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during viral infection: a new
avenue for therapeutics?
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In the setting of viral challenge, natural killer (NK) cells play an important role as

an early immune responder against infection. During this response, significant

changes in the NK cell population occur, particularly in terms of their frequency,

location, and subtype prevalence. In this review, changes in the NK cell repertoire

associated with several pathogenic viral infections are summarized, with a

particular focus placed on changes that contribute to NK cell dysregulation in

these settings. This dysregulation, in turn, can contribute to host pathology either

by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive

NK cells mediate significant host cell death and contribute to generating a

hyperinflammatory environment. Hyporesponsive NK cell populations shift

toward exhaustion and often fail to limit viral pathogenesis, possibly enabling

viral persistence. Several emerging therapeutic approaches aimed at addressing

NK cell dysregulation have arisen in the last three decades in the setting of cancer

and may prove to hold promise in treating viral diseases. However, the

application of such therapeutics to treat viral infections remains critically

underexplored. This review briefly explores several therapeutic approaches,

including the administration of TGF-b inhibitors, immune checkpoint inhibitors,

adoptive NK cell therapies, CAR NK cells, and NK cell engagers among

other therapeutics.
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1 Introduction

Natural killer (NK) cells are a type of lymphocyte notable for their cytotoxic activity

and role as an innate immune cell that acts as an early responder to physiologically stressed

cancer and virally infected cells (1). NK cells are particularly important in viral infections,

given their ability to respond to them before the development of adaptive immune

responses (2). Evidence for a role of NK cells in the protection against certain viral
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infections is appreciated in patients with selective NK cells

deficiencies; the hallmark clinical feature in these patients are

severe and recurrent viral infections (3, 4). For example, of a

group of 19 NK cell deficient patients, 42% died prematurely

while 53% had experienced severe herpesvirus infections

including cytomegalovirus, Epstein-Barr virus, Varicella Zoster

virus, and herpes simplex virus (5). The dramatically increased

incidence rate of severe complications related to these infections in

patients with NK cell deficiency is strongly illustrative of their

important role in combating and containing viral infections.
1.1 NK cell subsets

Like other immune cells, NK cells originate from CD34+

hematopoietic stem cells, and most of their development occurs

in discrete stages. Commitment to the NK cell lineage relies on

loss of CD3 and gain of the natural cytotoxicity receptors NKp44

and NKp46 (6). Roughly 5-15% of all circulating lymphocytes is

made up of NK cells, and NK cells are known to also reside in

secondary lymphoid tissue, bone marrow, lungs, liver, spleen, and

uterine tissues.

NK cells have been divided into different populations based on

the relative expression of surface markers CD56 and CD16

(FcgrIIIa), with the two largest subsets being CD56bright and

CD56dim (7). CD56bright NK cells constitute roughly 2-10% of all

NK cells in the blood and are found mainly in the secondary

lymphoid organs where they constitute 50% of the NK cells,

whereas CD56dim NK cells comprise 90% of NK cells in the blood

(8). CD56bright NK cells differentiate into CD56dim NK cells and

then express CD16 (9, 10). Functionally, CD56bright NK cells are

considered to be far less cytotoxic than their CD56dim counterparts,

and play a role in the production of antiviral proinflammatory

cytokines like IFN-g and TNF-a (7, 8). In contrast, CD56dim NK

cells are far more cytotoxic since they contain 10-fold more perforin

and Granzyme B and due to their expression of CD16, which

enables them to engage in antibody-dependent cellular cytotoxicity

(ADCC) (11). CD16 is the only receptor known to activate NK cells

on its own without activation through other receptors (12). Of note,

CD56dim NK cells are also capable of producing proinflammatory

cytokines like IFN-g, typically producing them two to four hours

after stimulation, whereas CD56bright NK cells predominantly

produce cytokines 16 hours or more after stimulation (13). There

is another subset of NK cells, termed adaptive (or memory-like) NK

cells, that possess qualities of the adaptive immune system such as

antigen-driven clonal expansion and long lived memory that have

been recognized and will be examined in more detail later (14).

Finally, there are also different subsets of NK cell populations that

reside in peripheral tissues that carry distinct phenotypic

markers (15).
1.2 NK cell receptors and signaling

NK cells are unique in their mechanism of recognition of

dysregulated or infected cells. Instead of solely recognizing viral
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peptides presented by major histocompatibility (MHC) molecules

like cytotoxic T lymphocytes, NK cell activation is dependent on the

balance between different activating and inhibitory receptors to

distinguish between virally infected and uninfected cells in a non-

antigen-specific manner. Many NK cell receptors sense surface

expression of MHC class I molecules as well as MHC class I

chain related (MIC) molecules among others (16). NK cell

activation will only occur if the activating signal overrides the

inhibitory signal (Figure 1) (17). Importantly, NK cells can

recognize virally infected cells or tumor targets without prior

sensitization to antigens. Some viruses will down-regulate MHC-I

to interfere with the presentation of viral antigens, thereby escaping

cytotoxic T lymphocytes. This downregulation of MHC-I promotes

the recognition and killing of virally infected cells by NK cells. This

concept of recognizing cells that lack MHC-I is known as the

“missing-self” hypothesis (18).

Activating receptors include natural cytotoxicity receptors

(NCRs) such as NKp30, NKp44, NKp46, and NKp80, in addition

to some receptors of the NKG2 family, including NKG2C, NKG2D,

and NKG2E (7, 19). Resting NK cells can express NKp30, NKp46,

and NKp80 whereas NKp44 is expressed by activated NK cells (20).

The acquisition of natural cytotoxicity receptors during NK cell

maturation is correlated with the development of cytotoxic activity

against tumor cells depicting the receptor family’s importance in

NK cell activation (21). NKG2C and NKG2E form heterodimers

with CD94 which bind to HLA-E, an interaction that supports NK

cell expansion in antiviral responses (17). Another activating

receptor is DNAM-1 which binds nectin and nectin-like

molecules (22).

Inhibitory receptors include the members of the killer cell

immunoglobulin-like (KIR) receptor family that have long

cytoplasmic tails (23). Of note, while many KIR receptors are

inhibitory, a portion are activating and have short tails, and some

can be both activating and inhibitory (24). Similarly 2B4 is another

NK cell receptor that has been observed to be both activating and

inhibitory depending on the presence of modulating co-receptors

and signaling molecules (25). NKG2A/CD94 heterodimers also

serve as another important inhibitory receptor that binds HLA-E

as its ligand (26). In the blood, approximately 50% of NK cells

express NKG2A/CD94 receptors (27). In terms of NK cell

differentiation, it has been noted that the NK cell maturation

process entails a stepwise decline in NKG2A with a simultaneous

increase in killer immunoglobulin-like receptors (KIRs) (28).

TIGIT, LAG-3, TIM-3, and PD-1 receptors are classically defined

as inhibitory receptors on cytotoxic T lymphocytes, but can serve a

role in modulating NK cell responses in an inhibitory or activating

fashion depending on the context (29, 30).
1.3 Genetic variation in NK cell receptors
and ligands

Adding to the complexity of NK cell signaling, extensive genetic

diversity exists within many NK cell receptors and ligands,

particularly within the KIR receptor family and HLA genes (31–

33). To elaborate, the KIR receptor family has been found to vary
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widely in terms of the presence of different KIR genes, copy number

of KIR genes, and there exsists substantial polymorphism within

these genes resulting in markedly different KIR repertoires between

individuals (34, 35). Two primary haplotypes have been identified

and termed group A and group B (36). The group A haplotype is

relatively consistent in its makeup, consisting of the activating KIR

receptor KIR2DS4 and the inhibitory KIR receptors KIR2DL1,

KIR2DL3, KIR3DL1, KIR3DL2, and KIR2DL4 (31). In

comparison, the B haplotype is less fixed and contains one or

more activating KIR receptor along with genes encoding the

inhibitory KIR receptors KIR2DL5A, KIR2DL5B, and KIR2DL2.

Within haplotypes, group A varies in terms of allelic polymorphisms

in its constituent genes, while group B varies more in terms of gene

content and copy number, although allelic variation is also a

consideration too (36). The HLA gene family, whose constituents

serve as ligands for many NK cell receptors encompasses more than

35,000 different MHC alleles, making it the most polymorphic

region in the human genome (37). The implications of this

diversity on NK cell signaling are made very apparent by the

observation that various combinations of KIR receptors and HLA
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ligand have displayed differential functional activation (32, 38–40),

and have additionally been associated with infection outcome in

human immunodeficiency virus (HIV) (41, 42), hepatitis C virus

(HCV) (43), SARS-CoV-2 (44), and ebola virus (45).

