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A comprehensive cuproptosis
score and associated gene
signatures reveal prognostic and
immunological features of
idiopathic pulmonary fibrosis

Chuanqing Jing1†, Rong Fu1†, Xue Liu2, Guodong Zang2,
Xue Zhu2, Can Wang2 and Wei Zhang2*

1Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical
Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China, 2Department
of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese
Medicine, Jinan, China
Background: Cuproptosis, the most recently identified and regulated cell death,

depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic

pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in

IPF remains unclear.

Methods: We identified three cuproptosis patterns based on ten cuproptosis-

related genes using unsupervised consensus clustering. We quantified these

patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the

Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA

were used to analyze the functional differences in different molecular patterns.

Drug susceptibility prediction based on cuproptosis scores and meaningful gene

markers was eventually screened in combination with external public data sets,in

vitro experiments and our cases.

Results:Of the three types of cuproptosis-related clusters identified in the study,

patients in the clusterA, geneclusterB, and score-high groups showed improved

prognoses. Moreover, each cluster exhibited differential immune characteristics,

with the subtype showing a poorer prognosis associated with an immune

overreaction. Cuproptosis score can be an independent risk factor for

predicting the prognosis of IPF patients. GSEA showed a significant functional

correlation between the score and cuproptosis. The genes AKAP9, ANK3,

C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures

in IPF patients. The functional role of immune regulation in IPF was further

explored by correlating essential genes with immune factors. Also, the

nomogram constructed by cumulative information from gene markers and

cuproptosis score showed reliable clinical application.
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Conclusions: Cuproptosis patterns differ significantly in the prognosis and

immune characteristics of IPF patients. The cuproptosis score and five gene

signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a rare, chronic,

progressive, fibrotic, interstitial lung disease with unknown

etiology and pathogenesis (1). It mainly affects the middle-aged

and elderly population with a poor prognosis. It is clinically

characterized by progressive scarring or fibrosis of the interstitial

lung, leading to a gradual decline in lung function and eventual

death (2, 3). The prevalence of IPF in the general population ranges

from 2/100,000 to 29/100,000, with a reported male-to-female ratio

of nearly 2:1 and a median survival of only 2-3 years after diagnosis

(4). The pathogenesis of IPF is primarily associated with excessive

extracellular matrix (ECM) deposition, alveolar epithelial damage,

endoplasmic reticulum stress, and immune regulation imbalance

(5–7). Clinical treatment of IPF is limited; two anti-fibrotic drugs,

pirfenidone and nintedanib, slow the progression of pulmonary

fibrosis but fail to entirely cure it (8). Several prognostic assessment

systems have been established based on blood, bronchoalveolar

lavage fluid, and clinical indicators (9–11). However, individual

prognostic markers and unidimensional analysis lack reliability for

predicting the prognosis of this heterogeneous disease. Hence, it is

clinically crucial to identify the molecular subtypes of IPF and

develop multivariate predictive models.

Cuproptosis is a novel regulated form of cell death characterized

by excessive accumulation of copper ions in the body, leading to cell

death (12). Copper ions induce cell death by binding directly to

crucial enzymes of the tricarboxylic acid (TCA) cycle (DLAT,

GCSH, DLST, DBT), which undergo protein-lipid acylation to

form aggregates, leading to the loss of iron-sulfur cluster proteins,

thereby causing proteotoxic stress. The study further confirmed

how cells dependent on mitochondrial respiration are more

sensitive to copper ion carriers and that inhibition of the electron

transport chain complex and pyruvate carriers attenuated

cuproptosis (13, 14). Programmed cell death such as autophagy

and apoptosis have been shown to be closely related to IPF, but

copper death has been limitedly studied in IPF (15, 16).In addition,

it has been shown that copper ion carriers and copper transporter

proteins are associated with epithelial mesenchymal transition

(EMT), angiogenesis,which are closely related to the pathogenesis

of pulmonary fibrosis (17, 18). The disease tissue is often hypoxic

during the development of fibrotic disease affecting the body’s

energy metabolism and leading to obstruction of the tricarboxylic

acid cycle (19, 20). Such evidence suggested that there may be a

potential link between cuproptosis and IPF.
02
In this study, we constructed three subtypes of cuproptosis

based on cuproptosis-related regulatory genes. We also proposed

for the first time the need to assess the prognostic characteristics of

each IPF patient using the cuproptosis score, further screening the

gene markers and exploring the underlying immune-related

mechanisms of IPF. Finally, we constructed a nomogram of gene

markers and cuproptosis scores to establish a reference for

clinical prognosis.
Materials and methods

Data preparation and processing

The datasets used in this paper (GSE27957, GSE28042,

GSE38958) were downloaded from the Gene Expression Omnibus

database (GEO, https://www.ncbi.nlm.nih.gov/geo/). The

GSE27957 (21) and GSE28042 (21) datasets were used as the

discovery cohort for this study. The GSE27957 dataset is based on

the GPL5175 platform (Affymetrix Human Exon 1.0 ST Array

[transcript (gene) version]) and includes samples from 45

idiopathic pulmonary fibrosis patients (IPF) with peripheral blood

mononuclear cells (PBMC). The GSE28042 dataset is based on the

GPL6480 platform (Agilent-014850 Whole Human Genome

Microarray 4x44K G4112F), and the sequencing samples include

PBMC from 75 IPF patients. Survival for patients in both datasets

was calculated with transplant-free survival (TFS) information,

considering transplantation or death as the endpoint event. The

GSE38958 dataset based on the GPL5175 (Affymetrix Human Exon

1.0 ST Array) included PBMC sequencing data from 65 IPF patients

and 45 healthy individuals and was used as the validation cohort

(22). The dataset was merged using the “limma” package (Version

3.50.3) (23)and the “SVA” package (Version 3.42.0) (24) to

eliminate batch effects. Principal component analysis (PCA) was

used to determine the degree of convergence between patients in the

two datasets. Cuproptosis-related genes were derived from a recent

study by Peter Tsvetkov et al. (13).
Identification of prognostic features of
cuproptosis-related genes

The literature review shows ten cuproptosis-related genes

(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2023.1268141
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jing et al. 10.3389/fimmu.2023.1268141
CDKN2A) were identified in this study. Correlation and univariate

COX regression analysis of the ten genes were performed using the

software package “igraph” (Version 1.3.5), the “psych” program

package (Version 2.2.9), and the “reshape2” program package

(Version 1.4.4). The threshold of correlation between the genes

was set at p<0.0001. At the same time, survival analysis was

performed using the “survminer” program package (Version

0.4.9) and “survival” program package (Version 3.4-0) to identify

the prognostic features of the ten genes.
Consensus clustering analysis based on
cuproptosis-related genes

The “ConsensusClusterPlus” software package (25) was used

for the unsupervised clustering of data from 120 IPF patients based

on their mRNA expression profiles of the ten cuproptosis-related

genes. The patients were divided into Cluster 1 and Cluster 2 groups

based on optimal k values. Survival analysis by the “survminer”

package and “survival” package was used for generating the Kaplan-

Meier (K-M) survival curves. The “limma” package (Version 3.50.3)

(23) was then used to identify differences in cuproptosis-related

gene expression between patients with the two patterns, and

“pheatmap” (Version 1.0.12) was used to demonstrate the

relationship between clinical features, cuproptosis-related gene

expression, and subtypes.
Gene set variance analysis

The hallmark (h.a ll. 7.5.1. Symbols), KEGG (c2. Cp. KEGG.

