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Cholesterol, as an important component in mammalian cells, is efficient for viral

entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols

are recognized as novel regulators of the innate immune response. The antiviral

ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a

metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-

hydroxylase). With the advancement of research, the biological functions of

25HC and its structural functions have been interpreted gradually. Furthermore,

the underlying mechanisms of antiviral effect of 25HC are not only limited to

interferon regulation. Taken up by the special biosynthetic ways and structure,

25HC contributes to modulate not only the cholesterol metabolism but also

autophagy and inflammation by regulating signaling pathways. The outcome of

modulation by 25HC seems to be largely dependent on the cell types, viruses and

context of cell microenvironments. In this paper, we review the recent

proceedings on the regulatory effect of 25HC on interferon-independent

signaling pathways related to its antiviral capacity and its putative

underlying mechanisms.

KEYWORDS

oxysterol, antiviral effect, cholesterol metabolism, signaling regulation, interferon-
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1 Introduction

Cholesterol has occupied the attention of scientists and clinicians for decades because

of its physiological and pathological importance in different diseases. As the most abundant

lipids in mammalian cells, it predominantly localizes to plasma membranes and regulates

the rigidity, fluidity and permeability of lipid bilayer by adjusting the cholesterol

concentrations and interacting with adjacent lipids such as sphingolipids (1–3). The

interaction of cholesterol and related proteins forms a special structure to modulate the

transmission among membranes and signal transduction. Moreover, the distribution of

cholesterol in different membranes affects the process of viral infection including its entry,

replication and release (4, 5). In the past decade, scientists had focused on the role of
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cholesterol in host immunity to pathogens. Multiple pieces of

evidence proved that some kinds of viruses need cholesterol to

enter organisms, moreover, the homeostasis of cholesterol

metabolism was disturbed during the invasion of viruses (6, 7).

Targeting cholesterol became a novel antiviral strategy (8, 9).

Oxysterol is one of the downstream metabolites of cholesterol,

synthesized via enzyme-dependent or enzyme-independent

oxidative reaction, which possesses an additional hydroxyl,

epoxide or ketone in the sterol nucleus and/or a hydroxyl group

in the side chain in the structure (10). In the past, the investigation

of oxysterols was mainly focused on the physiological roles in the

synthesis of sterol derivates, sterol metabolism and gene regulation

(11). Recently, the beneficial effect of some side-chain oxysterols

like 25-hydroxycholesterol (25HC) raises lots of attention and gets

proven, such as its antibacterial and antiviral properties (12, 13).

25HC was shown to have the ability to modulate cholesterol

metabolism thus regulating cholesterol biosynthesis (14). Its

ability related to immunity was hinted by the discovery of the

enzyme CH25H (cholesterol-25-hydroxylase), which catalyzes the

synthesis of 25HC and was upregulated in immunocytes exposed to

inflammatory agents (15–17). CH25H was proved as a member of

the interferon-stimulating genes (ISGs) family (18), meanwhile,

25HC seems to have similar features to CH25H and is augmented in

macrophages after viral infection and by interferon signaling and

shows great potential to counteract the enveloped viruses (19).

Although the antiviral abilities of 25HC were demonstrated by

pieces of investigations, however, whether 25HC exerts antiviral

capacity via interferon-independent signaling pathways is yet to be

well elucidated. Herein, we review the regulation of 25HC

biosynthesis and cholesterol metabolism and discuss the

interferon-independent pathways 25HC utilized, especially

autophagy, inflammation, TGFb and posttranslational

modification, to exert immunomodulating and antiviral effects.
2 Viral infection and host cholesterol

Viruses are proven to regulate host metabolism for their

pathogenic effects. With regard to enveloped viruses, cholesterol

inevitably participates in the viral infection because of the infective

processes including the fusion of the virus-cell membrane and

virus-endosome membrane and the endocytosis of viruses (20).

The viral infection directly results in the rearrangement of cellular

plasma membrane, the formation of host cubic membranes is

induced by both enveloped and non-enveloped viruses (21, 22).

The cubic membranes provide a special place for viral genome

replication and particle assembly and protect the viruses from the

recognition of the host immune system (23). The formation of cubic

membranes is notably relevant to the expression of HMG-CoA

reductase and the negative feedback caused by the administration of

cholesterol (24).