A similar effect can be observed from the effect of genetic

variation within the NKG2D/NKG2DL signaling axis. While

NKG2D is evolutionarily conserved relative to the KIR receptor

family, distinct haplotypes exist and have been implicated in

predisposing different cancer risk (46), as well as being a

prognostic factor for treatment free remission in the setting of

chronic myeloid leukemia (47). In humans, the ligands for NKG2D

are MIC and ULBP which are upregulated by virally infected cells,

and both of these ligands display extensive polymorphism (48).

Certain alleles in these ligands have been associated with diseases

like Dengue shock syndrome (49, 50), colorectal cancer (51), oral

squamous cell carcinoma (52, 53), breast cancer (54), and cervical

cancer (55). Taking the examples of the KIR receptor family and

NKG2D/NKG2DL axis together, it is very evident that the genetic

content of an individual's NK cell repertoire plays a significant role

in the regulation of NK cell function in disease.
FIGURE 1

The activating and inhibitory receptors of NK cells. NK cell activation depends on a balance of activating and inhibitory signals using receptors that
primarily bind HLA to distinguish between virally infected cells and uninfected cells in a non-antigen specific mechanism. Activating receptors
include NKG2C, NKG2D, NKG2E, NKp30, NKp44, NKp46, NKp80, DNAM-1, and KIR receptors with short cytoplasmic tails. Inhibitory receptors
include NKG2A, PD-1, LAG-3, TIGIT, TIM-3 and KIR receptors with long cytoplasmic tails excluding KIR2DL4 which is activating. The KIR receptor
family contains both activating and inhibitory receptors, as well as receptors that can act as either. Similarly, 2B4 can also provide either an activating
or inhibitory signal.
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1.4 Additional NK cell markers

Other notable NK cell markers include CD57, CD69, and

CD107a. CD57 expressing NK cells are connected with terminal

differentiation, senescence, and high cytotoxic potential (56). CD69

is a marker expressed by NK cells during acute activation (57, 58).

Additionally, CD69 has been shown as a marker of tissue resident

NK cells (59). CD107a is expressed on the inner membrane of

cytotoxic granules containing molecules like granzymes and

perforin, which are released upon NK cell activation. When the

granule is released, its membrane fuses with the outer cell

membrane making cells that released granules positive for

CD107a. Therefore, CD107a as a marker is indicative of NK cell

granule release (degranulation) (60).

NK cells primarily kill infected cells through the release of

granules containing granzyme-B and perforin, a serine protease that

activates apoptosis and a protein that forms pores in the membrane

of targeted cells, respectively (61, 62). In this process, perforin

enables granzymes to infiltrate past the membrane of target cells,

where they cleave internal components including procaspases that

then initiate apoptosis (63). ADCC is another important

mechanism through which NK cells kill target cells. In ADCC,

the target cell is bound by antibodies and the Fc region of these

antibodies in turn binds CD16, ultimately triggering the release of

cytotoxic effector molecules that kill the target cell as described

above (64).

During the NK cell response to viral infection, the repertoire of

NK cell activating and inhibitory receptors is altered, often with an

impact on the functionality of these cells. The aim of this review is

to summarize these changes, particularly those related to NK cell

dysregulation and exhaustion in the context of HIV, HCV,

influenza A viruses (IVA), cytomegalovirus (CMV), and SARS-

CoV-2. These viruses were chosen due to their clinical relevance

and the existence of a plethora of literature noting alterations in NK

cell phenotype and repertoire during their pathogenesis. Each of

these viruses represent different viral families, and furthermore, the

selection offers perspective into the similarities and differences

between acute and chronic viral infections’ impact on the NK cell

population. Further, potential therapeutics that could help

maintain, or enhance an effective NK cell response will be explored.
2 NK cells during viral infection

2.1 Human Immunodeficiency Virus (HIV)

HIV belongs to the Retroviridae family and has a genome that

consists of two single-stranded RNA molecules (65). HIV primarily

targets CD4+ T cells and ultimately results in their depletion

rendering those infected progressively immunocompromised and

susceptible to opportunistic infections and rare forms of cancer

(66). With contemporary antiretroviral therapy (ART), replication

of the virus can be controlled to the extent that patients on ART

are aviremic (66). However, ART is not curative due to the

establishment of reservoirs of infected cells that persist in

lymphoid tissue and are often latent (67). Significant attention
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has been placed on characterizing the role of NK cells in HIV

infection within both the blood and lymphoid tissue given the

nature of the infection.

In the context of HIV infection, and the general immune

dysregulation incurred by depletion of CD4 T cells, NK cells

undergo significant changes regarding their receptor expression

and functional activity. HIV progression in terms of declining CD4

T cell counts is associated with a decline in the quantity of cytotoxic

CD56dim NK cells (68, 69). The remaining CD56dim NK cell

population has CD57 and KIR receptor expression characteristic

of a more mature phenotype. However, these cells have decreased

functional potential evidenced by their lower degranulation ability

and perforin expression (70, 71). Regarding the CD56bright NK cell

population, they express CCR7, a chemokine receptor associated

with tissue trafficking; this has been noted to decrease. This decrease

in CCR7 expression has been correlated with HIV viral load (72),

supporting the idea that issues in NK cell trafficking contributes to a

failure to contain HIV replication. Moreover, CD56bright NK cells

have also been found to be more expressive of TGF-b during HIV

infection, which is of note as TGF-b inhibits immune effector

functions (73, 74). As HIV infection progresses, an expansion in

the amount of CD56neg NK cells has also been observed (Figure 2)

(71, 75, 76). In healthy subjects, the CD56neg NK cell subset

constitutes roughly 5.7% of NK cells in the peripheral blood,

which has been shown in a meta-analysis to increase by an

average of 10.6% after HIV-1 infection (77). CD56neg NK cells

have significantly impaired cytotoxic function due to expression of a

relatively high quantity of inhibitory receptors (78). Furthermore,

this cell population is known to produce a greater quantity of TGF-

b, a cytokine associated with anti-inflammatory and homeostatic

functions. TGF-b may also hinder autologous CD8 T cell

functionality and potential to generate IFN-g (79). The CD56neg

NK cell population is also known to expand in other chronic viral

infections including hepatitis C virus (HCV), Epstein-Barr virus

(EBV), and chronic cytomegalovirus (CMV). This observation

suggests that it is likely a common feature among chronic viral

infections (80).

During HIV infection, the expression of activating natural

cytotoxicity receptors (NCRs) like NKp80 and NKp46 in NK cells

are suppressed (81). Regarding inhibitory receptors, HIV viremia is

associated with a significant increase in the expression of inhibitory

KIR receptors, while NKG2A has been shown to decline, and taken

together, the alterations in the expression of both activating and

inhibitory receptors is associated with diminished cytolytic function

(82). Additionally, the expression of CD69, CD18, and CD11b are

also decreased, further suggesting functional impairment (83). A

decrease in IFN-g production by NK cells has also been observed,

and coinfection with hepatitis C virus (HCV) is found to

synergistically impair functional ability, with even further reduced

IFN-g and degranulation ability (84, 85).

To avoid targeting by cytotoxic T-lymphocytes, HIV selectively

downregulates MHC-I molecules HLA-A and HLA-B, but largely

retains HLA-E and HLA-C in some individuals in an attempt to

avoid lysis by NK cells (86). This occurs in a mechanism dependent

on HIV’s Nef protein and results in the aforementioned surface

MHC-I molecules being rapidly internalized and degraded (87).
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Similarly, HLA-C has been shown to be downregulated by HIV-1’s

viral protein U (Vpu) in some individuals, though not all (88, 89).

HIV has been shown to induce the expression of ligands for

NKG2D in infected cells by a mechanism dependent on its Vpr

protein (90). The subsequent NK cell activation is speculated to

contribute to CD4 T-cell depletion and NK cell dysfunction as

sustained exposure to its ligand desensitizes the NKG2D receptor,

resulting in its downregulation and diminished NK cell cytotoxic

activity (91, 92). However, it is worth noting that NKG2D signaling

alone is not enough to trigger NK cell degranulation as it requires

coactivation with NK-T-B-antigen (NTB-A) which is

downregulated through the action of Vpu enabling escape from

the NK cell response (93). Also of note is that HLA-E is capable of

displaying HIV antigen that blocks interactions with NKG2A

limiting inhibitory NK cell signaling by this mechanism. This

contrasts with HLA-C, which remains unblocked during HIV

infection resulting in conserved inhibitory signaling via KIR

receptors. This suggests that HIV+ cells are uniquely susceptible

to NKG2A expressing NK cells that lack inhibitory KIR receptors

(94), and therapeutics taking advantage of this possibility deserve

further exploration. Similarly, the blocking of interactions between

HLA-A and HLA-C with NK cell inhibitory receptors have

enhanced cytotoxicity against HIV infected cells (95).

