated in blocking solution

for 30 min at room temperature, followed by incubation with primary

anti-LC3 A/B antibody (1:100), anti-Beclin1 monoclonal antibody

(1:50), anti-p62 polyclonal antibody (1:750), or anti-Ly6G polyclonal

antibody (1:100) at 4°C overnight. The sections were washed three

times with PBS. Beclin-1, LC3 and P62 were incubated with Alexa

Fluor 488 labeled secondary antibody (1:200) and Ly6G were

incubated with Alexa Fluor 594 labeled secondary antibody (1:200)

for 1 h, and again washed three times with PBS. The plates were

blocked by adding DAPI (sc-24941, Santa Cruz, CA, USA) dropwise.

The sections about Beclin-1, LC3 and P62 were viewed under a laser

confocal microscope, and Ly6G were viewed under a fluorescence

microscope, with randomly selected fields of view photographed.

Ly6G Positive cell %= Ly6G positive cell/Total cell in the field of view.
2.4.9 Expression of Beclin-1, LC3, P62, LKB1,
p-AMPK, AMPK, p70S6K1, p-p70S6K1, and
Atg5-Atg12 complex by western blotting

Skin tissue samples were washed with pre-cooled PBS, weighed and

sheared. The samples were added to RIPA buffer (P0013B, Beyotime,

ShangHai, China) containing PMSF (Solon, OH, USA) at a ratio of 100

mg sample per mL buffer to lyse the cells. The samples were centrifuged

at 12000 g for 5 min at 4°C, and the supernatants were transferred to

pre-cooled EP tubes. Protein concentrations of the supernatants were

quantified using BCA kits. An aliquot of 5×loading buffer was added to

each sample, and the samples were incubated in a boiling water bath for

10 min and loaded onto SDS-PAGE gels after adding appropriate

amounts of pre-cooled 1× electrophoresis buffer. The samples were

electrophoresed at 80 V for about 30 min; when the bands entered the

separator gel, the voltage was changed to 120 V, and the electrophoresis

was performed until the target bands reached their predetermined

positions. Samples were transferred to PVDF membranes (0.45 µm,

Millipore, Schwalbach, Germany) that had been activated with

methanol (Merch, Darmstadt, Germany) for 1 min and soaked in

membrane transfer buffer for 15 min. The membranes were stained

with Rexchip Red S dye for 5 min, washed twice with TBST, permeated

with TBS, transferred to a sealing solution containing 5% skimmed

milk powder in TBST, and sealed by shaking at room temperature for 1

h. The membrane was washed with TBST, sealed, and incubated

overnight at 4°C with primary antibody to beclin-1 (1:1000; 66665-1-

Ig, Prointech), LC3 A/B (1:1000; 4108, Prointech), P62 (1:5000; 18420-

1-AP, Prointech), LKB1 (1:1000; 3047, Prointech), AMPK (1:1000;

5831, Proteintech), p-AMPK (1:1000), p70S6K1 (1:5000 ratio), p-

p70S6K1 (1:500; ab32529, Abcam, Cambridge, UK), Atg5-Atg12

complex (1:1000; AAM79 Bio-Rad, CA, USA), or GAPDH (1:1000).
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The membranes were washed three times with TBST, followed by

incubation at room temperature for 1 h with goat anti-rat IgG H&L

(HRP; 1:10,000, ab150157, Abcam) or goat anti-rabbit IgGH&L (HRP;

1:10,000, ab6721, Abcam). The membranes were washed three times

with TBST, and fully immersed in equal volumes of enhanced

chemiluminescence (Thermo Fisher Scientific, Pittsburgh, PA, USA)

liquid A and B solutions for 5 min. Protein expression was detected

using a Tanon 6600 Luminescence Imaging Workstation and analyzed

using Image Pro Plus 6.0 software. Relative protein expression was

calculated as target protein gray value/inner reference protein

gray value.