Interferon was shown to benefit the antiviral process of host, in

the last years, a sort of transmembrane protein called interferon-

induced transmembrane (IFITM) protein was identified as

restriction factor for SARS-CoV (Severe Acute Respiratory

Syndrome Coronavirus), ZIKV (Zika Virus), HIV-1 and IAV
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(Influenza A Virus) (25, 26). IFITM3 restricts viral entry by

interacting with Vesicle-membrane-protein-associated protein A

and thus disrupts the host cholesterol homeostasis (27),

meanwhile, the formation of fusion pore is blocked at the virus-

endosome hemifusion by IFITM3, which also induces accumulation

of cholesterol in late endosome/lysosome (28, 29). Of note, the

amphipathic helix of IFITM3 was found to alter lipid membrane

and directly interact with cholesterol, which plays vital roles in

antiviral function and may lead to the blockage of fusion pore

formation (26). Stimulator of interferon genes (STING), a

transmembrane protein located in the endoplasmic reticulum

(ER), is vital for type I interferon response (30). The translocation

of STING from ER to Golgi is essential for the activation of

downstream protein and host immunity (31). The decreased

cholesterol flux can induce type I interferon response in a

STING-dependent manner, which can be eliminated by adding

free cholesterol (32), moreover, a recent study clarifies that

cholesterol in the Golgi membrane is essential for the activation

of STING (33).

The lipid rafts are cholesterol-rich lipid domains on the host

plasma membrane. The enhanced cholesterol levels benefit the lipid

rafts formation and therefore benefit the viral entry or adsorption

(34, 35). The depletion of cholesterol in membranes by methyl-b-
cyclodextrin effectively suppresses the infectivity of Porcine

Reproductive and Respiratory Syndrome Virus and SARS-CoV

(6, 36). Moreover, the host cholesterol level and cholesterol

metabolism are essential for viral entry, results of CRISPR

screening showed that cholesterol metabolism is a crucial

pathway for coronavirus infection, viruses target and reprogram

cholesterol metabolism for enhanced cholesterol and facilitated

viral replication (37). Based on the antiviral strategy targeting

cholesterol, 25-hydroxycholesterol as part of the cholesterol-

negative feedback loop comes into notice and displays

antiviral potential.
3 25HC biosynthesis

25HC is produced from cholesterol by the hydroxylation

reaction occurring at position 25, which results in a more

hydrophilic structure than cholesterol (38). This hydroxylation

reaction of 25HC is catalyzed by CH25H, which belongs to the

oxidoreductase family and mainly localizes in the ER (39). In

addition, CH25H is an interferon-stimulating gene showing

modulating effects on the immune system through intrinsic and

extrinsic pathways and is proven to directly restrict the entry of

viruses (40–42). Besides, there is another approach capable of

generating 25HC in vitro except CH25H. The formation of 25HC

was observed when cholesterol was incubated with rat liver

mitochondria, NADPH and oxygen, besides, the conversion of

cholesterol to 25HC was detected in the incubation solution

comprised of Tris-HCl buffer (containing isocitrate and glycerol)

and porcine liver mitochondria (43), however, 25HC could not

generate by cholesterol and mitochondria without oxygen and

NADPH. Evidence indicated that 25HC can be produced by ROS

in a non-enzymatic manner (44, 45) (Figure 1). Although the 25HC
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is important for cholesterol homeostasis, its levels in blood and

tissues under normal condition are very low, and the expression of

CH25H in tissues is low as well (46). The 25HC was almost

undetectable in the human plasma after the autooxidation

correction of cholesterol (47), which implies the potential of

25HC to be monitored in the progress of diseases. However, the

determinants of the approach for 25HC synthesis needs to be

further demonstrated.
4 25HC and cholesterol metabolism

In the last years, cholesterol level is shown to affect viral

infection and host immunity, regulation of genes related to

cholesterol biosynthesis, homeostasis and esterification play

important roles in resisting viruses.
4.1 SREBPs

As a metabolite of cholesterol metabolism, oxysterols exert

important roles in the negative feedback loop of sterol

biosynthesis (48). Sterol response element-binding proteins

(SREBPs), a sort of transcription factor derive from ER, are

responsible for cellular cholesterol biosynthesis (in particular

SREBP2) (49). In the case of absent cholesterols, SREBP2 is

synthesized from ER and then binds to SREBP cleavage-activating

protein (SCAP), after that, the SREBP-SCAP complex translocate to

the Golgi to become active state processed by proteases site 1 (serine
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protease) and site 2 (metalloprotease) (50). The active SREBPs