During early HIV infection, NK cell numbers and distribution

remain relatively unaltered. KIR+ NK cells remain rare at this stage,

and the relative naivety of the NK cell repertoire limits their ability

to control the infection (96). As HIV infection progresses, there has

been an observed increase in the number of CXCR5+ NK cells in

lymphoid tissue (97). This population of NK cells highly express

activating receptors, including NKG2D and NKp44, although they
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do demonstrate functional impairment, with reduced degranulation

compared to CXCR5+ NK cells in non-infected individuals. Most

notably, the frequency of these cells is negatively correlated with

HIV-1 burden in the lymph tissue, illustrating their potential

importance in controlling the HIV-1 reservoir.

Also found within lymph tissue is a subset of CD56bright NK

cells which express a high quantity of NKG2A inhibitory receptors,

as well as NKG2D, NKp46, and NKp30 activating receptors

(98). This subset is also relatively immature in regards to its

differentiation status and cytotoxic potential due to expressing

only low quantities of CD57 and CD16. In humanized MISTRG-

6-15 mice, after HIV-1 infection, NK cells in the lymphoid tissue

were relatively less mature and similarly more dysfunctional when

compared to NK cells in the nonlymphoid tissues, consistent with

this previous result (99). However, this observation may be in part

driven by mismatched trafficking receptors impairing infiltration of

NK cells into lymphoid tissue in this mouse model. Within the gut

mucosa, two distinct subsets of NK cells located in the

intraepithelial spaces and lamina propria are significantly

diminished in prevalence during chronic HIV infection which

contrasts with spontaneous HIV controllers who have a stable

intraepithelial subset (100).

In terms of KIR receptor expression, the expression of the

activating KIR2DS4 has been shown to decrease while the

expression of other inhibitory KIRs remains constant with

exception of KIR3DL2 which increases (101). Interestingly failure

to downregulate KIR2DS4 has been associated with increased viral

replication possibly due to promoting excessive NK cell activation

in chronic HIV (102, 103). Similarly, the possession of inhibitory

KIR receptor KIR2DL3 has been associated with increased chronic
FIGURE 2

The CD56neg NK cell subset increases during chronic viral infections. This NK cell subset has been observed to expand in the setting of HIV, chronic
HCV, EBV, and chronic CMV. The subset has substantially impaired cytolytic capabilities due to alterations in its receptor repertoire, particularly due
to decreased expression of activating receptors like NKp30 and NKp46 in addition to the increased expression of the inhibitory KIR receptor KIR2DL2
(52). Interestingly, the expression of inhibitory KIR receptors KIR2DL1 and KIR3DL1 remain comparable between CD56+ and CD56neg NK cells. In HIV,
this subset has been found to be more expressive of TGF-b, which contributes to the exhaustion of other NK cells.
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immune activation, especially when an individual is also a carrier of

HLA-C2 (104). This same study also noted that carriers of

activating KIR3DS1 also display heightened immune activation

during chronic HIV. Further study has shown that KIR3DS1+ NK

cells in the presence of the receptor’s cognate ligand display

enhanced ability to control HIV infection in vitro and result in

lower viral set points in vivo (105, 106). Overall, these studies again

highlight the importance of an individual’s KIR and HLA

repertoire, as the presence of certain receptor-ligand genes are

associated with different functionality in HIV.

Mounting evidence also suggests that HIV infection is

associated with an increase and persistence of memory NK cells

(107). For example, macaques infected with either SIV or SHIV

have been found to develop a subset of antigen specific NK cells

present in the spleen and liver that specifically lyse dendritic cells

pulsed with viral antigens like GAG or ENV (108). This

mechanistically occurs in an NKG2C dependent manner and

markedly contrasts with NK cells isolated from healthy macaques

that lysed fewer cells in a non-specific manner. In humans, the

presence of rare HIV peptide specific NK cells has been observed

and is also associated with lower viral load, higher CD4 counts, and

stronger HIV specific T-cell responses (109, 110). Further study is

required to elucidate the mechanism by which these cells arise and

to explore their function in greater detail. An expansion in NKG2C+

memory NK cells have also been described in early HIV infection

and patients with high NKG2C+ CD57+ NK cell frequencies have

been found to show lower immune activation and HIV RNA one

month after starting antiretroviral therapy (ART) (111). The

patients in this study were seropositive for cytomegalovirus

(CMV), so from this data it is indeterminable the degree to which

this memory NK cell population was induced by HIV infection

itself. Regardless, further characterization of the functional role of

NKG2C+ CD57+ memory NK cells in HIV is needed.

ART does not normalize the phenotypic changes observed in

the CD56dim, CD56negative, and CD56bright NK cell subsets caused by

HIV infection (112). Deficiencies in the prevalence of CD56dim and

CD56bright, as well as the expression of CD107a, Granzyme-B,

NKG2D, and NKp46, remain following ART therapy suggesting

prolonged NK cell functional impairment (113). In spite of

functional impairment, NK cell activation persists following viral

suppression by ART (114). However, the cytokine-induced

expression of IFN-g and activating receptor NKp44 are also

reduced, and CD56bright cell counts are inversely correlated to the

decreased T regulatory cell counts observed during ART, suggesting

autoreactivity (115). In contrast, the relative expression of

inhibitory receptors after ART does appear to return and is

comparable to healthy donors (82). Despite ART, the

dysregulation of NK cells in HIV is a clear component of the

infection’s immunopathogenesis and is an avenue that many of the

therapeutics discussed later are targeting for cure strategies.
2.2 Hepatitis C Virus (HCV)

Hepatitis C Virus (HCV) belongs to the Flaviviridae family and

has a single-stranded RNA-genome (116). HCV primarily infects
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hepatocytes, but can also replicate in macrophages, B cells, and T

cells, among other extrahepatic tissues (117). While HCV infection

is often asymptomatic, chronic infection is frequently associated

with the development of liver fibrosis and in severe cases

cirrhosis (118).

In regards to the NK cell response, the relative prevalence of

CD56bright NK cells increases, while the prevalence of CD56dim NK

cells slightly decreases in the blood during acute HCV infection

(119). Additionally, both subsets have been found to upregulate the

expression of activating receptor NKG2D while demonstrating

strong cytokine production and cytotoxic activity. Following acute

infection, approximately 25% of individuals spontaneously clear the

virus, though the virus persists in the majority of individuals leading

to chronic infection (120). Self-clearing HCV infections have been

associated with highly differentiated NK cell phenotypes with

increased expression of CD57 and KIR receptors (KIR2D,

KIR3DL1, and KIR3DL2) and decreased expression of NKG2A

(Figure 3) (121). Furthermore, certain NK cell phenotypes, like the

expression of NKp30, are associated with spontaneous clearance

(122). Homozygosity in KIR2DL3 and HLA-C1 has also been

strongly associated with spontaneous clearance (43). The

expression of inhibitory receptors NKG2A and inhibitory

KIR2DL3 has been found to increase during chronic HCV

infection while the expression of NKp30 and NKp46 was

decreased relative to healthy controls (123, 124). Additionally,

possession of HLA-B*44, HLA-C*12, and KIR3DS1 have been

associated with failure to spontaneously clear HCV (125). Overall,

the correlation of self clearance with the presence of mature,

functionally active NK cells, as well as the presence or absence of

specific KIR receptors suggests NK cell involvement in determining

the chronicity of HCV.

Chronic HCV infection has also been associated with a

significant decline in the total number of NK cells, specifically the

CD56dim subset in the peripheral blood (126, 127), similar to what

occurs during chronic HIV infection. Additionally, the relative

proportion of CD56bright NK cells in the blood appears to

increase during chronic infection due to both expansion of the

subset, and the decline of CD56dim NK cells in the blood (128, 129).

For example, the CD56dim NK cell subset has been observed to

shrink to 4.9% of total lymphocytes in the blood during chronic

HCV infection from 9.0% in healthy controls (123). In an ex vivo

study, extracellular HCV-core protein was found to be correlated

with the frequency of CD56bright NK cells, suggesting that the

protein attenuates NK cell differentiation and may help explain

the increased prevalence of more naive CD56bright NK cells (130).

This direct viral modulation, along with other explanations

providing rationale for the changes in NK cell subset prevalence

in the blood during chronic HCV infection like tissue homing,

would benefit from further investigation.

NK cells in the liver are predominantly of the CD56bright subset,

and liver fibrosis is associated with the diminished expression of

activating receptors, including NKG2D and NKp46 (131). During

chronic HCV infection, IL-26, has been found to be overexpressed

(132). IL-26 is a cytokine that was recently identified as an

inflammatory mediator, which binds extracellular DNA from

damaged cells and induces activation of myeloid and lymphoid
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cells (133). The overexpression of IL-26 during HCV in turn

upregulates TNF-related apoptosis-inducing ligand (TRAIL)

expression on CD56bright NK cells, increasing their ability to kill

HCV-infected hepatoma cells (132). Additionally, an increase in the

number of intrahepatic NKp44+ NK cells has been observed during

chronic HCV (134). These intrahepatic NKp44+ NK cells are potent

producers of TNF-a, and their frequency has been positively

correlated with both HCV-RNA and fibrosis stage, indicating

they may play a role in liver damage. It has also been observed

that the relative prevalence of resident liver NK cells relative to

circulating NK cells increases in the setting of cirrhosis, further

suggesting NK cell involvement in HCV related liver fibrosis (135).