7.5.1. Symbols), and Reactome (c2. Cp. Reactome. 7.5.1. Symbols)

pathway gene sets were downloaded from the MsigDb database

(https://www.gsea-msigdb.org/gsea/msigdb). The R package GSVA

(Version 2.11) (26) was used to score the pathways. The “limma” R

package (version 3.50.3.1) (23) was used to determine the

differentially enriched or depleted pathways and their biological

functions. We compared the pathway enrichment differences

between two molecular subtypes of cuproptosis. |log2 FC | > 0.1

and adj. p-value < 0.05 has been considered as significant

enrichment. The R package “pheatmap” (Version 1.0.12) was

used to draw the heatmap.
Differential gene expression and functional
enrichment analysis of two cuproptosis
molecular patterns

Principal component analysis (PCA) was used to observe the

distribution of patients falling between the two cuproptosis

molecular patterns. Then, differential gene expression analysis

was performed using the “limma” program package (23) for C1

and C2 subtypes to obtain the differentially expressed genes
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(DEGs). A total of 178 DEGs were obtained using |log2 FC|>0.5

and p<0.05 as thresholds to screen for DEGs.

Further, we performed a gene ontology (GO), and kyoto

encyclopedia of genes and genomes (KEGG) condensed analysis

of all the DEGs using the “ClusterProfiler” R package (Version

4.2.2) (27, 28).
Identification of clusters and prognostic
features associated with differentially
expressed genes between the two
cuproptosis molecular patterns

The 178 DEGs were subjected to univariate Cox regression

analysis, and a threshold of p-value < 0.05 was set that helped us

identify 12 cuproptosis differentially expressed genes (Cu-DEGs)

with prognostic significance. Unsupervised consensus cluster

analysis was performed on 120 IPF patients divided into cluster 1

and cluster 2 based on the expression of the Cu-DEGs. Next,

survival analysis was performed using the “survminer” program

package (Version 0.4.9) and the “survival” program package

(Version 3.4-0) for both types of patients and represented using

Kaplan-Meier (KM) curves to demonstrate their prognostic

features. The “limma” package (Version 3.50.3) (23) was used to

determine the expression levels of the Cu-DEGs between the two

types of patients, and the “pheatmap” package (Version 1.0.12) was

used to show the relationship between clinical features, Cu-DEGs

expression level, and cuproptosis gene clusters.
Cuproptosis score and prognostic analysis

Based on the 12 differential genes to screen the cuproptosis

features related to typing, those positively or negatively correlated

with the differential genes respectively were designated as AB

feature genes, which were downscaled using the Boruta algorithm,

and the transcriptome patient information was extracted for the

scoring using the method of Principal Component Analysis PCA,

with PC1A denoting the first component of feature A, and PC1B

denoting the first component of feature B, which was calculated

using the formula as follows: cuproptosis score = ∑PC1A - ∑PC1B.

The optimal cutoff value was determined by Kruskal-Wallis and

divided into high and low groups, followed by survival analysis of

patients in both groups. (29, 30).We used the “ggalluvial” R

program package (Version 0.12.3) for Sankey mapping to show

the relationship between the clusters, gene clusters, cuproptosis

score, and prognostic status. The differences in the cuproptosis

scores between clusters, gene clusters, and variable survival states of

patients were assessed using the Kruskal-Wallis test, and the

proportion of patients with varying states of survival in the two

scores was plotted. We further analyzed the diagnostic effectiveness

of the cuproptosis scoring system using the “pROC” package

(Version 1.18.0) (31).
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Validation of external datasets

Data from GSE38958 were analyzed for differences using the

“limma” package (Version 3.50.3) (23), setting cutoff values of

p<0.05 and |log2 FC|>0. Genes that were differentially expressed

in IPF patients and healthy individuals were screened and visualized

with volcano plots and heat maps. Next, differential expression

analysis of the 12 Cu-DEGs was performed, and seven genes

(AKAP9, ANK3, C6orf106, LYRM7, MBNL1, NPCDR1, LIG4)

were differentially expressed in the GSE38958 validation set.

Volcano, heat, and box plots were also plotted to visualize the

differences in the expression of these seven genes in healthy patients

compared to IPF patients in the GSE38958 dataset.
Identification of key genes

Among the seven genes mentioned above, the expression of six

genes that consistently correlated with prognosis prediction

included AKAP9, ANK3, C6orf106, LYRM7, MBNL1, and

NPCDR1. Correlation analysis was performed on each of these

six genes to demonstrate the expression of the 50 genes most

positively associated with each gene to assess the impact of the

critical genes on disease. In parallel, we performed a spearman

analysis of the correlations between the six essential genes and

represented them using heat maps using “ggplot2”. A t-test was

then used to correlate the vital genes and cuproptosis scores to

evaluate the relationship between critical genes and cuproptosis

scores.We also further analyzed the relationship between these

genes and fibrosis marker genes such as cytokines and

extracellular matrix genes (interleukin 4, collagen I, a-smooth

muscle actin,fibronectin 1) and visualized them in a heat map.
Drug sensitivity prediction

The “pRRophetic” R package (32) was used to predict the IC50

values of each sample for multiple drugs, and the “limma” package

(Version 3.50.3) (23) was applied to compare the differences

between the high and low fractional values, with lower IC50

values indicating greater sensitivity to the drugs. We screened for

chemical agents whose targets were associated with the

pathogenesis of pulmonary fibrosis and for which no cases of

drug-induced interstitial pneumonia were reported. We visualized

the results with the “ggplot2” program package (Version 3.3.6).
Immuno-infiltration analysis