promote cholesterol biosynthesis by inducing related enzymes, such

as HMGCR (HMG-CoA reductase) (51). When the content of

cholesterol is excessive, the structure of SCAP is modified and

SCAP-INSIG (insulin-induced gene) complex is formed, which

retains SREBPs in the ER, causing disturbance of the SREBPs

process and inhibition of cholesterol biosynthesis (52). 25HC

functions by binding to INSIG and modifying its structure

instead of modifying the conformation of SCAP (53).

The antiviral activity of 25HC has been broadly proved by

multiple studies, of note, the paracrine and autocrine antiviral

response provided by 25HC against viral infection is consistent

with the inhibition of cholesterol synthesis by restricting the

processing of SREBP2. The researchers find that 25HC exert

cellular antiviral effects through SREBP-dependent and LXR

(Liver X Receptor)-independent pattern (16), interestingly, the

antiviral capacity of 25HC is markedly promoted when the lipid

is consumed, in which the SREBP processing is activated (19).

Moreover, oxysterols targeting the SREBP pathway, such as 27HC

and 24(S), 25-epoxycholesterol, can inhibit viral infection under

lipid-consumed conditions (19). Besides, pieces of evidence show

that antagonism of SREBPs can impede West Nile virus (WNV),

hepatitis C virus (HCV) and Andes virus infections (54–56). The

relationship between 25HC and cholesterol metabolism in antiviral

host defense has been shown in Figure 2.

SREBPs have also been shown to regulate inflammation directly.

SREBP2 is activated by atheroprone flow in endothelial cells and then

induces expression of NLRP3 (NOD-like Receptor Protein 3), thus

enhancing endothelial inflammation (57). In the CH25H-deficient
FIGURE 1

Main biosynthetic approaches of 25HC (25-Hydroxycholesterol): enzyme-dependent and enzyme-independent. The enzymatic reaction catalyzed
by CH25H (cholesterol 25-hydroxylase) is the main approach for 25HC production. CH25H is a multi-transmembrane protein located in the
endoplasmic reticulum (ER). The non-enzymatic reaction is mediated by ROS (reactive oxygen species) in the existence of mitochondria.
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macrophages, 25HC can’t be produced but interleukin-1 (IL-1)

family cytokines are spawned, furthermore, 25HC can disrupt the

processing of SREBP to restrain the production of IL-1 and

aggravation of inflammation (58). It seems that SREBPs exert

various effects upon inflammasomes and might play important

roles in regulating virus-induced inflammation of organisms,

which needs to be uncovered in the future.
4.2 LXR

LXRs, a kind of transcription factor sensitive to sterols, play

diverse roles in biological processes, especially in lipid regulation

(59). Oxysterols including 25HC are proven as ligands of LXRs

(LXRa and LXRb), which can activate the expression of LXRs under
the condition of high cholesterol (60). The targets of LXR contain

genes related to cholesterol metabolism, such as CH25H,

SULT2B1b (cholesterol sulfotransferase-2B1b), and genes related

to cholesterol effluxes, such as ABCA1 (ATP-binding cassette

subfamily A member 1), ABCG1 (ABC subfamily G member 1),

ABCG5 and ABCG8, which can be upregulated by LXRs to enhance
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the cholesterol efflux (61, 62). GRAMD1 genes encoding Asters

proteins belong to a family of sterol transporter, which is important

to sense the level of accessible cholesterol and form the membrane

contact sites (63), evidence has shown that the Gramd1b gene can

be a transcriptional target of LXRs (64). Moreover, the activated

LXRs can negatively regulate the expression of NPC1L1 (65), of

which the underlying mechanisms are yet to be elucidated.