Further work exploring if the NK cell response in the liver is

mediating liver fibrosis or attempting to inhibit it through IL-10 and

other mechanisms is needed to better understand the pathogenesis.

Functionally speaking, NK cells from HCV infected patients

have a reduced capability to degranulate and produce cytokines

(136). As infection progresses, reduced expression of NKG2D,

NKp30, NKp46, and an increase in the CD56neg NK cell subset

and NKG2A expression is observed (137). Remaining CD56dim NK

cells also express CD16 to a lesser degree, limiting their ADCC

ability (128). Additionally, hepatocytes in humanized mice

upregulate Qa-1 (a murine functional homolog to HLA-E), which

significantly contributes to NK cell exhaustion through inhibitory

NKG2A receptor signaling (138). Furthermore, anti-NKG2A

antibodies have been shown to restore NK cell production of

IFN-g in mice, resulting in decreased viral replication,

demonstrating the relative importance of this pathway in NK cell
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exhaustion. Such immune checkpoint inhibitors will be explored

further later.

Direct acting antiviral (DAA) therapy has been shown to

normalize many of the changes in the NK cell repertoire

associated with chronic HCV infection. For example, the

prevalence of CD56dim NK cells increases and the prevalence of

the CD56bright NK cell subset decreases, reverting both to levels

comparable to healthy controls (139, 140). DAA has also been

associated with decreased NK cell activation in the periphery, as

well as decreased IL-12, IL-18, NKp30, NKp46, and TRAIL

expression (139, 141). This further supports the idea that DAA,

and by extension the decline in viral titers it causes results in

diminished NK cell activation, and also teases NK cell involvement

in the mediation of liver damage, due to treatment resulting in

declining NK cell activation.
2.3 Cytomegalovirus (CMV)

Cytomegalovirus (CMV) is a member of the Herpesviridae

family and has a large linear double-stranded genome (142). The

virus infects a wide assortment of cells including epithelial cells,

fibroblasts, monocytes, and macrophages and establishes a latent

reservoir that is prone to later reactivation (143). The most notable

feature of NK cells in CMV infection is the expansion of NKG2C+

CD57+ memory NK cells, also known as adaptive NK cells (144–

147). These cells are phenotypically mature CD56dim NK cells that

express NKG2C, and persist after acute infection (148). Further, this
FIGURE 3

Self clearing HCV infections are associated with a more highly differentiated NK cell repertoire compared to chronic HCV infections. Following acute
HCV infection, two outcomes may follow. In roughly a quarter of cases, HCV infection is spontaneously cleared whereas roughly three quarters of
cases become chronic. Spontaneously cleared cases are associated with a more a more differentiated NK cell phenotype with increased prevalence
of NKp30, CD57 and KIR expression as well as decreased expression of NKG2A. Chronic HCV cases are associated with diminished NK cell
expression of NKp46, NKp30, and CD16 along with increased expression of NKG2A. NKG2A inhibitory signaling has been identified as a key source
of NK cell exhaustion in HCV infection.
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NKG2C NK cell population preferentially expresses the inhibitory

KIR2DL receptors, which has been described as contributing to

increased functionality (149). CMV seropositivity is also associated

with a decline in the expression of NKp30 and an increase in NKp46

(Figure 4) (150).

A similar expansion of NKG2C+ CD56dim NK cells has been

observed during CMV coinfection with viral hepatitis (both

hepatitis B and C), suggesting that CMV-related NKG2C

expansion is prominent even in the setting of other viral

infections (151). This NKG2C+ memory NK cell population has

been found to be have a greater capacity for ADCC and a potent

capability to produce TNF-a and IFN-g (152). As described earlier,

these NKG2C+ CD57+ NK cells have been coined adaptive NK cells
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due to their selective proliferation, persistence, and functional

potency in the setting of CMV infection, comparable to that of

the adaptive immune system (153). The emergence and persistence

of NKG2C+ CD57+ NK cells secondary to CMV infection are

thought to be driven by epigenetic changes (154, 155).

Hematopoietic stem cell transplant (HSCT) recipients who

experienced CMV reactivation post-transplant show a similar

increase in the proportion of adaptive NK cells (156). These

adaptive NK cells persist in the body for at least a year in post-

HSCT recipients (157). In contrast, CMV seronegative recipients

retain a population of comparatively less mature NK cells,

presumably offering these recipients less protection. This is

especially important considering that NK cells are among the first
FIGURE 4

Acute CMV Infection and Subsequent Reactivation is Associated with an Expansion in NKG2C+ memory-like NK cells. These cells are phenotypically
mature, long lasting, and exhibit enhanced functional potential leading them to be coined adaptive or memory like NK cells. This population is
phenotypically defined by the expression of NKG2C and is associated with a high level of expression of CD57, NKp46, and inhibitory KIR2DL
receptors.
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lymphocytes to recover status post-HSCT (158). This expansion

of NK cells associated with CMV reactivation is also linked to a

significant increase in the number of all NK cell subsets that persists

even without further viral reactivation (157). Furthermore,

NKG2C+ NK cells transplanted from CMV seropositive donors

display heightened function during CMV reactivation (159). This

supports the idea that NKG2C+ memory NK cells are also

potentially transplantable and have rationale as a therapeutic

which deserves further exploration.
2.4 Influenza Virus A (IVA)

Influenza A Viruses are members of the Orthomyxoviridae

family and have a segmented genome consisting of 8 linear RNA

strands (160). They are further subtyped based on the

hemagglutinin (HA) and neuraminidase (NA) they express,

which are surface glycoproteins that help mediate viral entry and

exit respectively (161). Influenza viruses primarily infect epithelial

cells of the upper and lower respiratory tract, and severe cases can

result in acute respiratory distress syndrome (162).

Influenza virus A (IVA) infection induces the infiltration of NK

cells into lung tissue with a significant increase in the number of NK

cells expressing CXCR3, CXCR6, and CCR5, all of which are

markers of tissue homing (163, 164). In mice, this infiltration is

also in part regulated by IL-15 as evidenced by the blocking of IL-15

delaying this infiltration (165). Severe infection is associated with a

decline in the total number of NK cells in the peripheral blood,

particularly among CD56bright NK cells, along with marked NK cell

activation evidenced by an increase in the proportion of NK cells

expressing CD69 (166, 167).

As a whole, there is a decrease in the number of NK cells

expressing NKp46 but an increase in the number of cells expressing

coreceptor 2B4 in the blood and these cells also show a greater

degree of activation (168). Of the remaining NKp46 expressing NK

cells, the proportion of NKp46+ NKp44+ NK cells expands while the

proportion of NKp46+ NKp44- declines, contributing to the shift

towards NK cell activation (169). An NKp46+ NKG2A+ NK cell

subset has also been found to be induced by IVA infection. This

subset of NK cells has demonstrated a memory phenotype in that

upon reencountering previously exposed influenza antigen, they

display decreased cytotoxicity and increased IFN-g production

(170). Influenza is also directly capable of infecting NK cells,

triggering apoptosis, and infection has been shown to inhibit NK

cell cytotoxic function (171–173).

In the lung, tissue resident NK cells comprise 10-25% of the NK

cell population meaning that most NK cells in the lung are

circulating NK cells (15). The majority of lung tissue resident NK

cells are CD16- and have similarly been divided into CD56dim and

CD56bright subsets in some studies (15). Functionally, the CD56bright

lung tissue resident NK cells subset has been described as showing

greater functionality, with increased degranulation and IFN-g
production in response to IVA infection compared to other NK

cells ex vivo (174). The rationale behind this subsets enhanced

function is poorly understood and whether or not it translates in

vivo is unknown.
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Differential activation of NK cells has been observed following

coculture with replication deficient influenza A pseudotypes that

express IVA HA and NA (175). Particularly, more robust

upregulation of CD69, CD107a, and IFN-g along with

downregulation of NKp46 is observed with H5N1, and the 1918

H1N1 compared to 2009 H1N1 (Figure 5) (175). More broadly

speaking, Influenza induces both degranulation and cytokine

production, particularly in CD56bright NK cells, and while their

activation contributes to host immunity, it may well contribute to

tissue damage as well (176). For example, NK cell-depleted mice

infected with a high dose of influenza A virus have decreased

mortality and disease morbidity illustrating how the NK cell

response can be deleterious (177). Conversely, a study looking at

NK cell responses in chickens challenged by either a weakly

pathogenic H9N2 avian influenza virus or a highly pathogenic

H5N1 avian influenza virus found that the less pathogenic avian

virus induced a more vigorously activated NK cell response (178).