A set of marker genes for immune-related cells and functions

was obtained through a literature search (33). After removing

immune cells absent from the blood samples, this study used the

“single sample gene set enrichment analysis” (ssGSEA) algorithm to

calculate the functional scores of immune cells and immune

functions for each IPF sample based on the expressed gene

signatures using the GSVA program package. We then compared
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their expression levels in different subtypes. Moreover, we analyzed

the correlation between immune cells, immune function, and

cuproptosis score using the t-test. In addition, we calculated the

content of 16 immune cell types in patients in the training set using

the CiberSort algorithm (34). We downloaded the list of marker

genes for immune modulators from the TISIDB database (http://

cis.hku.hk/TISIDB/). According to the expression levels of six

essential genes, the correlation analysis between them and the

expression of immune cells and immune functions obtained by

the ssGSEA algorithm was conducted to observe the function

characteristics of IPF in immunity. Next, the “corrplot” package

(Version 0.92) was used to visualize the correlation between the

immune cell content, the expression level of immune modulators,

and critical genes obtained by the Cibersort algorithm to get the

immune regulation mode of IPF.
Gene set enrichment analysis

Gene set enrichment between copper-mediated death high and

low-scoring models were obtained by setting adj p-value<0.05 and

false discovery rate (FDR) <0.05 for significantly enriched. The

“c2.cp.v7.2.symbols.gmt [Curated]” was used as a gene set for GSEA

to observe signaling mechanisms between different scores (35). In

addition to correlation analysis, this study also carried out single

gene GSEA analysis using the R package “clusterProfiler” for the six

selected vital genes. The 50 genes most closely related to each

essential gene were selected as input values, and p<0.05 was

considered significant enrichment to identify the signaling

pathways related to essential genes (27).
Single-cell analysis

In order to further understand the role of key genes in IPF, the

GSE132771 dataset (5) was downloaded from the GEO database,

including single-cell sequencing samples of lung tissues from three

patients with IPF and three normal subjects, and the data were

subjected to quality control and normalization analysis, with the

following criteria: minGene=200, maxGene=4000, pctMT=10.

Sample batches were removed using the “Harmony” program

(Version 1.1.1). Cell annotation was performed using the

“SingleR” package (Version 1.8.1). Subsequently, the “reshape2”

(1.4.4) and “ggplot2” packages (3.4.3) were used to map the

proportions of each cell subpopulation and the subcellular

localization of key genes.
In vitro study

Modeling was performed using human embryonic lung

fibroblasts, the MRC-5 cell line was purchased from Procell

manufacturer, and the cells were cultured in MEM (with NEAA)

medium containing 10% FBS as well as 1% P/S double antibody at

37°C in a 5% CO2 air environment. The cells were stimulated with

10ng/ml TGF-b1 for 48h for model construction of pulmonary
frontiersin.org

http://cis.hku.hk/TISIDB/
http://cis.hku.hk/TISIDB/
https://doi.org/10.3389/fimmu.2023.1268141
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jing et al. 10.3389/fimmu.2023.1268141
fibrosis.Total RNA and protein were collected for qPCR and protein

blotting analysis. Relevant experimental steps were performed

according to standard protocols. Relevant primary antibodies

were: anti-AKAP9 (ab237752,Solarbio),anti-ANK3 (27980-1-ap,

Solarbio), anti-LYRM7 (GB115266, Proteintech), anti-MBNL1

(66837-1-Ig,Solarbio), anti-a-sma (14395-1-ap,Solarbio).anti-

ACTIN (GB15001, Proteintech). Antibodies to C6ORF105 could

not be obtained, so its protein was not tested. Cells after modeling

were treated with pirfenidone, nidanib, NVP.BE2235, AP24534,

Lenalidomide,Nilotinib (B2288-100, A8252-25, A8246-5.1, A5467,

A4211-100, A8232-250, APExBIO) using Saline was used as a

control, and the number of active cells was determined by

CellTiter-Glo Luminescent Cell Viability Assay method (G151,

Promega, USA) according to the instructions of the kit procedure.

All in vitro experiments were repeated 3 times.
Validation of clinical samples

Peripheral blood was collected from 14 IPF patients in our

hospital from January to December 2022, and 10 healthy volunteers

were recruited. All participants signed an informed consent form

and were approved by the Ethics Committee of the Affiliated

Hospital of Shandong University of Traditional Chinese Medicine.

Since the annotation of the NPCDR1 gene was canceled, we

examined the mRNA expression levels of AKAP9, ANK3,

C6orf106, LYRM7, and MBNL1 genes in the peripheral blood of

14 IPF patients and ten healthy individuals by qRT-PCR. And 3

normal samples and 3 disease samples were randomly selected for

protein blotting analysis of key genes, C6ORF105 Reliable antibodies

could not be obtained, so they were not determined. Relevant

antibody information is as follows: anti-AKAP9 (30290-1-AP,

Proteintech Group), anti-ANK3 (27980-1-AP, Proteintech Group),

anti-LYRM7 (ab151089, Abcam), anti-MBNL1 (66837-1-Ig.

Proteintech Group), anti-actin (GB11001, Servicebio), and

experiments were performed according to standard protocols.

The diagnostic effects of these five gene markers were then

analyzed using the “pROC” (Version 1.18.0) (31) package, and

receiver operating characteristic (ROC) curves were plotted using

“ggplot2” (Version 3.3.6).

Total RNA was extracted using the RNAExpress Total RNA Kit

(G3013, Servicebio, China). The RNA was reverse transcribed using
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the RT first strand cDNA Synthesis Kit. We used 2× SYBR Green

qPCR Master Mix (None ROX) (Servicebio, China) for RT-qPCR

using Bio-Rad CFX96 (Applied Biosystems, USA). These primers

are listed in Table 1.
Construction of the nomogram model

We used the “RMS” (Version 6.2.0) software package to create

IPF prognostic column line graphs for further informing the clinical

prognosis of the screened gene markers and cuproptosis scores.

Calibration and decision curve analysis (DCA) were used to

estimate the predictive power of the column line graphs.
Statistical analysis

All statistical analyses were performed using R software 4.1.1.

Wilcoxon or t-test was used to analyze the differences between the

two groups of variables. Correlations between the variables were

determined using Pearson’s or Spearman’s correlation tests.

Univariate cox regression analysis and multifactor cox analysis

were used to assess the prognostic factors, and hazard ratios (HR)

were calculated with a confidence interval (CI) of 95%. All statistical

t e s t s we r e two - t a i l ed , and p<0 . 05 was cons ide r ed

statistically significant.
Results

Identification of prognostic features of
cuproptosis-related genes

At first, patients with IPF in the two datasets, GSE27957 and

GSE28042, were combined and analyzed according to Figure 1.

Treatment was done to remove batch effects so that the two cohorts

of patients could be fused for subsequent analysis (Figure 2A).