2.4.10 Statistical analysis
Data are presented as mean ± standard deviation (SD). Multiple

comparisons of normally distributed data were performed using

ANOVA tests, followed by Bonferroni’s correction. Multiple

comparisons data with unequal variance were performed using

Welch’s ANOVA test followed by Dunnett’s T3 post hoc test.

Multiple comparisons of abnormally distributed data were

performed using the Kruskal−Wallis test followed by the Dunn’s

post hoc test. All statistical analyses were performed using

GraphPad Prism 9.0 software (GraphPad Software, Inc.), with

P<0.05 considered statistically significant.
3 Results

3.1 Effect of PAL on scratching behavior

The number of scratches made by rats in the OVA group was

significantly higher than that made by rats in the Control group (P <

0.001; Figure 1A). The numbers of scratches made by rats in the

OVA+PAL and OVA+LOR groups were lower than the number

made by rats in the OVA group, with the difference being

statistically significant in the OVA+PAL (P < 0.05), but not in the

OVA+LOR group (Figure 1B).
3.2 Effect of PAL on skin histopathology

HE staining showed that skin tissue of rats in the Control group

was structurally complete and uniform in thickness. The epidermal

cells and collagen fibers were uniformly stained, with complete

morphology and regular arrangement (Figure 1C). CSU-like

pathologic changes, such as capillary dilatation and inflammatory

cell infiltration, were not observed. Skin tissue of rats in the OVA

group was thinned and the structure was broken. Epidermal basal

cells were ruptured and disorganized, and the intercellular space was

visibly edematous. The collagen fiber gaps were wider and staining

was lighter (blue arrow). Typical CSU-like histopathological changes,

such as capillary dilatation (green arrow) and inflammatory cell

infiltration (black arrow), were observed. The skin tissue structure

of rats in the OVA+PAL and OVA+LOR groups was more complete.

The epidermal basal cells were not obviously broken and were

arranged in an orderly manner. The widening of collagen fiber

gaps was mild, and the color did not become lighter. Obvious
Frontiers in Immunology 05
edema, capillary dilatation, inflammatory cell infiltration and other

typical CSU-like histopathological changes were not observed.
3.3 Effect of PAL on inflammatory factors
IL-4, IL-6, IL-12, IFN-g, IL-17A, IL-23 and
neutrophil recruitment

Skin concentrations of IL-4, IL-6, IL-12, IFN-g, IL-23 and IL-17A
were all significantly higher in the OVA than in the Control group (P

< 0.001 each). Compared with the OVA group, however, the skin

concentrations of these inflammatory factors were significantly lower

in the OVA+PAL and OVA+LOR groups (P < 0.001 each; Figure 2).

Compared with the Control group, the mean fluorescence

intensity of Ly6G was significantly higher and neutrophil

recruitment significantly greater (P < 0.001 each) in the OVA

group. The proportion of positive cells of Ly6G and neutrophil

recruitment were significantly lower in the LOR (P < 0.01) and PAL

(P < 0.001) groups than in the OVA group (Figures 3A, C).
3.4 Effect of PAL on mast cells and EXP

The numbers of mast cells and the degranulation effect (blue

arrows) were significantly higher in the OVA group than in the

Control group (P < 0.001 each; Figures 3B, D–F), as were the IOD

values of MCT (green arrows) and EXP (black arrows) (P < 0.001

each). Compared with the OVA group, the numbers of mast cells

and the degranulation effect were significantly lower in the OVA

+PAL and OVA+LOR groups. In addition, the IOD values of MCT

and EXP were significantly lower in the OVA+PAL and OVA+LOR

groups than in the OVA group (P < 0.001 each).
3.5 Effect of PAL on levels of allergic
cytokines IgE, LTB4 and HIS