The activation of LXR can inhibit infection of HSV-1 (herpes

simplex virus type 1) or VSV in aHepG2 cell model, and the inhibition

of LXR makes the cell more susceptive to VSV and attenuates the

antiviral effect of 25HC (66). The specific oxysterols and relevant

enzyme are important for LXR functions in various cell types such as

immunocytes (67). 25HC induces the expression of CH25H by

upregulating LXR (68), meanwhile, 25HC also enhances IFN-b
expression in a LXR-dependent manner. As a result, an antiviral

model of 25HC is uncovered, in which the activation of LXR plays

an important role (66). However, as wementioned above, 25HC exerts

antiviral effects against multiple viruses in a LXR-independentmanner

(19). The cell type dependence, disease dependence, virus dependence

and LXR isoform dependence might be the critical factors affecting the

mechanisms, which remains unclear.
FIGURE 2

Relationship between 25HC and cholesterol metabolism in antiviral host defense. The SREBP2 (sterol regulatory element-binding protein 2) is critical
for cholesterol biosynthesis. SREBP2 is synthesized on the ER and interacts with SCAP (SREBP-cleavage activating protein), then the SREBP2 is
translocated to the Golgi for activation. When the cholesterol is excess, the INSIG (insulin-induced gene) is recruited by SCAP and the SCAP-
SREBP2-INSIG complex is formed to retain the SREBP2 in the ER. 25HC blocks the transport of SREBP2 through binding to INSIG and promoting the
complex formation, thus suppressing the production of cholesterol to impede viral infection. Excess cholesterol is esterized by ACATs (acetyl-CoA
acetyltransferases) to store in LDs (lipid droplets). 25HC restricts viral replication by promoting cholesterol esterification and LDs formation, which
might be related to IFN-b production. The inhibition of ACAT also shows an antiviral effect. 25HC serves as a ligand of LXR (Liver X receptor) to form
LXR/RXR (Retinoid X receptor) complex, which binds to the promoter of LXR response elements and thus stimulates transcription of targets genes
including CH25H, ABCA1 (ATP-binding cassette subfamily A member 1), ABCG1 (ATP-binding cassette subfamily G member 1) and NPC1L1
(Niemann-Pick type C1-like 1). Moreover, IFN-g can be induced by LXR. 25HC is shown to inhibit virus in an LXR-dependent or LXR-independent
manner, the context dependence and virus dependence of LXR need to be further explored. The decrease of cholesterol pool induces IFN-I (type-I
interferon) response in a STING (Stimulator of interferon genes)-dependent manner.
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In summary, these observations display that the ability of 25HC

to restrain the synthesis of cholesterol and its role as a ligand for

nuclear receptors make it exert antiviral effects.
4.3 Cholesterol esterification
and lipid droplets

The esterification of cholesterol is an important part of

cholesterol metabolism, which can mitigate the toxicity of

accumulated free cholesterol in cells, mediated by ACATs (acetyl-

CoA acetyltransferases), and manages the storage in lipid droplets

(LDs) (69). There are two isozymes of ACAT in mammals, ACAT1

and ACAT2 (70). ACAT1 distributes in the whole body and mainly

in macrophages and epithelial cells (71). ACAT2 is abundantly

expressed in enterocytes and hepatocytes (72).

The application of ACAT inhibition or knockdown is shown to

suppress the growth of tumors, which extends to the therapy of

cancerogenic viruses, such as HBV (73, 74). The application of

ACAT inhibitor, K604, induces CD8+ T cells specific to HBV in the

peripheral blood mononuclear cells and boosts CD4+ T cells in the

liver. The addition of ACAT inhibitor shows no effect on cccDNA

(the original template of HBV viral RNA) or HBeAg in the human

HepG2-NTCP (sodium-taurocholate cotransporter polypeptide)

cells model. However, the addition significantly reduces the

extracellular HBV DNA and HBsAg. The initiating addition of

the inhibitor confirms its antiviral ability to the genesis of HBV

particles (75). Furthermore, the apolipoproteins are shown to

regulate HBV and increase the infectivity of HBV particles (76),

which further indicates the ability to inhibit ACAT to retard HCV

particles (77). A selective inhibitor of ACAT, SZ58-035, is

administrated in a SARS-CoV-2 pseudovirus model, the results

clarify that the inhibition of ACAT can suppress the viral entry. The

knockdown of ACAT using shRNA leads to promoted viral entry in

the presence of 25HC. In addition, the ability of 25HC to promote

ACAT activity is confirmed by staining the dynamic of lipid

droplets in cells (78). In a Calu-3 cell model infected by SARS-

CoV-2, 25HC restricts the viral infection by activating the ACAT,

which results in the translocation of accessible cholesterol in the

plasma membrane (79) (Figure 2).