Correlation and univariate regression analyses were then performed

among ten copper death genes (Figure 2B). The results showed that

PDHA1, LIAS, and GLS were prognostic protective factors, FDX1,

LIPT1, DLD, DLAT, PDHB, MTF1, and CDKN2A were associated

with poor prognosis, and there were significant correlations among
TABLE 1 The primer sequences of cuproptosis regulated genes.

Gene
Sequence (5′–3′)

Forward Reverse

GAPDH GGAAGCTTGTCATCAATGGAAATC TGATGACCCTTTTGGCTCCC

AKAP9 AGAGTGAGAAACCAAGCCAAGA CTTCAGTTCAGCAACCACCATT

LYRM7 AAGAAAATAGAAGAGAACTGGTCCC ATATGCCAGTTCAGGGAAAATGTC

ANK3 ACAACCAATGTTTCAGCCAGAT CATCGCAAGGAAGATTCTACGG

MBNL1 CAGTTGGAGATAAATGGACGCAA TGGAGAAACAGGTCCCAGATAG

C6orf105 GTCCTAGATACTGTCATCCCCGTGT CATAGGATGCGGCTGATGTAAG
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the ten genes. Survival analysis showed that the K-M survival curves

of four genes (PDHA1, LIAS, GLS, CDKN2A) had prognostic

significance (Figure 2C). These preliminary observations

suggested that cuproptosis-related genes may be essential to study

in IPF.
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Clinical value of cuproptosis-related
molecular patterns in IPF patients

Based on the expression of ten cuproptosis-related genes, an

unsupervised clustering algorithm was used to classify 120 IPF
A

B

C

FIGURE 2

Prognostic features of cuproptosis gene. (A) PCA diagram before and after data merging. (B) Results of correlation analysis between genes and
univariate regression analysis of genes. (C) K-M survival curve for each gene. PCA, principal component analysis; K-M, Kaplan–Meier.
FIGURE 1

Flow chart.
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patients into two molecular patterns (CluserA, n=48; ClusterB, n=72;

Figure 3A). The two cuproptosis molecular patterns had different

prognostic trends, and patients with ClusterA type appeared to have

longer survival times than the other cluster (Figure 3B). Differential gene

expression analysis showed LIAS and GLS expression to be significantly

higher in ClusterA than ClusterB, and FDX1, MTF1, and CDKN2A

expressions were significantly higher in ClusterB, corroborating the

trend of the previous analysis (Figure 3C). We also analyzed the heat

map of the clinical features between the two different molecular patterns

in IPF patients (Figure 3D). There is heterogeneity between the clinical

features of the two molecular models of cuproptosis.
Analysis of gene set variation in different
cuproptosis-associated molecular patterns

GSVA was used to compare the functional differences between

the two cuproptosis-associated molecular patterns. The Hallmark

gene sets, KEGG, and Reactome pathway gene sets were

downloaded separately from the Msigdb database, and the

pathways were scored using the R package “GSVA”. The results

showed that MYC Targets V1, protein mane, ribosome, RNA

degradation, spliceosome, and ALK mutants bind TKIs,

RHOBTB2 GTPase cycle, regulation of pyruvate dehydrogenase

(PDH) complex pathway is significantly enriched in ClusterA. At

the same time, ClusterB-mediated enriched cascades included

FGFR1, FGFR1 ligand binding and activation, acetylcholine

neurotransmitter release cycle, NF-kB is activated and signals

survival, termination of O-glycan biosynthesis, Notch signaling

pathway, VEGF signaling pathway, non-small cell lung cancer,

Ether lipid metabolism, Wnt/b-Catenin signaling, and other

(Figures S1A–C). This suggests that there are also significant

differences in the biological functions of the two molecular models.
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Identification and functional enrichment
analysis of differential genes based on
cuproptosis-associated molecular patterns

Figure 4A shows the two types of patients, followed by a

differential gene expression analysis of the two cuproptosis-related

molecular patterns (clusterA and clusterB), which yielded 178

DEGs, depicted in the volcano plot for the differential analysis

(Figure 4B). GO analysis found that the regulatory subsets of

cuproptosis-related genes were enriched for the terms: T cell

activation, lymphocyte differentiation, mononuclear cell

differentiation regulation, transcription regulator complex,

basolateral plasma membrane, cytosolic ribosome, DNA-binding

transcription activator activity, RNA polymerase I-specific, lipid

droplet, ubiquitin-like protein transferase activity. In addition,

KEGG analysis showed that the genes were involved in

Coronavirus disease-COVID-19, viral carcinogenesis, ribosome,

apoptosis, Apelin signaling pathway, PPAR signaling pathway,

and other signal transduction pathways. (Figures 4C–F). GO

analysis and KEGG analysis further indicated that cuproptosis-

genes are involved in the regulation of a variety of biological

activities that are closely related to the development of IPF.
Clinical value of two cuproptosis-gene
clusters in IPF

Univariate COX analysis was performed on 178 differential

genes (DEGs), and 12 differential genes (Cu-DEGs) with significant

correlation (p. value < 0.05) with prognosis in IPF patients were

screened (Supplementary Table 1), IL8RA, DDIT4L, LIG4 as poor

prognosis genes, C6orf105, TRERF1 C8orf15, ANK3, MBNL1,

LYRM7, AKAP9, NPCDR1, and CENPK were associated with
A

C

B D

FIGURE 3

Clinical value of cuproptosis molecular patterns in IPF patients. (A) The consensus clustering of cuproptosis genes. (B) K-M survival analysis.
(C) Differential expression of cuproptosis genes between different clusters. (D) Relationship between clinical features and clusters. IPF, Idiopathic pulmonary
fibrosis; Cluster A= Cluster 1, Cluster B= Cluster 2; TFS, Transplant-free survival; *P < 0.05; **P < 0.01; ***P < 0.001; ns, No statistical significance.
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prognostic protection in IPF (Figure 5A). Unsupervised clustering

was used to classify the 120 IPF patients into two clusters

(geneClusterA, n=55 and geneClusterB, n=65; Figure 5B) based

on the expression of 12 Cu-DEGs. K-M survival curves showed that

patients in geneClusterB had significantly better survival time than

geneClusterA (p<0.05) (Figure 5C). The characteristics of each

clinic showed the differences in Cu-DEGs expression in IPF

patients with two gene clusters, corroborating the previous trend

of univariate Cox analysis (Figure 5D). Interestingly, patients in

geneClusterB were also primarily clustered in the cuproptosis

molecule pattern ClusterA. Figure 5E differential analysis showed

that IL8RA and DDIT4L were significantly more expressed in

geneClusterA than in geneClusterB, and C6orf105, TRERF1,

C8orf15, ANK3, MBNL1, LYRM7, AKAP9, NPCDR1, CENPK in

geneClusterB expression was more significant.Re-clustering by

differential gene expression was further screened to characterize

the differences between the two groups of patients.
Establishment of a cuproptosis
scoring system