The serum concentrations of IgE, LTB4, and HIS were found to

be significantly higher in the OVA group than in the Control group

(P < 0.001; Figures 4A–C). Compared with the OVA group, however,

the serum concentrations of IgE, LTB4, and HIS were significantly

lower in the OVA+PAL and OVA+LOR groups (P < 0.001 each).
3.6 Effect of PAL on autophagic activity

The epithelial cells of rats in the Control group were found to be

structurally intact, with no obvious autophagic vesicles (red

arrows). In contrast, the epithelial cells in the OVA group were

irregularly shaped, with cytoplasmic swelling, an abnormal cellular

ultrastructure, and a small number of autophagic vesicles,

suggesting activation of autophagic activity. Fewer cellular

abnormalities were observed in the OVA+LOR than in the OVA

group, and the number of autophagic vesicles was higher in the

OVA+PAL than in the OVA group, although these differences were

not statistically significant. Epithelial cells in the OVA+PAL group
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were regularly shaped, and the abnormal cellular ultrastructure

observed in the OVA group was significantly reduced. The numbers

of autophagic vesicles were significantly higher in the OVA+PAL

group than in the OVA and (P < 0.01) Control (P < 0.001) groups.

Taken together, these results indicated that PAL could significantly

enhance autophagic activity in rat epithelial cells (Figures 4D, E).
3.7 Effect of PAL on the expression of
autophagy proteins

Immunofluorescence staining of skin tissue samples showed that

the levels of expression of Beclin-1 (P < 0.01) and LC3 (P < 0.001) were

significantly higher, while the level of P62 (P < 0.001) was significantly

lower, in the OVA than in the Control group. Compared with the OVA

group, the skin of rats in the OVA+LOR group showed significant
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increases in the expression of Beclin-1 and LC3 (P < 0.01 reach) and a

significant decrease in the expression of P62 (P < 0.05). Compared with

the Control group, skin samples from rats in the OVA+LOR group

showed significant increases in the expression of Beclin-1 and LC3 (P <

0.001 reach) and a significant decrease in the expression of P62 (P <

0.001). Similar to findings in the OVA+LOR group, skin samples from

rats in the OVA+PAL group showed significant increases in the

expression of Beclin-1 and LC3 (P < 0.001), and a significant

decrease in the expression of P62 (P < 0.001) compared with the

OVA group. Compared with the Control group, the skin of rats in the

OVA+PAL group showed significant increases in the expression of

Beclin-1 and LC3 (P < 0.001 each) and a significant decrease in the

expression of P62 (P < 0.001; Figures 5, 6A, B).

Western blotting also found that the level of expression of Beclin-1

was significantly higher in skin samples from the OVA than from the

Control group (P < 0.05). The levels of expression of LC3-I and LC3-II
B

C D

E F

A

FIGURE 2

Expression of the inflammatory factors IL-4 (A), IL-6 (B), IL-12 (C), IFN-g (D), IL-17A (E), and IL-23 (F) in the Control, OVA, OVA+LOR and OVA+PAL
groups of rats. Data are presented as mean ± standard deviation (SD). ###P<0.001 vs. Control group. ***P<0.001 vs. OVA group. OVA, ovalbumin;
LOR, loratadine; PAL, palmatine; IL, interleukin; INF, interferon.
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were higher, and the level of expression of P62 was lower, in the OVA

than in the Control group, but the differences were not statistically

significant. The levels of expression of Beclin-1, LC3-I, and LC3-II were

higher and the level of expression of P62 lower in skin tissues from the

OVA+LOR than from the OVA group, but these differences were not

statistically significant. Compared with the Control group, skin from

rats in the OVA+LOR group showed a significant increase in the level
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of Beclin-1 (P < 0.01), non-significant increases in the expression of