This shows that a notable NK cell response in influenza is not

always associated with viral virulence and may even be protective.

Additionally, CD94 expression has been negatively correlated with

influenza symptom severity, suggesting that signaling through

CD94 containing receptors plays a role in control of IVA

infection (179). Overall, more work is required to characterize

differential NK cell responses between influenza viruses, and what

correlates are predictive of deleterious responses.

The IFN-g response orchestrated by NK cells is particularly

important in the context of infection. Notably, impairment of NK

cell activation and IFN-g secretion is associated with weakened

cytotoxic T lymphocyte activity against influenza (180). This has

been corroborated in mice, and the initial increase in production of

IFN-g after NK cell activation results in downstream cytotoxic

function in CD8 and NK cells during influenza infection (181).

This potent IFN-g response orchestrated by NK cells has also been

implicated in contributing to thymic atrophy during influenza A

infection, showing it can also be deleterious (182).

Influenza vaccination has also been shown to prime NK cell

function with patients displaying increased production of IFN-g
and enhanced activation after stimulation, while NK cell phenotype

and subset is largely unaltered (183, 184). However, influenza

vaccination does induce a proportion of CD56dim NK cells to

become memory NK cells and express intracellular NKp46,

offering a possible mechanism by which the IFN-g NK cell

response is enhanced after vaccination (185). These vaccine

induced memory NK cells display a heightened IFN-g response

that persists 6 months after vaccination. It has also been found that

NK cells in mice vaccinated with a multivalent influenza vaccine

had greater expression of granzyme B and perforin and took on a

more mature phenotype after being challenged by heterosubtypic

influenza strains compared to unvaccinated mice (186). This again

supports the notion that influenza vaccination primes NK cells to

offer greater protection even against heterosubtypic strains where

vaccine-derived humoral immunity may struggle. Changes in the

NK cell population induced by other vaccines remain

underexplored, and examining these NK cell phenotypic changes

induced by vaccines as a correlate of immunity warrants

more attention.
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2.5 SARS-CoV-2

SARS-CoV-2 belongs to the Coronaviridae family and has a

large single-stranded RNA genome (187). The virus primarily

infects ACE2+ cells of the respiratory tract, particularly type II

alveolar pneumocytes and in severe cases can result in acute

respiratory distress syndrome (188). Severe COVID-19 disease

has been linked to a significant decline in CD56+ CD16+ NK cells

in the blood (189–191). This decrease in circulating NK cells is

correlated with acute SARS-CoV-2 infection and is associated with

disease severity (192, 193). In hospitalized patients, NK cell counts

correlate directly with the speed of viral load decline. For example,

those with normal NK cell numbers in the blood showed a faster

decline of viral load compared to those with low NK cell numbers,

suggesting that circulating NK cells may represent a prognostic

clinical marker of COVID-19 severity and outcome in adult patients

(194). When patients recover after COVID-19, their circulating NK

cell counts return to normal. In patients affected by long COVID-

19, NK cell counts have recovered, despite continued symptoms

(195). In Multisystem Inflammatory Syndrome in Children (MIS-

C), a severe post-infectious complication that occurs 4-6 weeks after

COVID-19 infection, CD56dim NK cells are also decreased in

number (196).

During COVID-19, NK cells are robustly activated, evidenced

by an increase in the expression of CD69, and KI-67 a proliferation

marker (192). Expression of the genes KLRD1 and KLRG1, which
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encode CD94 and killer cell lectin-like receptor G1 respectively, are

also noted to decrease in many patients contributing towards NK

cell activation (197).

SARS-CoV-2 infection has also been linked to an increase in the

expression of NKG2C, creating a population similar to the earlier

described memory NK cells (192, 198). Interestingly in patients with

adaptive NK cells, there was no detectable circulating CMV DNA,

suggesting that the expansion of adaptive NK cells in severe

COVID-19 patients may be independent of CMV reactivation

secondary to COVID-19. It is still to be determined if SARS-

CoV-2 itself can drive the expansion of adaptive NK cells or if

they are driven by the production of pro-inflammatory cytokines. In

those affected by long COVID-19, there are increased levels of

CD57+ NKG2C+ memory NK cells; these are one of the variables

important for predicting a higher susceptibility to develop long

COVID-19. However, despite greater populations of memory-like

NK cells, their effector functions remained impaired (195).

The expression of cytotoxic effector molecules like perforin and

Granzyme A are also significantly increased during most COVID-

19 cases (189, 199, 200). While these cytotoxic effectors are

upregulated, NK cells from COVID-19 patients have been shown

to have reduced degranulation potential and cytotoxicity (201).

Furthermore, in severe cases, the quantity of TNF-a and IFN-g
produced by NK cells is diminished (202–204). Inhibitory KIR and

NKG2A receptors have been found to be upregulated during

COVID-19 and likely contribute to NK cell exhaustion (205, 206)
FIGURE 5

Coculture of NK cells with different IVA PPs induce differential NK cell activation. In vitro experiments coculturing NK cells isolated from PBMCs with
pseudotype particles (PPs) of different IVA viruses found differential activation between PPs in terms of CD69, CD107a, and IFN-g expression (139).
The findings presented in the figure correspond to the 500 HAU/mL IVA coculture dose. The PPs modeling the more virulent 1918 H1N1 and H5N1
IVA viruses induced greater activation than the less virulent 2009 H1N1 PPs. This suggests that in IVA infection, disparities in early NK cell activation
between influenza viruses may play a role in contributing to differential virulence between them. Further work is required to characterize this effect
in vivo with whole virus that is not replication deficient due to IVA infecting and killing NK cells.
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NKG2A is also highly upregulated in acute, severe COVID-19

patients, while mild and moderate patients show a recovery of

NKG2A after resolution of the infection (198). Significant NK cell

exhaustion is further supported by the increased frequency of

programmed cell death protein 1 (PD-1), Lymphocyte-Activation

Gene 3 (LAG-3), and TIGIT, as well as a decreased frequency of

NKG2D. However, the level of PD-1 expression in NK cells isn’t

correlated with disease severity (203, 204), while decreased

expression of TIGIT and DNAM-1 have been associated with

slower viral clearance (207). Overall, more work is needed to

ascertain the degree to which exhaustion is responsible for NK

cell’s diminished function in COVID-19, as opposed to issues in

tissue homing.

Infection has also been linked to the expansion of the CD56dim

CD16neg NK cell population, which has decreased cytotoxic

potential compared to the standard CD56dim CD16+ NK cell

subtype (Figure 6). It has also been shown that CD56dim CD16neg

NK cells expand in the early phases of SARS-CoV-2 and then

decrease in mild or moderate cases, but in severe COVID-19 cases,

this subset continues to expand (208). The study also suggests that

loss of CD16 is potentially being mediated by cleavage through

Adam17 in these cells (208). In MIS-C, studies have shown that

there is a decrease in the prevalence of CD16+ NK cells, suggesting

that there is a decrease in NK cell ADCC function in MIS-C (200).

However, further studies are needed to explore NK cell function in

MIS-C directly beyond just immunophenotyping.

In fatal COVID-19 cases, patients had impaired upregulation of

perforin, granzyme-A, and KI-67, suggesting that defects in NK cell

cytotoxic activity are associated with increased morbidity and

mortality (209). Corroborating this is the observation that NK cell

mediated ADCC appears to be impaired in severe COVID-19 (210).

In the context of COVID-19 infection, TGF-b signaling has been

associated with a stark reduction in NK cell effector functions, with

patient serum having been found to inhibit NK cell cytotoxicity in a

TGF-b dependent manner (194). Similarly, impairments in IFN-g
production appear to occur in a TGF-b dependent manner (211).

This suggests that TGF-b signaling contributes significantly to NK

cell dysregulation and exhaustion during COVID-19.
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3 NK cell therapeutics

Given the extensive changes in NK cell phenotype and

repertoire, which often lead to exhaustion and dysregulated NK

responses in viral infections, several therapeutic approaches with

the goal of promoting NK cell function are under investigation. The

majority of NK cell-related therapies originate from the domain of

cancer biology and have only recently been studied in the context of

viral diseases.
3.1 TGF-b inhibitors

The development of therapeutic TGF-b inhibitors largely stems

from the implication of aberrant TGF-b signaling in the

pathogenesis of cancer, cardiovascular disease, and fibrosis. As a

therapeutic class, they span a wide variety of structures from small

effector drugs to blocking antibodies targeting a diverse host of

TGF-b pathway components (212, 213). TGF-b signaling in HIV

infection has been documented to promote latency by upregulating

the transcriptional repressor Blimp-1 (214, 215). Galunisertib, a

TGF-b type I receptor inhibitor, was administered to SIV infected

rhesus macaques, where it was shown to increase reactivation of the

SIV latent reservoir, and enhance the subsequent immune response

to SIV (216). TGF-b signaling during SARS-CoV-2 infection has

also been associated with NK cell dysregulation that limits

functional activity contributing to subsequent viral pathogenesis

(194, 217), showing that TGF-b inhibitors may have rationale to be

applied in acute viral infections too.