The cuproptosis score of each IPF patient was calculated based on

principal component (PCA) analysis, and 120 patients were divided

into high and low score arrays (score-low, n=26 and score-high, n=

94). The K-M survival curve showed that a higher cuproptosis score

significantly correlated with better prognosis of patients (p<0.01)
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(Figure 6A). Figure 6B shows the differences in the distribution of

cuproptosis scores and survival status among IPF patients with

different subtypes. Cuproptosis scores were significantly higher for

ClusterA compared to ClusterB (p=1.9e-06; Figure 6C), while

geneClusterB had significantly higher cuproptosis scores than

geneClusterA (p<2.22e-16; Figure 6D), consistent with our previous

analysis. Intriguingly, the proportion of patients with TFS was as high

as 57% among patients with high cuproptosis scores, while only 31%

among patients with low cuproptosis scores (Figure 6E). Figure 7F

shows that patients with a survival label defined as TFS had a

significantly higher cuproptosis score than those labeled as Non-

TFS (p=0.0054), which is of great value. Next, GSEA analysis was

performed for both cuproptosis scoring systems. The low-scoring

group was associated with neutrophil degranulation, ECM-receptor

interaction, and the human complement system as a function

(Figures S2A–C). The high-scoring group showed significant

enrichment of lysine degradation, rRNA processing, T cell receptor

signaling pathway, electron transport chain pathway, and other

biofunctional pathways (Figures S2D–G). Univariate Cox

regression analysis showed that gender and cuproptosis score were

significantly associated with patient prognosis (Figure S1H).

Multifactorial Cox regression analysis demonstrated that

cuproptosis score was an independent risk factor for IPF (hazard

ratio [HR]: 0.834, 95% confidence interval [CI]: 0.747- 0.931, p =

0.001; Figure S1I). The ROC curve indicated that the cuproptosis

score had good diagnostic efficacy (AUC=0.751, CI: 0.665-0.837.

Figure S4A). High scores may mean better prognosis for IPF patients.
A B C

D E F

FIGURE 4

Differential gene expression and functional enrichment analysis among clusterA and clusterB. (A) PCA; (B) Volcano plot depicted the down- (blue)
and upregulated (red) genes between clusterA and clusterB; (C) GO-BP analysis; (D) GO-CC analysis; (E) GO-MF analysis; (F) KEGG analysis. BP
Biological Process; MF Molecular Function; CC Cellular Component.
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Immunological characteristics of different
subgroups of IPF and the relationship
between immunity and cuproptosis score

The analysis of immune cells and immune function in different

clusters of copper death to identify differences in immune cells and

immune function among different subtypes showed that: among the

molecular patterns regulated by the ten cuproptosis-related genes,

clusterA scored higher in B cells, iDCs, and HLA, while clusterB

scored higher in CD8+ T cells and functions such as APC co-

stimulation, CCR, and Inflammation-promoting (Figures 7A, B).

Among the gene clusters regulated by the 12 differentially expressed

genes, geneClusterA was significantly enriched in pDCs and

immune functions such as CCR and Parainflammation. In

contrast, geneClusterB was enriched considerably in immune cells

such as B cells and T helper cells and processes such as HLA and T

cell co-stimulation (Figures 7C, D). In the high-scoring group,

immune cells such as B cells, T helper cells, and check-point, HLA,

T cell co-inhibition, T cell co-stimulation were significantly
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enriched. In the low-scoring group, DCs showed higher

enrichment (Figures 7E, F). Interestingly, this distribution of

immune characteristics among different clusters of cuproptosis

was broadly consistent with the trends in clinical and prognostic

markers distribution. Next, we analyzed the correlation between

cuproptosis score and immune cells and function. The results

showed that the cuproptosis score was significantly positively

correlated with B cells, T helper cells, and T cell co-stimulation.

At the same time, it was significantly negatively correlated with

DCs, parainflammation, and CCR (Figures 7G–L). IPF is a

highly heterogeneous disease, and immune analyses helped

uncover different immune characteristics among other clusters

of cuproptosis.
Validation of external datasets

Differential analysis was performed in the GSE38958 dataset,

which revealed that the top 40 genes with differential expression in
A B C
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E

FIGURE 5

Clinical value of cuproptosis gene clusters. (A) Univariate COX analysis of 12 genes with prognostic significance. (B) The consensus clustering of Cu-
DEGs. (C) K-M survival analysis of gene clusters. (D) Relationship between clinical features, Gene expression and geneclusters. (E) Differential
expression of Cu-DEGs between different gene clusters. genecluster A= genecluster 1, genecluster B= genecluster 2; *P < 0.05; **P < 0.01; ***P <
0.001; ns, No statistical significance.
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the healthy population and IPF patients were displayed (Figures 8A,

B). Twelve differentially expressed genes (Cu-DEGs) obtained from

the previous analysis were also validated for differential expression

in the GSE38958 dataset, and seven genes with differential

expression were obtained and displayed (Figures 8C, D).

Figure 8E shows the differential expression analysis, which

revealed the expression of genes such as C6orf105, LIG4, ANK3,

MBNL1, LYRM7, AKAP9, and NPCDR1 were significantly higher in

the healthy control patients than in the IPF patients. In this analysis,

genes associated with IPF were initially identified.
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Screening and functional characterization
of key genes

Among the seven genes obtained above, the expression of six

was consistent with prognosis according to the multifactorial Cox

analysis in Figure 5A (C6orf105, ANK3, MBNL1, LYRM7, AKAP9,

NPCDR1). We defined these six genes as critical for the prognostic

assessment of IPF. Subsequently, we performed correlation analysis

for each of the six essential genes to show the expression of the 50

genes most positively associated with each gene, and the results
frontiersin.o
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FIGURE 6

Establishment of cuproptosis scoring system. (A) K-M survival analysis between high and low score groups. (B) Sankey chart shows the relationship
between subtypes, score, and prognostic status. (C) Box plot of score difference for cuprortosis clusters. (D) Box plot of score difference for
cuprortosis geneclusters. (E) The ratio of different survival status to high and low score. (F) Differences in survival status and score. Non-TFS,
Transplanted or death.
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showed a significant association between these six genes and other

genes (Figure S3), indirectly indicating that the six essential genes

have a significant impact in IPF. Single-gene GSEA of these six

genes was performed, and the results of Figure 9 show that: AKAP9

gene in the adaptive immune system, cellular responses to external

stimuli, transcriptional regulation by TP53, RNA Polymerase II

transcription, and other pathways were significantly enriched.