LC3-I and LC3-II and a significant reduction in the expression of P62

(P < 0.05). The levels of expression of Beclin-1 (P < 0.001) and LC3-I (P

<0.05) in skin samples were significantly higher in the OVA+PAL than

in the OVA group. In addition, the level of expression of LC3-II was

higher and the expression of P62 lower in the OVA+PAL than in the

OVA group, but these differences were not statistically significant.
B

C D

E F

A

FIGURE 3

The proportion of positive cells of Ly6G (A). Graphs of methylamine blue staining of mast cells and immunohistochemical staining of MCT and EXP
expression in the Control, OVA, OVA+LOR and OVA+PAL groups of rats (B). Fluorescence intensity of Ly6G (C). Mast cell number (D), MCT (E) and
EPX (F) integrated optical density. Blue arrows: mast cells. Green arrows: MCT expression. Black arrows: EPX expression. Data are presented as mean
± standard deviation (SD). ###P<0.001 vs. Control group. ***P<0.001 vs. OVA group. OVA, ovalbumin; LOR, loratadine; PAL, palmatine; MCT, mast
cell trypsin-like enzyme; MCT, mast cell trypsin; EPX, eosinophil protein X.
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Compared with the Control group, skin from rats in the OVA+PAL

group showed significantly increases in the expression of Beclin-1 (P <

0.001), LC3-I (P < 0.05), and LC3-II (P < 0.05) and a significant

reduction in the expression of P62 expression (P < 0.01)

(Figures 6C–F).

Evaluation of the expression of other autophagy proteins showed

that the levels of expression of p-LKB1, p-AMPK, Atg5, Atg12 and

Atg5-Atg12 complexes were significantly higher in the OVA+PAL

group than in both the Control and OVA groups. In addition, the

expression of p-p70S6K1 was significantly lower, in the PAL group

than in the Control and OVA groups. Please refer to the

Supplementary Materials for details of this part of figure (Figure S1).
4 Discussion

CSU is a common allergic disorder, the cause of which cannot

be determined in most patients (35). Manifestations of CSU include
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recurring red spots and bright wheals on the head, face and body

surface, and intense itching of the skin (36). These symptoms can

also lead to sleep disorders, anxiety, and other adverse effects,

seriously affecting a patient’s physical and mental health and

significantly reducing patient quality of life (37). Scratching

behavior is regarded as a behavioral indicator in UL rats to assess

the relief of itching associated with CSU (38). The frequency of

scratching was found to be markedly higher in UL than in Control

rats, with PAL and LOR treatment found to correct this behavior

and alleviate the itching symptoms in CSU. Using HE staining, the

present study found that PAL and LOR treatment was associated

with skin tissue changes in UL rats. Challenge with OVA alone was

associated with the typical pathological changes of CSU in the skin

of UL rats, such as edema and epithelial cell breakdown, as well as

inflammatory cell infiltration and capillary dilatation. These

pathologic, CSU-like changes in rat skin were markedly alleviated

by the administration of either LOR or PAL, with PAL being more

effective than LOR.
B

C D

E

A

FIGURE 4

Serum concentrations of IgE (A), LTB4 (B), and HIS (C), the numbers of autophagosomes (D) and autophagic activity (E) in the Control, OVA, OVA+LOR
and OVA+PAL groups of rats. Red arrows: autophagic vesicles. Data are presented as mean ± standard deviation (SD). ###P<0.001 vs. Control group.
**P<0.01, ***P<0.001 vs. OVA group. OVA, ovalbumin; LOR, loratadine; PAL, palmatine; IgE, immunoglobulin E; LTB4, leukotriene 4; HIS, histamine.
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The pathogenic mechanisms of CSU were found to be closely

associated with mast cell activation and eosinophilic inflammatory

infiltration triggered by the high-affinity IgE (39). When antigenic

substances that cause allergic reactions first enter a host, IgE binds

specifically and with high affinity to mast cell surface receptors,

sensitizing the host (40). Upon encountering the same antigen, the

antigen will bind specifically to IgE on the surface of mast cells, inducing

mast cell degranulation (41). Ultimately, this leads to CSU-like
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pathologic changes in skin tissue, resulting in allergic skin symptoms