Apart from the antiviral ability of ACAT per se, the storage

organelle of its enzymatic product has obtained greater attention.

LD is a kind of organelle containing neutral lipids such as

triacylglycerols and cholesterol esters, which originated from ER

and regulated by enzymes diacylglycerol acyltransferases (DGATs)

and ACATs (69). In the investigation of cancer, the opposing effects

of lipid droplets are shown in tumor cells and immune cells,

stimulating cancer cell growth and invasion and impairing

immune cell function respectively (80–82). The dual effects of

lipid droplets are also discovered in viral infection. Early studies

have shown that LDs participate in the life cycle of multiple RNA

viruses, such as HCV and DENV. The viral capsid proteins anchor

on LDs to form key sites for particle production (83, 84). In

enteroviruses infection, the novel mechanism of LDs is uncovered

to create replication compartments by recruiting host LDs,

moreover, the viral proteins interact with the lipolysis pathway to
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utilize fatty acids to facilitate its replication. Whereas the inhibition

of recruiting LDs and the contact between LDs and replication

compartments impedes enterovirus replication (85). Recent studies

have focused on the antiviral effect of LDs. During the early

infection of HSV-1, IAV, DENV and ZIKV in vitro, LDs are

predominantly upregulated, the LDs in lung sections of C57BL/6

mice infected by IAV are also increased when compared with the

mock mice. Furthermore, the induction of LDs by oleic acid is

accompanied by dramatically increased IFN mRNA and protein

levels. In the presence of induced LDs by oleic acid treatment in

astrocytes, the infection of ZIKV is followed by the increased

production of INF-b mRNA and the reduced viral load is

correlated with the upregulated IFN-b and LDs (86). The ability

of 25HC to stimulate the formation of lipid droplets is confirmed in

various studies (13, 79). The antiviral effect of 25HC on SARS-CoV-

2 is consistent with the induction of LDs (79). In our previous study,

the early infection of PDCoV (porcine deltacoronavirus) at 8 h to

some extent induces the accumulation of LDs, 25HC treatment

induces abundant LDs and reduces the replication of PDCoV

accompanied by upregulated IFN-b mRNA (87). The opposite

effects of LDs demonstrate its antiviral potential by enhancing the

interferon response to viral infection, meanwhile, indicate the

inverse mechanisms utilized by viruses to hinder the early

antiviral response of organisms.

Taken together, these findings above indicate that LDs

production mediated by ACAT plays critical roles in antiviral

response, which might be a novel target of 25HC.
5 25HC and autophagy

Autophagy is a conserved cellular process that is involved in the

degradation of proteins, lipids and organelles, to maintain the

homeostasis of organisms. The content in vehicles that needs to be

degraded is delivered to lysosomes through three primary

approaches: macroautophagy, microautophagy and chaperone-

mediated autophagy (CMA) (88). As a double-edged sword,

autophagy is considered as part of the immune system to

eliminate microorganisms, whereas pathogens evolve reciprocal

mechanisms to fight back. Autophagy can be induced by PRRs

(pattern recognition receptors) recognizing pathogen-associated

molecules. In the early stage of infection, stimulated Toll-like

receptor (TLR) recruits MYD88 (adaptor myeloid differentiation

primary response protein) to bind to Beclin1 and hence upregulates

the level of autophagy (89). The RLRs (RIG-I-like receptors) sense

viral nucleic acid to activate downstream of the interferon pathway

and the production of IFN-I, nevertheless, autophagy is shown to

suppress the immune response triggered by RLRs (90, 91).

Moreover, some specific proteins interact with viral proteins and

lead to autophagosomes for degradation, which ultimately inhibits

viral proliferation (92, 93). Some viruses evolve to utilize the double-

membrane structure of autophagosome to protect viral RNAs

from recognition by the immune system and provide shelter

for its replication (94, 95). Pieces of evidence have proved the

ability of coronavirus to utilize autophagy (96–98), in which

selective autophagy also plays critical roles, such as mitophagy and
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lipophagy (99, 100). The formation of double-membrane

vesicle (DMV) shelters the viral RNA from recognition and

degradation, meanwhile, the lipophagy provides energy for viral

replication (Figure 3).

Some oxysterols are shown to activate autophagy in the studies of

atherosclerosis, resulting in the increase of autophagosomes and LC3-

II (101). 7-Ketocholesterol (7-KC) induces LC3-II/LC3-I expression

and autophagosome formation in the smooth muscle cells (102).