Broadly speaking, TGF-b signaling has been shown to impair

NK cell cytotoxic function in part by restricting the IL-15 activation

of the mTOR pathway (218). Additionally, deletion of the TGF-b
receptor subunit TGF-bRII has been shown to promote the

cytotoxic function of NK cells in response to IL-15, enhancing the

ability of NK cells to limit metastasis in two different murine tumor

models (218). It is worth noting that by inhibiting NK cell cytotoxic

function and the secretion of proinflammatory cytokines like IFN-g,
TGF-b plays an important role in limiting excessive NK cell
FIGURE 6

Severe SARS-CoV-2 is Associated with a Significant decrease in the number of CD56+ CD16+ NK Cells in the Blood. The decline in CD56+ CD16+ NK
Cells is due to CD16 shedding catalyzed by ADAM17. This results in an accumulation of CD56+ CD16- NK cells of less cytotoxic potential and in
severe cases likely contributes to impaired capability to engage in ADCC. CD16 mediates ADCC by binding to antibodies attached to target cells,
ultimately resulting in degranulation.
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activation. The risk of NK cell hyperresponsiveness, and the

subsequent inflammatory environment and tissue damage this

induces, should be considered in the testing of TGF-b Inhibitors.

However, considering the clear contribution of TGF-b signaling to

NK cell dysregulation and evidence that restraining this signaling

may actually promote NK cell cytotoxicity beneficially, there

warrants further investigation into the use of TGF-b inhibitors as

a potential therapeutic for treating viral infections.
3.2 Immune checkpoint inhibitors

A key component of NK cell dysregulation is exhaustion driven

by inhibitory pathways. These inhibitory pathways have been

termed immune checkpoints, and immune checkpoint inhibitors

have been developed to interfere with these pathways in an effort to

preserve immune function (219).

NKG2A is an important inhibitory receptor expressed on most

NK cells and is considered an immune checkpoint for NK cells.

NKG2A inhibitors like the monoclonal antibody monalizumab

have been found to promote antitumor immunity in treating

squamous cell carcinoma by enhancing the activity of NK and

CD8 cells (220). Monalizumab has also demonstrated a similar

response in the setting of murine colorectal cancer (221), and

against HLA-E+ leukemia and lymphoma in mice (222). NKG2A

blocking monoclonal antibodies have also shown promise in

treating viral hepatitis, with cultured NK cells from patient’s

demonstrating enhanced cytotoxicity (223). Similarly, NKG2A-

blocking monoclonal antibodies have been shown to restore the

production of IFN-g by NK cells during HCV infection, and has

been associated with diminished CD8 T cell exhaustion (138). This

therapeutic also has rationale to be applied in treating COVID-19

due to NK and CD8 T cell exhaustion being driven in part by

increased NKG2A expression (205, 224, 225).

Antibodies targeting inhibitory KIR receptors have also

emerged as another NK cell related immune checkpoint therapy.

One such KIR inhibitor named IPH2101 which targets inhibitory

KIRs (KIR2DL-1, KIR2DL-2, and KIRT2Dl-3) recently underwent

a phase 1 study where it was deemed safe and tolerable and in ex

vivo assays demonstrated increased NK cell cytotoxicity against

multiple myeloma (226). However, a phase 2 study of IPH2101 was

terminated due to lack of clinical efficacy (227), and similarly, a trial

for lirulumab, another anti-KIR antibody (which targets KIR2DL-1,

KIR2DL-2, and KIRT2Dl-3) was terminated for failing to meet

objective response criteria (228). IPH2101 has also be combined

with the anti-tumor drug lenalidomide in further testing against

multiple myeloma with early data suggesting a promising

synergistic effect, although more study is required (229, 230). As

this study highlighted, a key advantage of immune checkpoint

inhibitors is that they can readily be combined with other

therapeutics. IPH2101 has also been tested in the setting of acute

myeloid leukemia, where a degree of early TNF-a and CD69

upregulation was detected (231). Another anti-KIR antibody

named IPH4102, targeting KIR3DL2, has also been tested in

relapsed and refractory cutaneous T-cell lymphoma, which

showed its potential to elicit a promising clinical response in
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36.4% of the study participants (232). Little testing of KIR

inhibitors has been undertaken in the setting of viral infections,

although they warrant study particularly in HIV due to HIV viremia

being associated with an increase in the expression of inhibitory

KIR receptors (82).

PD-1 signaling has been implicated as a hallmark of T-cell

exhaustion and a contributing factor of immune escape in the

setting of cancer, and is considered another important immune

checkpoint (233, 234). PD-1 signaling has been shown to be of

significance to NK cells in multiple myeloma (235), renal cell

carcinoma (236), and in Kaposi sarcoma (237), where it

contributes to an exhausted NK cell response (29). Several PD-1

checkpoint inhibitors have been approved by the FDA including

pembrolizumab, nivolumab, and cemiplimab among many others,

which together have been tested clinically in a diverse arrangement

of cancers (238). Significant expression of PD-1 has been shown in

chronic HIV (239), HCB (240), HCV (241), Influenza (242), and

SARS-CoV-2 (243), with a similar exhaustive effect.

In a mice influenza challenge model, PD-1 inhibitors were

shown to enhance CD8 T-cell function resulting in quicker viral

clearance (244). In SIV infected rhesus macaques, the blockade of

PD-1 was well tolerated and resulted in the expansion of functional

SIV-specific CD8 T-cells in the blood and gut as well as the

expansion of memory B-cells all of which was associated with

lower viral load and prolonged survival (245). Similarly, in CD4+

humanized mice, PD-1 blockade was associated with lower HIV

viral load and increased T-cell counts (246). In HBV, PD-1

blockade has also been shown to again promote CD8+ T-cell

expansion and secretion of IFN-g and IL-2 (247). Importantly,

the upregulation of PD-1 in NK cells during acute febrile malaria

has been associated with enhanced ADCC, but otherwise

diminished degranulation (248). This finding hints that the

impact of PD-1 blockade on NK cells, may be more nuanced in

terms of impact on functional activity than CD8 T cell function.

Overall, more work is needed to characterize the impact that PD-1

blockade has on the NK cell population in the setting of these viral

infections; however it is clear based on the CD8 T-cell response

alone that PD-1 blockade is a promising therapeutic that deserves

further examination in the setting of infectious diseases (249).
3.3 Adoptive NK cell therapies

Another therapeutic approach entails the administration of

exogenous NK cells. The goal is to supply functionally intact cells

to supplement NK cell functional activity during virally mediated

NK cell dysfunction and exhaustion. The administration of

allogenic NK cells has been safely and effectively used to treat

leukemia (250). Delivery of exogenous NK cells have also

demonstrated clinical responses in treating non-small cell lung

cancer (251), platinum-resistant ovarian cancer (252), melanoma

(253), and renal cell carcinoma (253). Very little work has been

done studying adoptive NK cell therapies in infectious diseases. In

SARS-CoV-2 and HIV-1, an additional consideration is the

infusion of adaptive NK cells due to their enhanced cytotoxicity

and persistence (198).
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Recently, genetically engineered NK cell lines derived from

induced pluripotent stem cells (iPSC) have emerged. Some of the

gene edits in these cells include a non-cleavable CD16a receptor, a

membrane-bound IL-15/IL-15R fusion protein, and knockout of

coenzyme CD38 to promote the persistence and function of these

cells after administration (254). In the setting of HIV, allogenic NK

cells derived from human embryonic stem cells have been shown to

decrease HIV replication during acute infection in humanized mice,

and when combined with latency reversal, helped diminish the HIV

reservoir (255, 256). Furthermore, phase 1 safety trials where

haploidentical NK cells are infused into HIV infected ART

suppressed patients in combination with either IL-2 or N-803 (an

IL-15 superagonist) supportive therapy have been completed

(NCT03346499, NCT03899480).

There are clinical trials using primary and iPSC-derived or “off-

the-shelf” NK cells as therapeutics against SARS-CoV-2, suggesting

that adoptive NK cells transfer may be a viable therapeutic in the

setting of acute viral infection. An example of this is a phase 1 study

in which a line of IPSC derived NK cells called FT516 administered

to hypoxic COVID-19 patients to assess their safety and maximum

tolerated dose. Results of this study (NCT04363346) are anticipated

soon. Taken together, the demonstrated safety of utilizing

exogenous NK cells, along with preliminary findings suggesting

possible efficacy in treating viral infections, particularly in HIV, calls

for further investigation.
3.4 Cytokine stimulation and cytokine
induced memory like NK cells

Approaches to enhance NK cell anti-viral functions in vivo and

prior to adoptive transfer of exogenous NK cells are of interest. In

oncology, many cytokines have been used for the treatment of NK

cell dysfunction, such as IL-12, IL-15, and IL-18 given their ability

to promote NK cell expansion and maturation (257–259). In the

context of SARS-CoV-2, a phase 2 clinical trial has been completed

looking at the efficacy of low-dose IL-2 in acute respiratory distress

syndrome (ARDS) related to COVID-19 (NCT04357444). NK cells

treated with IL-15 and stimulated with an inactivated whole

influenza virus were shown to mount a more vigorous NK cell

response compared to when not treated with IL-15 (260). In HIV,

NK cells stimulated with IL-15 demonstrated uniformly improved

effector functions and the ability to kill HIV-infected cells that were

treated with a latency reversal drug (261).