such as bright wheals and itching (41). MCT is an active substance that

accounts for approximately 50% of the protein secreted following mast

cell degranulation, with increased MCT levels often considered a

biomarker of mast cell activation (42). Determination of mast cell

activation by immunofluorescence staining and measurements of the

levels of IgE and MCT showed that mast cell degranulation in response

to activation was substantially higher in UL than in Control rats.
B

C D

A

FIGURE 5

Immunofluorescence staining plots of Beclin-1 (A) and LC3 (B), Fluorescence intensity of Beclin-1 (C) and LC3 (D). Data are presented as mean ±
standard deviation (SD). ##P<0.01, ###P<0.001 vs. Control group. **P<0.01, ***P<0.001 vs. OVA group. OVA, ovalbumin; LOR, loratadine; PAL, palmatine.
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Moreover, treatment with LOR or PAL was found to effectively

attenuate mast cell activation, with PAL being more effective than LOR.

The activation of mast cells can also lead to the infiltration of

eosinophils and their release of several inflammatory mediators and

cytokines, which are involved in immune-inflammatory responses

to CSU (43). EPX is a unique indicator of eosinophils, both because

it is secreted only by eosinophils and because it the most abundant

cationic protein secreted by eosinophils, suggesting that EPX may
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be an indicator of the extent of eosinophilic infiltration of tissues at

the onset of an inflammatory response (44). Simultaneously, two

powerful pro-inflammatory mediators, LTB4 and HIS, are secreted

by activated mast cells to recruit inflammatory cells (45). LTB4 has

been shown to activate leukocytes and eosinophils, thereby

inducing vascular inflammation and tissue edema, whereas HIS

has been found to alter vascular permeability and stimulate nerve

endings, leading to bright wheals and itching (46).
B C

D E

F G

H

A

FIGURE 6

Immunofluorescence staining (A) and fluorescence intensity (B) of P62. Beclin-1, LC3-I, LC3-II, P62, and GAPDH protein bands in skin samples from
the Control, OVA, OVA+LOR and OVA+PAL groups of rats (C). Graphs showing the levels of expression of Beclin-1 (D), P62 (E), LC3-I (F), and LC3-II
(G) and LC3-II/LC3-I (H) in the four rat groups. Data are presented as mean ± standard deviation (SD). #P<0.05, ##P<0.01, ###P<0.001 vs. Control
group. *P<0.05, ***P<0.001 vs. OVA group. OVA, ovalbumin; LOR, loratadine; PAL, palmatine.
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Several common inflammatory cytokines have also been seen in

CSU. IL-12 has been found to contribute to an increase in the

number of Th cells, a T-cell subset that differentiates into Th1 cells;

these Th cells are involved in inflammatory responses and cellular

immunity, as well as in the production of several pro-inflammatory

factors such as IFN-g (47). IFN-g plays a pro-inflammatory role in

CSU by inducing the autocrine cysteine asparaginase, resulting in

the differentiation of skin tissue keratinocytes, a process regarded as

a form of apoptosis in skin diseases (48). IFN-g concentrations were
found to be markedly higher in patients with CSU than in the

general population (49).

IL-23, a member of the IL-12 family, has been found essential for

the differentiation, survival, and secretion of IL-17 by Th17 cells (50).