Moreover, 7-KC is shown to trigger autophagy in an enzyme-

dependent manner by promoting the level of cellular ROS (103).

Nevertheless, 25HC seems to play inverse roles in regulating

autophagy. In a study of non-small cell lung cancer, 25HC treatment

possesses the ability to inhibit autophagy in the presence of BIX (104).

In addition, treatment with 25HC induces the expression of RIG-I and

downstream genes (105), which implies the potential regulatory effect

of 25HC on autophagy. The effect of 25HC on autophagy is verified by

simultaneously administrating with autophagy modulators after

SVCV (spring viremia of carp rhabdovirus) infection, the

combination of 25HC and autophagy inhibitor increased the SVCV

neutralization, whereas the autophagy activator increases the

infectivity of SVCV. Furthermore, the addition of an oxidative stress

inhibitor indicates that 25HC might block the autophagy process by

inducing the accumulation of ROS (106).

It seems that oxysterols might modulate the outcome of

autophagy in different manners, but its concentration

dependence, cell type and disease dependence remain uncertain.

On the other hand, the combat of autophagy and viruses is a

complex process, to what extent and under what condition the

25HC exerts antiviral effects by interfering with autophagy is yet to

be elucidated.
Frontiers in Immunology 06
6 25HC and inflammation

Persistent viral infection always induces inflammation

activation, proper extent of inflammation benefits the clearance of

pathogens and the promotion of host immunity, whereas excess

inflammation brings a burden to the organism and aggravates the

illness (107). Therefore, ideal therapeutic medicines against viruses

should also possess the ability to modulate inflammation for

immunity homeostasis.

In a mousemacrophage model, it is shown that 25HC exerts pro-

inflammatory effects partially through mediating the recruitment or

retention of AP-1 components at the promoters of TLR-response

genes. Interestingly, 25HC inhibits influenza infection in vitro while

the deletion of CH25H is protective against influenza infection in

vivo by decreasing the inflammation response (108). 25HCblocks the

infection of KSHV (Kaposi’s sarcoma herpesvirus) in primary

endothelial cells and the RNA sequencing results show that 25HC

can induce inflammatory cytokines such as IL-8 and IL-1a. Besides,
IL-1 and IL-8 pathways also are induced by 25HC in primary B cells

infected with EBV (Epstein-Barr virus) (109). The proinflammatory

effect of 25HC is also demonstrated in HSV-1 infection, the pre-

treatment with 25HC enhances IL-6 production and results in

augmentation of interleukin’s total secretion, meanwhile, the

antiviral potential of IL-6 against HSV-1 in vitro is verified (110).

Conversely, the anti-inflammatory function of 25HC has also been

described. 25HC is shown to inhibit the secretion of IL-1b by

suppressing the inflammasomes (111), in the meantime, SREBP2

can activate the NLRP3 inflammasome in the endothelium (57). In

addition, 25HC is proven as a potential antiviral agent against ZIKV

and reduces inflammation and cell death in ZIKV-challenged U-87
FIGURE 3

Relationship between virus and autophagy and the effect of 25HC on autophagy in antiviral responses. The whole process of autophagy contains the
formation of autophagosome, fusion of lysosome and formation of autolysosome. The LC3-II is used as marker of autophagosome in mammalian
cells. The PRR (pattern recognition receptors) can recognize the viral molecules and activate autophagy for viral degradation, However, the RIG-I
(retinoic acid-inducible gene I) senses viral double-stranded RNA to activate MAVS (Mitochondrial Antiviral-signaling protein), IRF3 (Interferon
Regulatory Factor 3) and TBK1 (Tank-binding Kinase 1, the downstream of SING protein) and promote type I IFN production, which can be
suppressed by autophagy. Viruses can utilize autophagy to form DMV (double-membrane vesicle) and to provide energy for its replication. 25HC
restricts virus infection by inhibiting autophagy in a ROS-mediated way, moreover, 25HC induces expression of RIG-I and downstream genes, the
potential mechanism among 25HC, RIG-I and autophagy in the antiviral response still needs to uncover.
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MG glial cells (112). Of note, the content of 25HC and level of

CH25H are specifically induced by IL-27 in type 1 regulatory T cells

(TR1), furthermore, 25HC is shown to negatively regulate the

production of IL-10 via LXR signaling (113). In consideration of

the inhibitory effect of 25HCon SREBP2, the anti-inflammatory roles

of 25HC mediated by SREBP2 are also identified. 25HC reduces the

process of SREBP2 to suppress IL-1B transcription and IL-1-driven

inflammasomes (58) (Figure 4).