ANK3 gene and SUMO E3 ligases SUMOylate target proteins,

RNA Polymerase II transcription, metabolism of RNA and rRNA

processing, etc., showed a significant positive correlation. C6orf105

gene and metabolism of RNA, gene expression (transcription), SRP-

dependent cotranslational protein targeting to membrane, Major

pathways of rRNA processing in the nucleolus and cytosol were

significantly correlated. LYRM7 gene showed a significant

correlation with the metabolism of RNA, cellular responses to

stress, gene expression (transcription), and other functions of

transport of mature mRNA derived from an intra-containing

transcript. MBNL1 and metabolism of RNA, processing of capped

intron-containing pre-mRNA, rRNA processing, signaling by Rho

GTPases, miro GTPases, and RHOBTB3 are significantly

correlated. NPCDR1 gene and L13a-mediated translational

silencing to Ceruloplasmin expression, Metabolism of RNA,

Major pathways of rRNA processing in the nucleolus and cytosol

were significantly correlated. Consistently, the six essential genes
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were significantly enriched in ribonucleic acid metabolism,

transcriptional modifications of mRNA, and protein translation.

Key genes are consistent across biogenesis pathways.
Drug sensitivity analysis based on
cuproptosis score

Extracellular matrix deposition, abnormal neovascularization,

fibroblast-myofibroblast transformation, and inflammatory stimuli

are closely associated with pulmonary fibrosis (5, 7). We screened

drug targets related to the pathogenesis of pulmonary fibrosis

among 138 chemical drugs for sensitivity analysis and identified

12 drugs, including AZ628, AZD.0530, BMS.509744, and

NVP.BEZ235, Sunitinib, WH.4.023, AP.24534, Camptothecin,

Lenalidomide, Nilotinib, PD.173074, and X681640, causing

significant clinical differences. The data showed six drugs, AZ628,

AZD.0530, BMS.509744, and NVP.BEZ235, Sunitinib, and

WH.4.023 had significantly higher half-inhibitory concentrations

in the high cuproptosis score group than in the low score group,

suggesting that the latter was more sensitive to these six drugs.

AP.24534, Camptothecin, Lenalidomide, Nilotinib, PD.173074, and

X681640 had significantly higher half-inhibitory concentrations in

the low cuproptosis score group than in the high score group; stated
A B C
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FIGURE 7

Immune characteristics and correlation between different coproptosis subtypes. (A, B) Immunological characteristics of different molecular patterns of
coproptosis. (C, D) Immune characteristics of different coproptosis geneclusters. (E, F) The immune characteristics between different coproptosis score.
(G–L) Correlations between immune cells, functions, and coproptosis score. HLA, human leukocyte antigen; DCs, dendritic cells; CCR, Cell chemotaxis.
*P < 0.05; **P < 0.01; ***P < 0.001; ns, No statistical significance.
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differently, patients in the high cuproptosis score group were more

sensitive to these drugs (Figure 10). Currently, these drugs are

mainly used in the antineoplastic field, and their role in treating

pulmonary fibrosis remains to be investigated. In fact, some anti-

fibrotic drugs, such as nintedanib, were screened precisely among

the anti-tumor drugs (36). It is worth mentioning that the treatment

of oncology patients is at risk of concomitant interstitial pneumonia

(37, 38), and the sensitivity analysis of these drugs also provides a

strategy for the treatment of such patients. In order to validate the

effect of drug candidates on IPF, we screened four drugs for in vitro

validation, NVP.BEZ235, AP.24534, Lenalidomide, and Nilotinib,

among the above 12 drugs, which had undergone phase II clinical

trials and had better toxicological data and were easily accessible.

Two conventional therapeutic drugs, Pirfenidone well Nidanib,

were used as controls. Cell activity assay showed that at 1um

concentration, Lenalidomide, Nilotinib inhibited significantly

more than pirfenidone and nidanib, although AP.24534 had

similar inhibition at 1um concentration, but did not show more

advantageous inhibition at higher concentration (Figure S6).

However, drug testing between high and low scoring groups has

limitations in in vitro experiments and should be implemented in

future clinical trials by design. In conclusion, we preliminarily

explored drugs that are sensitive to IPF treatment, and

Lenalidomide, Nilotinib showed better inhibition.
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Correlation analysis of key genes and
immune-related factors

We found a significant positive correlation between the six

essential genes (Figure 11A). Meanwhile, we tested the correlation

between the six key genes and cuproptosis scores according to their

expression. We found that all six key genes significantly and

positively correlated with the cuproptosis score (Figures 11B–G),

a trend that confirmed the previous series of analyses. We further

performed a correlation analysis of the six critical genes with

immune cells and immune functions. As shown in Figure 11H,

the six crucial genes correlated with various immune cells and

functions. We then used 16 immune cell types obtained by the

CiberSort algorithm to show the correlations to perform a detailed

analysis of the immune cells dictating the expression of the essential

genes. The results showed that the vital genes had significant

positive correlations with CD4 naïve T cells, CD4 resting memory

T cells, and memory B cells and significant negative correlations

with activated NK cells and monocytes (Figure 11I). To further

explore the role of immunomodulation and key genes in IPF, we

investigated the correlation between immunostimulatory and

immunosuppressive factors. The results showed that CD28, ICOS,

CD25, and CD73 were positively correlated with the expression of

critical genes, and VISTA and CD267 were negatively correlated
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FIGURE 8

Gene validation in GSE38958 dataset. (A) Differential analysis volcano map for the GSE38958 dataset. (B) Heatmap of differential gene expression.
(C) Volcano map of seven differentially expressed genes in the CSE38958 dataset. (D) Heatmap of seven differentially expressed genes. (E) Box plot
of differential expression of seven genes. *P < 0.05; **P < 0.01; ***P < 0.001; ns, No statistical significance.
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with the expression of crucial genes; in other words, the negatively

correlated factors were associated with poor prognosis in IPF

(Figure 11J). Figure 11K shows that immunosuppressive factors

such as IL10, IL10RB, VEGFR, TGF-b1, and LGASL9 were

negatively correlated with critical genes, and CD96 was positively

correlated with IPF prognosis. Immunomodulation has an

important role in the development of IPF, and analyses have also

shown that inflammatory factors are associated with IPF

progression, and that immune imbalance is responsible for IPF

progression, and further studies still need to be explored at the

single-cell level.
Validation of clinical samples

Single-cell level analysis showed that fibroblast activation was

prominent in IPF, and subcellular localization of key genes also

showed that five gene markers in IPF lung tissue were more

prominently expressed in fibroblasts (Figure S5). Therefore

subsequent in vitro experiments were validated in fibroblasts. We

performed quantitative polymerase chain reaction experiments in
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14 IPF specimens and 10 normal specimens to verify the