IL-23, a constituent of the IL-23/IL-17 inflammatory axis, regulates

IL-17 levels, inducing the release of pro-inflammatory mediators

from basal cells, such as endothelial cells, and recruiting

inflammatory cells, which can exacerbate inflammatory responses,

contributing to dermal edema and then to the appearance of bright

wheals (51). IL-6, a member of the IL-17 family with multidirectional

pro-inflammatory effects (52), has been shown to regulate the

differentiation and proliferation of T-cells, B-cells, and mast cells,

and to stimulate increased synthesis of C-reactive protein and

fibrinogen, all of which enhance inflammatory responses (53). IL-

17 also induces the induction of chemokines that recruit neutrophils

to sites of inflammation, thus exacerbating inflammatory responses

(54). Using the neutrophil-specific antibody Ly6G, the present study

found that PAL reduced the level of IL-17, which attenuated

neutrophil recruitment to sites of inflammation. IL-6 can also

induce coagulation abnormalities, the levels of which increased

markedly during the acute phase of CSU (55). IL-4, another

common and potent pro-inflammatory factor, is secreted by Th2

cells and induces mast cell value-added degranulation and release of

inflammatory mediators by directly inducing or indirectly mediating

IgE production, resulting in a vicious cycle of inflammation and

exacerbating inflammatory responses (56). The present study

confirmed that the levels of inflammatory mediators and pro-

inflammatory cytokines are significantly higher in UL than in

Control rats, suggesting that the former experience a severe

inflammatory response. These responses are attenuated by LOR

and PAL, with PAL having more potent activity.

Autophagy, which is strongly associated with the maintenance of

environmental homeostasis in the skin, has been shown to be a

potential target for the treatment of immune skin diseases (57).

During attacks on the immune system, autophagy can provide relief

by removing dead cells and pathogens while presenting antigens for

immune recognition (58). Because autophagy is the centerpiece of

innate immunity, abnormalities in autophagy usually trigger

inflammatory responses that exacerbate immune disorders (59).

Autophagy may play a key anti-inflammatory role by disrupting

inflammatory vesicle activity and reducing the secretion of

inflammatory mediators (60). Inflammatory responses triggered by

Toll-like receptor 3 were found to be effectively attenuated by increasing

autophagic flux in epidermal keratinocytes (61). Increasing autophagic

flux by enhancing AMPK-mediated autophagic activity and decreasing

P62 levels has been shown to markedly reduce allergic inflammation

(62, 63). Furthermore, metformin was found to ameliorate allergic
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contact dermatitis by activating autophagy to suppress macrophage

activation and NOD-like receptor pyrin structural domain protein 3

inflammatory vesicle activity (64). Activation of autophagy can also

alleviate imiquimod-induced psoriasiform dermatitis (65). Autophagy-

related proteins are highly expressed in epidermal cells, where they play

a therapeutic role following the occurrence of psoriatic inflammatory

responses (66). Jing Fang granules have been found to improve

autophagic flux by modulating LKB1/AMPK/SIRT1, thereby

alleviating glucose metabolism disorders and inflammatory responses

in mice with CSU (67). Although less is known about autophagy in

CSU, its critical importance remains evident.

Autophagy enhances normal cell survival by lysosomally degrading

damaged cells and their contents, thereby maintaining environmental

homeostasis and energy levels (68). The autophagic process can be

divided into three main steps: activation of autophagy, autophagosome

formation, and fusion degradation (69). LKB1 is a major kinase that

induces AMPK phosphorylation. Activation of the LKB1/AMPK

pathway has been found to effectively attenuate IgE-induced mast

cell degranulation, an important step in allergic diseases (70). High

AMPK levels have an anti-inflammatory effect, reducing the release of

inflammatory mediators (71). High expression of AMPK will also

reduce the level of the downstream factor mTOR, thus promoting

autophagy (63). The level of phosphorylated p70S6K1, which acts as a

downstream signal for mTOR to mediate the inhibition of autophagy,

is regarded as amarker of mTOR activity (72). The present study found

that the expression of LKB1 with phosphorylated AMPK was

significantly elevated, whereas the level of phosphorylated p70S6K1

was significantly decreased, in UL rats. Taken together, these findings

suggest that autophagy was initiated at the onset of UL.

These trends were strengthened following treatment with PAL

and LOR, confirming that PAL enhances the activation of

autophagy in UL rats. Beclin-1 has been found to regulate

autophagy and to form complexes, which induce autophagosome

production and maturation, mainly from the emergence of

autophagic activity to its peak (73). Beclin-1 is therefore an

essential factor in the formation of autophagosomes during

autophagy (74). The present study found that beclin-1 expression

was higher in OVA+PAL than in OVAUL rats, suggesting that PAL

could significantly enhance autophagosome formation.