IL-12, IL-15 IL-18 are also of particular interest given their

ability to induce changes in NK cells through transcriptional,

epigenetic, and metabolic mechanisms that ultimately increase

their cytotoxicity and result in memory like behavior (262).

Cytokine induced memory like (CIML) NK cells have displayed

increased IFN-g responses in addition to enhanced recall responses

even after multiple rounds of cell division (263, 264). They also

display increased expression of NKG2C, NKG2A, CD69, and CD94,

but not CD57 or KIR receptors (263). Due to the enhanced effector

functions and relative ease at which CIML NK cells are generated,

extensive study of the adoptive transfer of these cells, especially in

the setting of myeloid malignancies, multiple myeloma, and head
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and neck squamous cell carcinoma has been undertaken (262). For

example, infusion of 5 to 10 million cells/kg in patients with

myeloid malignancies on lymphocyte depleting chemotherapy

displayed a 10 to 50 fold expansion of NK cells that was

determined to be independent of CMV reactivation and persisted

for months (265). Other phase 1 studies of adoptively transferred

CIML NK cells has also documented clinical responses. In the

setting of acute myeloid leukemia, one study found clinical

responses in 5 of 9 patients, of which included 4 complete

remissions (259). Another study found complete remission in 4 of

8 patients (266), and when supported with 3 weeks of N-803 an 87%

complete response rate was achieved by day 28 in a different study

(267). The adoptive transfer of CIML NK cells has been

understudied as a possible treatment for viral infections, and

preclinical work, especially in the setting of HIV should

be prioritized.
3.5 IL-15 superagonist therapy

Due to the aforementioned benefit of IL-15 stimulation on NK

cell effector functions, novel approaches to enhance IL-15 signaling

in vivo have been investigated. One such therapeutic is the IL-15

superagonist ALT-803. In SIV-positive rhesus macaques, ALT-803

(now N-803), an IL-15 superagonist comprised of an N72D mutant

IL-15 molecule attached to its alpha receptor and a human IgG1

fragment designed to increase IL-15 activity, was shown to increase

the NK cell population in the peripheral blood and decreased viral

loads (268). In SHIV-infected rhesus macaques, N-803 was shown

to mediate migration of virus-specific CD8+ T and NK cells to B-

cell follicles, however no latency reversal was observed (269). A

recent phase-1 clinical trial of N-803, showed that this molecule is

also safe and tolerable in people living with HIV that are ART-

suppressed. Further, N-803 was associated with CD8+ T and NK cell

activation, as well as induced HIV RNA expression, with concurrent

reduction in HIV DNA in Lymphoid tissue over time (270). Future

clinical trials are needed to test the effects of these molecules on HIV

reservoirs due to the promising results of the aforementioned

preclinical and phase 1 studies.
3.6 NK cell engagers

As mentioned above, viral infections, especially HIV, can deter

the natural recognition of virally infected cells by NK cells due to the

manipulation of activating and inhibitory receptors expressed by

the infected cell, thereby evading the immune response (82, 86, 87,

90–95). Broadly neutralizing antibodies (bnAbs) have been

identified to play a role in viral control (271), and are used as a

treatment and prevention strategy (272, 273).

Furthermore, in the RV144 HIV vaccine trial, which showed a

statistically significant decrease in HIV infection risk (274), one

correlate of reduced risk was found to be increased IgG antibodies

targeting the V1V2 loop of the HIV ENV protein (275, 276). In a

follow-up analysis, it was shown that these IgG antibodies elicited

Fc-mediated NK cell ADCC functions (277, 278). These data
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suggest that non-neutralizing antibodies play a role in HIV

protection through mediating effective Fc-effector functions (279–

281). Additionally, NK cell-mediated ADCC against HIV has been

noted as an important mechanism for HIV control (282–284),

despite NK cell dysfunction (75, 113). However, a major concern

with HIV-specific bnAbs is that HIV mutates rapidly and can

escape bnAb-mediated neutralization (285–288). Further, the

majority of bnAbs, which are generally of the IgG1 isotype, have

good neutralization capacity, but subpar Fc-effector functions

compared to their IgG3 isotypes (289–291).

Engineered small molecules are a promising strategy to direct

NK cell mediated killing. The cancer field has made great progress

in this field with the development of NK cell engagers (NKCE), Bi-

and Tri– specific killer engagers (BiKEs and TriKEs™) as well as

multi-specific antibody-based constructs (ANKET and StitchMabs)

(292–297), which bind to activating receptors on NK cells. Briefly,

TriKEs™ consist of an anti-CD16 engaging molecule that directly

binds the CD16 receptor, joined via a flexible linker to an IL-15

molecule, and in-turn joined via linkers to an antigen engaging

molecule to target an antigen of interest (298). Similarly, BiKEs

consist of a similar anti-CD16 engaging molecule that is joined via a

linker to an analogous antigen engaging molecule (298). ANKET

constructs consist of an Fab that targets an NK cell receptor,

commonly NKp46, together with another Fab that targets an

antigen of interest (292). As alluded to above, ANKET molecules

can also be generated to display bivalent binding to one or two

different antigens (292). Furthermore, T-cell based nano engagers

have also been developed in the form of Bi-specific T cell engagers

(BiTEs) (299), and dual affinity retargeting antibodies (DARTs)

(300, 301), although this is outside the scope of this review and

won’t be discussed further here.

If we consider these therapies for HIV infection, many of the

NK cell engagers mentioned above use either NKp46 or CD16 as the

NK cell engaging molecule. However, NK cells are dysregulated

during HIV infection, with activating and inhibitory receptor

expression modulated. Importantly, despite NK cell dysfunction

during HIV infection, NK cells still retain expression of CD16,

enabling them to mediate ADCC (82). Therefore, given NK

dysfunction, the retention of CD16 and the importance of Fc-

mediated effector functions to combat HIV, strategies that exploit

these are promising. Engineered small molecules that can bind

directly to NK cells via CD16 interaction have been recently

developed (302). This has been achieved by utilizing the BiKE

and TriKE™ constructs that had previously been designed to target

cancers (303–308).

These molecules allow the targeting of a variety of antigens for

multiple viral infections, while also mitigating potential issues that

arise with Fc-mediated effector functions. Further the IL-15

molecule induces persistence, expansion, and activation of NK

cells (257). Currently, a BiKE construct has been generated using

the HIV binding region of the VRC01 bnAb. This VRC01 BiKE

construct, was shown to bind the HIV infected cell lines HIV-IIIB

and ACH-2, but not their uninfected counterparts H9 or CEMs.

Further, this VRC01 BiKE mediated effective NK activation,

assessed by degranulation via CD107a expression and IFN-g and

TNF-a cytokine production, and subsequent killing against these
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HIV infected cells (309). Further work generating and testing TriKE

constructs making use of the VRC01 binding region as well as other

known HIV bnAb binding regions is currently underway.

However, HIV can escape viral restriction via bnAbs, so breadth

is an important consideration in the development of novel

therapeutics. Importantly, all HIV variants must utilize the CD4

receptor for initial gp120 binding to the cell surface (310).

Therefore, using the CD4 receptor as the HIV binding region in

novel therapeutics could overcome HIV escape (285). However, as

this is a naturally found receptor used by many cells, careful

consideration must be taken in the design so not to induce self-

targeting. Extensive work in this field has already been done (311–

313), and a CD4 extracellular domain 1 (CD4ECD1) molecule,

designated mD1.22, with potent HIV neutralization and little

binding to MHC class 2 has been identified (314). When designed

into a BiKE construct with CD16 binding capabilities, it induced

NK cell degranulation and killed HIV target cells (315). A

CD4ECD1 TRiKE is currently in development and testing.