bioinformatic results, which showed that genes such as C6orf105,

ANK3, MBNL1, LYRM7, and AKAP9 were significantly higher in

normal samples than in IPF samples, with the most significant

differences in the expression being of ANK3 and LYRM7

(Figure 12A). Protein imprinting results were the same as qPCR

results (Figures 12B, C). In vitro experiments, qPCR and protein

blotting experiments similarly validated the bioinformatics results

(Figures 12D–F). Comprehensive data analysis showed that LYRM7

showed the most significant difference in expression. To further

explore the relationship between the five key genes and the

pathogenesis of pulmonary fibrosis, we correlated the fibrosis

marker genes with the key genes, and the results showed that the

key genes were closely related to the extracellular matrix genes, and

in particular were strongly correlated with the genes, such as

ACTA2 and FN1, suggesting that there may be a potential link

between the key genes of cuproptosis and the fibroblast-

myofibroblast transformation, which also verified the results of

the GSEA in Figure S2 (Figure 12G). Diagnostic ROC analysis on

these five genes, as shown in (Figure S4B–F), showed five genes with

diagnostic value. Therefore, we used these genes as prognostic
FIGURE 9

GSEA analysis of single genes. The value of the abscissa represents enrichment analysis. Greater than 0 indicates positive correlation between genes
and pathways, while less than 0 indicates negative correlation.
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markers. We then constructed a nomogram to predict the survival

of IPF patients based on five gene markers and the cuproptosis score

to make the cuproptosis-related model more widely available for

clinical practice (Figure 12H). The accuracy and clinical utility of

the combined score and prediction model were determined by 2-

and 3-year calibration curves (Figure 12J). 2-year decision curve

(DCA) analysis showed that the cuproptosis score and the gene

marker model had good clinical value. (Figure 12I). Clinical samples

and in vitro experiments verified the reliability of the key genes and

that LYRM7 had high differential expression.
Frontiers in Immunology 14
Discussion

In this study, we constructed three cuproptosis subtypes in IPF

and performed a comprehensive analysis of the patients’ clinical,

immunological, and prognostic characteristics. This task proposes

using a cuproptosis score to quantify the different subtyping

patterns in IPF patients. We also propose to assess the prognostic

characteristics of patients. We further screened reliable marker

genes for predicting disease prognosis. We conducted an in-depth

analysis of the immune regulatory pathways associated with the
FIGURE 10

Drug sensitivity analysis based on score. The higher the IC50, the less sensitive the treatment.
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expression of the marker genes to improve the understanding of

immune regulation mechanisms in IPF. The study further localized

fibroblast activation at the single-cell level as an important

mechanism of IPF genesis. Finally, we established a column line

plot of the cuproptosis score with five marker genes, hypothesizing

they might be a more reliable reference for clinicians in the

prognostic diagnosis and treatment of IPF.

Cuproptosis is a recently identified and regulated form of copper

ion-dependent cell death. The pathogenesis of IPF is complex and

unclear, with numerous associations with copper ions (17–19). We

performed prognostic characterization of cuproptosis-related genes

based on their expression levels in the IPF gene expression matrix.

Initially, we demonstrated a correlation between cuproptosis-related

genes and the prognosis of IPF at the genomic level. Next, we

classified patients into two subtypes depending on their molecular

patterns of cuproptosis based on cuproptosis-related regulatory gene

expression. The two patterns differed in prognosis, clinical features,
Frontiers in Immunology 15
and biological functions. Patients in clusterA were mainly correlated

to MYC targets V1, protein fascinators, ribosome, RNA degradation,

spliceosome, RHOBTB2 GTPase Cycle, regulation of pyruvate

dehydrogenase (PDH) complex, cluster B was significantly

enriched in FGFR1 ligand binding and activation pathways, SHC-

mediated cascade: FGFR1, NF-kB is activated and signals survival,

termination of O-glycan biosynthesis, Notch signaling pathway,

VEGF signaling pathway, non-small cell lung cancer, ether lipid

metabolism and Wnt/b-Catenin signaling. TGF-b1 has been shown

to partially regulate fibroblast activation by reducing acetyl

coenzyme A synthesis through its effect on pyruvate-dependent

PDHc activity, and TGF-b1 plays a crucial role in epithelial-

mesenchymal transition (EMT) and fibrogenesis (39, 40).

RHOBTB2 GTPase is associated with CXCL14, which controls

inflammation and angiogenesis, while a hypoxic environment is

closely related to CXC chemokines. Related studies also confirmed

CXCL14 to be a positive metastable regulator of CXCR4 that acts
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FIGURE 11

Correlation analysis of key genes with coproptosis score and immune microenvironment. (A) Correlations between key genes. The color depth of the
lower triangle represents the magnitude of the correlation coefficient, and the upper triangle represents the P-value of the statistical analysis. (B–G) Plot
of correlation between key gene and coproptosis score. (H) Correlation analysis of key genes with immune cells and immune function obtained by
ssGSEA algorithm. (I) Correlation analysis of key genes with 16 immune cells obtained by cibersort algorithm. (J) Heatmap of correlation between key
genes and immune stimulators. (K) Heatmap of correlation between key genes and immune inhibitors. *P < 0.05; **P < 0.01; ***P < 0.001.
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synergistically with CXCL12 in different cellular responses.

Unfortunately, CXCL14 was not detected in the datasets of this

study, which may arise due to sample processing. However, the

CXCL12-CXCR4-CXCL14 regulatory model is still not clearly

defined in IPF (41–43). FGFR, activated NF-kB and VEGF are

potent fibroblast mitogens that play essential roles in the

proliferation of myofibroblasts (44, 45); these observations

collectively indicated that cuproptosis might be involved in these

aspects of the development of IPF.

Alterations in gene levels, transcriptional processes, and protein

modifications likewise have an essential role in the pathogenesis of

the IPF (46–48). The functional analysis of differential genes between

the two different molecular pattern groups revealed significant

involvement of immune responses, regulation of cell cycle life

activities such as gene transcription and ribosomes, and fatty acid

metabolism. Such molecular patterns are also associated with viral

diseases and non-small cell lung cancer. Next, we developed two gene

clusters with different clinical characteristics, prognostic regression by

cuproptosis differential genes (Cu-DEGs). We used the PCA

algorithm to score cuproptosis for each patient, and clusterA and

geneclusterB obtained relatively high cuproptosis scores. K-M
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survival analysis showed that patients with high cuproptosis scores

had better prognoses, suggesting that low cuproptosis scores

contribute to poor prognoses in IPF. Cuproptosis is closely related

to the electron transport chain complex and protein lipoylation.