25HC treatment maintains the homeostasis of inflammation,

the context dependence of its roles between proinflammation and

anti-inflammation, as well as its mechanisms in vivo remain

uncertain. Determining the in vivo range under which 25HC

exerts dual effects on inflammation may help to ensure the

correct balance of inflammation and to simultaneously control

the viral infection by repressing the inflammasome-induced

organism damage.
7 25HC and transforming
growth factor-b

Transforming growth factor-b (TGF-b) signaling plays diverse

roles in regulating cellular growth, immune response and

oncogenesis. In the past years, multiple studies regarding TGF-b
mainly focused on its effect on cancer (114), EMT (Epithelial–

mesenchymal transition) (115), lung fibrosis and inflammation, its

roles in other diseases were neglected. Recently, its ability to regulate

viral infection is identified. The nucleocapsid protein of SARS-CoV

is shown to promote TGF-b responses in a Smad-3-specific manner

and impede apoptosis in SARS-CoV-infected HPL1 (human

peripheral lung epithelial) cells (116). In the severe Covid-19

patients, the researchers analyze the peripheral plasmablasts using
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single-cell transcriptomes and come up with a result that SARS-

CoV-2 induces TGF-b-dominated chronic immune reaction (117).

TGF-b also participates in the regulation of the lipogenic process by

HCV. HCV genotype 3a induces higher expression of TGF-b and

inhibition of PPARa expression and fatty acid oxidation. Besides,

HCV-related lipid accumulation is associated with activation of

TGF-b (118). Considering the regulatory effect of TGF-b on lipid

production, in our previous study, we administrated 25HC to further

investigate the role of TGF-b in a PDCoV-infected model in vitro.

The expression of TGF-b signaling can be dramatically induced by

PDCoV infection, which is reversed by 25HC. The application of

TGF-b inhibitor reveals its regulatory effect on the genes related to

cholesterol metabolism (87). The thorough mechanism of TGF-b in

viral infection is yet to be fully demonstrated, but it might be a

potential approach for viral invasion and target for 25HC action.
8 25HC and posttranslational
modification

During the viral invasion, various host machineries are

exploited to modify viral proteins, including structural proteins

and nonstructural proteins, for survival. One of the critical protein

modifications is called glycosylation, which means the addition of

glycans to proteins (119). On the one hand, glycosylation of

envelope protein is important for the virus to anchor the

cytomembrane receptors, on the other hand, glycosylation also

helps viruses to decrease the risk of being recognized by the host

immune system (120). Lassa virus (LASV) is a member of

arenaviridae, its glycoprotein precursor needs to be cleaved into

GP1 and GP2, of which the oligomer forms spikes of virions (121).

Besides, the cleavage is dominated by glycosylation (122).
FIGURE 4

Inflammatory effects of 25HC in antiviral activities. 25HC exerts dual effects on inflammation during antiviral responses. 25HC acts as an amplifier of
inflammation by recruiting AP1 to the (Toll-like receptor) TLR-response genes, moreover, 25HC amplifies the expression of inflammatory genes such
as IL-1 (interleukin-1), IL-8 and IL-6 to suppress the viral infection. In addition, IL-27 is shown to promote expressions of CH25H and 25HC in a
STAT1 (Signal Transducer and Activator of Transcription factor 1)- and IRF1- dependent manner and thus inhibit IL-10 production through LXR.
25HC-induced inhibition of SREBP2 decreases the transcription of IL-1B and secretion of IL-1b and represses the inflammasome activity. The precise
condition of 25HC maintaining correct inflammation balance is critical for the control of viral infection, which is not defined nowadays.
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The inhibitory effect of 25HC on LASV production is firstly

verified in Huh7 cells, after 48 h, the treatment of 25HC increases the

GP1 mobility on SDS-PAGE gels and leads to abnormal GP1

production containing more immature N-glycans. Meanwhile, the

abnormal GP1 is incorporated into fresh LASV virions and thus

impairs their infectivity (123).