Members of the Atg family are key proteins in the autophagy fusion

chain. A lysine residue in Atg5 is often linked to the C-terminal glycine

residue of Atg12, formomg a ubiquitin-like conjugation system (75).

This Atg5-Atg12 complex can help autophagic vesicles undergo

membrane elongation, while directly localizing on the outer

membrane of autophagic vesicles and determining the degree of

vesicle curvature to facilitate the next step of fusion (76). The Atg5-

Atg12 complex also allows LC3 to pool toward autophagosomes and

can induce the fusion of autophagosomes and lysosomes (77). LC3

exists in two forms, cytoplasmic LC3-I and membrane LC3-II, with the

key to autophagosomal lipid-membrane fusion being the formation of

membrane-lipidated LC3-II after the aminocoupling of cytoplasmic

LC3-I with phosphatidylethanolamine (78). LC3-I and LC3-II are

mainly responsible for the extension of the autophagosome

membrane, allowing further expansion of autophagosome volume

(79). LC3-II acts together with P62, the “garbage truck” in

autophagy, to recognize and wrap autophagic substrates, to
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continuously concentrate and aggregate these substrates, to transport

them to autophagic vesicles, and finally to bind them to lysosomes for

degradation (80). The present study showed that the levels of

expression of Atg5-Atg12 complex and LC3-II were significantly

higher, and P62 were markedly lower in the OVA+PAL and OVA

+LOR groups than in the OVA group, suggesting that the autophagy

fusion degradation process was significantly activated. Calculation of

LC3-II/LC3-I ratios showed that LC3-I expression was elevated in the

OVA, OVA+PAL and OVA+LOR groups, resulting in a decrease in

their LC3-II/LC3-I ratios. This may be explained as the PAL induces

the accumulation of LC3 I, which provides more substrate for the

conversion to LC3 II. Because the transition from LC3-I to LC3-II is a

dynamic process, total amounts may not always be consistent (81, 82).

Based on its transformation process, we speculate that it may be due to

the surge in autophagy function that causes autophagosomes and

lysosomes to fuse at speed, during which LC3-II on the outer

membrane is cleaved to produce excessive LC3-I, with LC3-II on the

inner membrane being degraded by lysosomal enzymes, reducing the

LC3-II/LC3-I ratio (83). It is not sufficiently convincing to show that

autophagy flux is altered by “LC3II/Loading Control protein” alone

(84). Therefore, we combined the results of several autophagy-related

proteins to analyze the results. It was observed that the OVA attack

resulted in an increase in the expression levels of LC3, Beclin-1, p-

LKB1, p-AMPK, Atg5, Atg12, and Atg5-Atg12, while P62 and p-

p70S6K1 expression decreased. Furthermore, the administration of

PAL and LOR is expected to further intensify these observed trends.

These findings indicated that autophagy had been activated in UL rats

after OVA challenge, but to a low degree. Following treatment with

PAL or LOR, the activities of various steps in autophagy increased to

counteract the deleterious effects of OVA. Moreover, PAL showed a

greater ability to activate autophagic flux than LOR.

In summary, the present study showed that PAL can effectively

alleviate itch and other CSU-like pathological changes in UL rats,

through a mechanism of action associated with the reduction of

inflammatory responses and increases in autophagic activity. PAL

was more potent than LOR, a drug clinically used to treat CSU.

These results provide a definite pharmacodynamic basis for further

research and development of PAL. It is worth noting that more and

more studies mention that type I autoallergy and type IIb

autoimmunity will coexist in the pathogenesis of CSU (85).

Therefore, we will plan to conduct relevant studies on the role of

PAL intervention on type II.b autoimmunity.
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