Further, these TriKEs can be used in combination with a

checkpoint inhibitor therapy (308), or other cytokine based or

adoptive NK transfer strategies, highlighting the vast potential of

these NK cell engagers for combination therapies to combat

viral infections.
3.7 CAR NK cells

Chimeric antigen receptor (CAR) cells are another promising

treatment that have been popular in the cancer field for many years

and are now starting to be studied as a potential therapeutic for viral

diseases. Many researchers have begun to produce CAR NK cells as

they are less expensive and less likely to cause cytokine storm than

CAR T cells (316). One such example is a CAR-NK cell therapy that

secretes IL-15 and expresses a CAR with an extracellular ACE2

domain to target the SARS-CoV-2 spike protein and has been

promising against SARS-CoV-2 in vitro (317). There is also

currently another clinical trial underway to test a CAR NK cell

that expresses ACE2 on it surface to treat severe COVID-19

patients (NCT04324996).

CAR NK cells are also currently being used in a clinical trial to

treat HIV (318). In the setting of HIV, CAR-NK cells have largely

targeted a single epitope of the HIV envelope glycoprotein gp160.

Recently, the development of universal CAR-NK cells that target a

broader range of gp160 has shown greater activation and the ability

to kill HIV infected human CD4+ T cells (319). A visual overview of

the discussed therapeutics is available in Figure 7.
4 Perspective on the use of NK cell
therapies during viral infection

As described above, several lines of therapeutics including TGF-

b inhibitors, adoptive cell therapies, cytokine therapies, NK cell

engagers, and CAR NK cells have emerged in an effort to remedy

NK cell dysregulation. While many of these therapeutics have been

primarily tested in the setting cancer, they deserve further attention
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as possible remedies to preserve and restore NK cells function in the

setting of viral infection. Furthermore, testing of these therapies in

conjunction with each other as well as other therapeutics may prove

particularly beneficial due to possible synergism.

Due to the extensive genetic differences present in NK cell

receptors like the KIR family and ligands like HLA (31–33, 37), it is

likely that there is also significant variation in the efficacy of these

therapeutics depending on an individual’s personal repertoire of

receptor and ligand genes. One of the clearest examples of this can

be found in the case of KIR checkpoint inhibitors like IPH4102. Due
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to extensive variability in individuals’ KIR repertoire, responses to

therapy between patients are also very variable, with only a subset

achieving clinical responses (232). Similar variability in responses

should be anticipated for the other therapeutics discussed here due

to genetic variability in other NK cell receptors and ligands.

Another consideration is that many of these therapeutics also run

the risk of contributing to tissue damage and hyperinflammatory

states by enhancing NK cell cytotoxic action and secretion of

proinflammatory cytokines. Nonetheless, there may prove to be a

balance between this risk and possible therapeutic benefit.
A B

D E F

C

FIGURE 7

A visual overview of a few emerging therapeutics seeking to address NK cell dysregulation during viral infection. (A) TGF-b signaling inhibits the
mTOR pathway which has been shown to result in impaired NK cell effector functions. The use of TGF-b inhibitors can promote mTOR signaling
and in turn NK cell activity. (B) Immune checkpoint inhibitors can be applied to reduce inhibitory signaling that is causing NK cell exhaustion. For
example, Monalizumab, an NKG2A inhibitor, can block inhibitory NKG2A contributing to a shift towards NK cell activation and effector functions. (C)
Adoptive NK cell therapies entail the administration of exogenous NK cells to supplement the immune response. (D) N-803 is an IL-15 superagonist
consisting of a mutant IL-15 molecule associated with an IL-15 receptor fusion protein. Administration of N-803 promotes NK cell proliferation and

maturation. (E) An example of an NK cell engager are TRiKE™ constructs which consist of a CD16 engaging molecule linked to an IL-15 molecule

that’s linked to an antigen linking molecule. Binding of the TRiKE™ to an NK cell CD16 molecule induces activation while IL-15 supports proliferation
and maturation. The antigen linking molecule is designed to target an antigen of interest. (F) The extracellular antigen recognition domain of CAR
receptors enables CAR NK cells to specifically target cells producing an antigen of interest. CAR NK cells can be administered to supplement an
exhausted NK cell response, with less risk than CAR T-cells.
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5 Concluding remarks

While NK cells play an important role in responding early to

viral challenges, they can be dysregulated. This dysregulation,

whether it be related to alterations in the prevalence of activating

or inhibitory receptors, relative maturation in terms of subset

prevalence, expression of functional effector proteins, or a product

of an individual’s receptor and HLA genetics limits their ability to

mount an effective antiviral response. For example, during chronic

HIV and HCV, as well as acute SARS-CoV-2 there is an inherent

depletion in the total prevalence of CD56+ CD16+ NK cells in the

peripheral blood which is accompanied by markedly increased

NK cell exhaustion. In contrast, aberrant NK cell activation in

response to viral infection can also result in a direct contribution

to viral disease pathogenesis by mediating excessive tissue

damage, as was described as possibly being the case in some

select influenza viruses.

While significant work has been done characterizing the NK cell

repertoire correlated with disease state, less work has been done

regarding elucidating the signaling environment that leads to

changes in the NK cell population in vivo. As discussed, while

cytokines like TGF-b are known to alter NK cell phenotype and

function, the full landscape of signaling that leads to disease-specific

NK cell repertoire requires more broad characterization. This rings

especially true when considering the extensive genetic variability

present in both HLA and important receptor families such as the

KIR receptor family. The significant genetic variance in terms of NK

cell repertoire and the subsequent corresponding differences in

affinity between NK cell receptors and their ligands renders it

extremely difficult to elucidate relationships between NK cell

repertoire and disease. In essence, the state of an NK cell

response, is determined not just by the relative expression of

these receptors and their ligands, but by their genetic content and
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the relative receptor-ligand affinity it institutes. Despite these

limitations, early preclinical and clinical work testing therapeutics

seeking to address the changes in NK cell repertoire and activity

associated with viral infection remains promising (Figure 8).
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FIGURE 8

Schema of the Logic Underpinning the Use of NK Cell Therapeutics in Viral Infection. Many viral infections are associated with changes in the NK cell
repertoire in terms of receptor expression and subset prevalence that result in altered NK cell functionality. Specific changes in NK cell repertoire
can be targeted for therapeutic modulation to alter functionality in order to combat pathogenesis. For example, chronic HCV is associated with a
significant increase in the expression of NKG2A, ultimately contributing to NK cell exhaustion, and a diminished antiviral response. The administration
of NKG2A blockade interferes with inhibitory signaling in an effort to help restore effector functions to promote antiviral immunity.
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differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PloS
One (2010) 5(8):e11966. doi: 10.1371/journal.pone.0011966

29. Quatrini L, Mariotti FR, Munari E, Tumino N, Vacca P, Moretta L. The immune
checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour
immunotherapy. Cancers (Basel) (2020) 12(11):3285. doi: 10.3390/cancers12113285

30. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory
receptors with specialized functions in immune regulation. Immunity (2016) 44
(5):989–1004. doi: 10.1016/j.immuni.2016.05.001

31. Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer Ig-like
receptors (KIRs): their role in NK cell modulation and developments leading to their
clinical exploitation. Front Immunol (2019) 10:1179. doi: 10.3389/fimmu.2019.01179

32. Dubreuil L, Chevallier P, Retière C, Gagne K. Relevance of polymorphic KIR and
HLA class I genes in NK-cell-based immunotherapies for adult leukemic patients.
Cancers (Basel) (2021) 13(15):3767. doi: 10.3390/cancers13153767

33. Yawata M, Yawata N, Abi-Rached L, Parham P. Variation within the human
killer cell immunoglobulin-like receptor (KIR) gene family. Crit Rev Immunol (2002)
22(5-6):463–82. doi: 10.1615/CritRevImmunol.v22.i5-6.70

34. Norman PJ, Stephens HA, Verity DH, Chandanayingyong D, Vaughan RW.
Distribution of natural killer cell immunoglobulin-like receptor sequences in three
ethnic groups. Immunogenetics (2001) 52(3-4):195–205. doi: 10.1007/s002510000281

35. Shilling HG, Guethlein LA, Cheng NW, Gardiner CM, Rodriguez R, Tyan D, et al.
Allelic polymorphism synergizes with variable gene content to individualize human KIR
genotype. J Immunol (2002) 168(5):2307–15. doi: 10.4049/jimmunol.168.5.2307

36. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K,
Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity
(1997) 7(6):753–63. doi: 10.1016/S1074-7613(00)80394-5

37. Barker DJ, Maccari G, Georgiou X, Cooper MA, Flicek P, Robinson J, et al. The
IPD-IMGT/HLA database. Nucleic Acids Res (2023) 51(D1):D1053–D60. doi: 10.1093/
nar/gkac1011

38. Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P. Roles for
HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation
of effector function. J Exp Med (2006) 203(3):633–45. doi: 10.1084/jem.20051884

39. Winter CC, Gumperz JE, Parham P, Long EO, Wagtmann N. Direct binding and
functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C
allotype recognition. J Immunol (1998) 161(2):571–7. doi: 10.4049/jimmunol.161.2.571

40. Dubreuil L, Maniangou B, Chevallier P, Quéméner A, Legrand N, Béné MC, et al.
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