In addition to glycosylation, another important post-translational

modification named prenylation is also shown to play critical roles in

viral life span (124). Whether posttranslational modifications act as

antiviral targets of 25HC and the underlying mechanisms are novel

angles to uncover the antiviral potential of 25HC.
9 Discussion and perspective

In the last years, host cholesterol was identified as a potential

antiviral target, in what manner to command cholesterol against

viral infection becomes the key point. The repurposing of

cholesterol-modifying drugs brings hope to the control of highly

pathogenic viruses. Repurposing of antifungal drugs including

itraconazole and posaconazole was found to play effective roles in

restricting IAV, Ebola virus and SFV (Semliki Forest virus) by

regulating cholesterol homeostasis (125–127). Besides, the

antidepressant drug fluoxetine targeting acid sphingomyelinase

exerts antiviral effects on SARS-CoV-2 and Ebola virus by

inducing impaired endosomal acidification and sequestered

cholesterol within endosomes (127–129). Statins, the broadly

applied cholesterol-lowering drugs also serve as potent antiviral

agents against different stages of virus cycle (130). Fenofibrate, a

drug decreasing triglyceride and LDL (low-density lipoprotein)

cholesterol, restrains the replication of SARS-CoV-2 and alleviates

its pathogenesis by regulating lipid metabolism (131).

As a derivate of cholesterol, the negative regulatory role in

cholesterol metabolism has already been proved. Besides, it is clear

that 25HC has antiviral abilities against diverse viruses. Except for its

direct function of stimulating interferon, as highlighted in this review,

the last decades have discovered signaling pathways involved in

mediating antiviral responses of 25HC. According to the effect of

25HC on cholesterol metabolism, a question has been raised whether

specific inhibitors of cholesterol biosynthesis have similar antiviral

abilities, such as statins. Given the important influences of lipid

droplets on interferon response, what are the exact mechanisms

mediating lipid droplets-associated immune response? In

consideration of its dual effects on autophagy and inflammation, the

details of themechanismsandhowit is integratedwithanother signaling

still need amass of studies to decipher. Furthermore, it is also unknown

whether and how the concentration of 25HC in vivo affects its potency.

This in turnraises thequestionof itsprospectofclinical antiviral therapy.

Apart from the biological function of 25HC, the structural

biochemical characteristic of itself also needs to be concerned.

Remarkably, a small chemical group such as a single hydroxyl

group can make cholesterol become an antiviral agent and

inflammation regulator. Could we utilize chemical approaches to

create similar antiviral compounds? Meanwhile, the chemical

structure of 25HC results in that it might modify the interaction

between proteins and membranes (132), which might function as
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an antiviral mechanism. Based on this feature, fusion inhibitor

peptides containing 25HC are developed to enhance antiviral

spectrum and address the resistance (133, 134). In addition to the

existing experimental data, some studies on OMIC strategies also

predicted the possible mechanism of 25HC. The upregulated

protein by 25HC such as nuclear factor-kappa-B p100 subunit

(NFKB2) and down-regulated proteins by 25HC such as HMG-

CoA reductase and isopentenyl-diphosphate delta-isomerase 1 fit

with the previous studies, meanwhile the down-regulated proteins

interferon-induced transmembrane protein 3, mannose-6-

phosphate receptor and junctional adhesion molecule A pointed

novel directions for the likely antiviral mechanisms of 25HC (135).

The complex regulatory effects of 25HC on inflammation and

autophagy imply that we should not consider its role as an enhancer or

inhibitor simply, but as a dynamicmediator to restore the imbalance of

host cells challenged with viral infections. In addition, the regulatory

relationship between cholesterol metabolism and other pathways still

needs lots of work to decipher. Taken together, we can expect that

deeper research into molecular mechanisms and structure

modification can help to explain questions about the antiviral effects

of 25HC and similar oxysterols. In addition to the individual

administration of antiviral drugs, the combination of antiviral drugs

and cholesterol-modifying drugs exhibits good therapeutic effects

(136), with the advantage of avoiding or impeding the development

of resistance. Considering that the prominent antiviral potential of

25HC has been demonstrated in multiple animal experiments, we can

also predict further research into this sort of compound that derives

from host metabolism can serve as a drug candidate to contain

emerging infectious pathogens alone or in combination.
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