Accordingly, GSEA showed the high-scoring group associated with

lysine degradation, rRNA processing, T cell receptor signaling

pathway, and electron transport chain pathway. Protein lipoylation

is a post-translational modification of lysine, and its metabolism is

closely related to copper protein and pulmonary fibrosis diseases (49–

51). Consistently, both cuproptosis scoring systems were enriched in

immunomodulation-related pathways, suggesting the possibility of

cuproptosis regulating immunity. We further analyzed the extent of

immune infiltration of the three clusters of cuproptosis, which

revealed that the cluster with a poorer prognosis was mainly

associated with inflammation promotion. In comparison, the

cluster with a better prognosis was associated with B cells, T helper

cells, and bidirectional regulation of immunity. It is known that CD8

+ T cells in alveolar lavage fluid of IPF patients show a positive

correlation with modified British medical research council(MRC)

dyspnea grade (52). In contrast, T helper cells are more implicated in

bidirectional regulatory roles in the IPF pathogenesis (53).
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FIGURE 12

Validation of clinical samples and Nomogram. (A) PCR. Relative mRNA expression of key genes in clinical samples. (B, C) Relative protein expression
of key genes in clinical samples. (D, E) Relative protein expression of key genes in MRC-5. (F) Relative mRNA expression of key genes in MRC-5. (G)
Heatmap of key genes in relation to cytokines,extracellular matrix and other fibrosis marker genes. (H) Nomogram. (I) DCA analysis. (J) Calibration
chart. *P < 0.05; **P < 0.01; ***P < 0.001.
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Next, we combined external validation datasets and cases

collected at our institution to find five diagnostic markers

(C6orf105, ANK3, MBNL1, LYRM7, AKAP9) with positive

prognostic effects, which are widely involved in ribosome

synthesis and processing, transcription, cytoskeleton regulation,

immunity, and other biological functions. This investigation

aimed to further search for meaningful markers for prognostic

diagnosis of IPF. C6orf105 is an androgen-dependent TFPI

regulatory protein that enhances the activity of tissue factor

pathway inhibitor (TFPI), which cannot counteract tissue factor

TF in broncho alveolar lavage (BAL) of patients with advanced IPF,

leaving the lungs of IPF patients in a hypercoagulable state (54, 55).

Overexpression of ANK3 leads to enhanced degradation of the

platelet-derived factor (PDGFR) (56). The LYRM7 gene is

associated with the metabolism of Fe-S cluster proteins and

maintains factor stability during the functioning of the

mitochondrial respiratory chain complex enzymes (57). AKAP9

complex inhibits collagen levels and promotes the lipid mediator

prostaglandin E2 (PGE) anti-fibrotic effect on IPF (58). Recent

studies have shown that MBNL1 can dynamically stabilize scar

formation in the transformation of fibroblasts to myofibrosis (59).

These pieces of evidence suggest that genetic markers may have a

role in pulmonary fibrosis. Moreover, the expression of all five

marker genes showed a positive correlation with the cuproptosis

score. Furthermore, the ROC curve also showed diagnostic value,

indicating the reliability of the five marker genes. We further

analyzed the relationship between fibrosis marker genes and key

genes, and showed that activation of myofibroblasts was

significantly correlated with key genes, and that low copper death

scoring clusters were enriched in extracellular matrix receptors in

the pre-GSEA, suggesting that there may be a potential link between

copper death and IPF in this mechanism. Subsequently, these

markers and cuproptosis scores were constructed as IPF 2-year

and 3-year prognostic column line graphs, and this combined

model improved the accuracy of clinical application.

Immunological analysis of cuproptosis-related clusters revealed

differences in immunomodulation between different subtypes of

IPF. However, specific immunomodulatory factors have still not

been explored in depth. We further analyzed the roles of the

immune cells based on the expression of the crucial genes. We

showed that naïve CD4+ T cells, T cells with resting CD4 memory,

and memory B cells were positively correlated with the essential

genes. Previous studies showed that these cells could improve the

body’s immune surveillance and speed up the immune response

(60–62). Huang et al. investigated the relationship between NK

cells and FVC decline at the single-cell transcriptome level to

confirm the involvement of NK cells in IPF progression (63). In a

retrospective study of the relationship between monocyte count

stratification and the prognosis of patients with IPF, elevated

monocyte counts were associated with an increased risk of IPF

progression, hospitalization, and death (64). The literature further

corroborated our bioinformatics analysis. We further analyzed the

immunosuppressive and immune-activating factors to identify

changes in IPF. Interestingly, an earlier study by Herazo-Maya

et al. found that the T-cell co-stimulatory proteins ICOS and CD28

and “co-stimulatory signaling during T-cell activation”may predict
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a shorter TFS in IPF patients (21). Several other studies in a

colorectal mouse model showed that VISTA expression was

positively correlated with hypoxia (65). However, studies on the

functional role of VISTA have been somewhat lacking in exploring

lung models. CD96 is an immunosuppressive factor that negatively

regulates the responsiveness of NK cell-related factors (66). We

hypothesized this could be a possible pathway to avoid immune

overexpression in IPF, but no study has confirmed this possibility.

We noted the study of Li et al., which observed the

developmental trajectory of fibroblasts at the single-cell level and

analyzed the correlation with the expression of cuproptosis gene,

and finally concluded that cuproptosis was negatively correlated

with pulmonary fibrosis (67). Our study started from the premise

that the expression of cuproptosis genes in IPF is heterogeneous,

performed three times of typing, and finally carried out the

calculation of cuproptosis score with the screening verification of

key genes, to target the relationship between cuproptosis and

fibroblasts at the transcriptome and single-cell level, and the

results of the two studies were consistent with each other, and

their methods were complementary to each other.

Many shortcomings remain in this study: first, although we

provide novel insights into mechanisms underlying cuproptosis and

its immune regulation, specifically related mechanisms regulating

cuproptosis-related patterns in IPF remain unexplored; secondly,

there are limitations in our application regarding drug sensitivity in

copper death scoring, as there is a lack of sufficient data for accurate

prediction due to the current drug studies on IPF and the low

application of databases. Although the effects of the four drugs were

validated in in vitro experiments, the relationship between scores

and drugs still needs to be carried out in clinical trials.
Conclusion

In this study, we explored the differences in prognosis, clinical

characteristics, and immunity among different clusters associated

with cuproptosis and constructed a cuproptosis score to quantify

the prognosis of IPF patients. We screened five marker genes

associated with prognosis for in-depth analysis of immunological

aspects. Finally, we constructed column plots of the cuproptosis

score and the marker genes to predict patient survival, forming a

reference for clinical treatment decisions.
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