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Possible connection between
intestinal tuft cells, ILC2s
and obesity
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Lan Chen1, Xia Liu1, Yan-Ju Gong1 and Wei-Jun Ding1*

1Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2Hospital of Chengdu
University of Traditional Chinese Medicine, Chengdu, China
Intestinal tuft cells (TCs) are defined as chemosensory cells that can “taste”

danger and induce immune responses. They play a critical role in gastrointestinal

parasite invasion, inflammatory bowel diseases and high-fat diet-induced

obesity. Intestinal IL-25, the unique product of TCs, is a key activator of type 2

immunity, especially to promote group 2 innate lymphoid cells (ILC2s) to secret

IL-13. Then the IL-13 mainly promotes intestinal stem cell (ISCs) proliferation into

TCs and goblet cells. This pathway formulates the circuit in the intestine. This

paper focuses on the potential role of the intestinal TC, ILC2 and their circuit in

obesity-induced intestinal damage, and discussion on further study and the

potential therapeutic target in obesity.
KEYWORDS

obesity, tuft cell (TC), group 2 innate lymphoid cell (ILC2), TC-ILC2 circuit, intestinal
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1 Introduction

Obesity is a worldwide pandemic and a major risk for chronic diseases, including

diabetes and cardiovascular disease. The prevalence of obesity has been increasing rapidly

worldwide due to changes in lifestyle and diet. Obesity is considered as a typical metabolic

syndrome characterized by systemic low-grade chronic inflammation (1). The close

interactions between obesity and the gut microbiota and immunity (2) have recently

been revealed, but the underlying mechanism has not yet been fully elucidated.

TCs line the epithelial mucosa, such as the intestine, airway and taste bud (3, 4). Although

they were discovered more than six decades ago, their exact roles in health remain mysterious.

Under homeostatic conditions, a small number of TCs serves as the monitor in the intestines,

detecting and responding to various stimuli through the use of succinate (5), sweet and bitter

taste receptors. While investigating ulcerative colitis (UC), the researchers noticed a reduction

in TCs along with inflammation and tissue damage. However, when they treated UCmice with

succinate, they observed an improvement of chronic intestinal inflammation, accompanied by
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an increase in the number of intestinal TCs (6). TCs are characterized

by their apical microvilli and orchestrate the mucosal immune

response (7), such as parasite immunity (8–10). Notably, intestinal

TCs are unique cells that secrete IL-25 (10), the key activator of ILC2s.

In response to IL-25, enteric ILC2s produce type 2 cytokines, including

IL-4, IL-5, IL-9 and IL-13, which promote the ISCs differentiation into

TCs, thus formulating the circuit (10). The TC-ILC2 circuit is

regulated by feed-forward signaling including IL-25, IL-4 and IL-13

(11, 12), which has been shown to regulate intestinal remodeling and

homeostasis in response to diet (12). Arora (13) indicated that TCs

may be involved in modulating whole-body energy metabolism. ILC2s

and their cytokines in the small intestine can also contribute to

inflammation and insulin resistance (14). Further understanding of

the potential connection between intestinal TC, ILC2 and obesity

needs to be conducted. Herein, we review the connection mechanism

of the intestinal TC, ILC2 and their circuit in obesity-associated

inflammation through intestinal metabolic homeostasis.
2 Intestinal TCs in obesity process

2.1 Distribution, morphology,
heterogeneity and origin of intestinal TCs

TCs are mostly present in the columnar epithelium of

hollow endoderm-derived organs such as the trachea, thymus,
Frontiers in Immunology 02
stomach, small intestine, and urethra in mammals (15). Both the

small and large intestines contain TCs, with the highest number

at the proximal small intestine (16). Cholecystokinin, peptide

YY- and glucagon-like peptide-1 (GLP-1) positive endocrine

cells are found close to TCs (16). More than 60% of TCs in

the small intestine are found in contact with nerve fibers,

indicating that TCs are modulators of intestine movements

(16) (Figure 1A).

The structure of TCs was first described in 1956 by Rhodin and

Dalhamn (17). The “tuft” or “brush” comes from its unique type of

brush border, and the apical microvilli of TCs extend into the gut

lumen (18). The TC is characterized by its long and compact

microvilli, which are connected to a broad network of rootlets

that consists of actin, villus, filaments, and microtubules that hold

the direction from apical to basal relative to neighboring cells (19–

22). The cytoskeleton is largely composed of intermediate actin

filaments (18, 23). Cytoplasmic spinules are a special part of TCs

that extend from one lateral of the TC border into the adjacent cells,

reaching their nuclei, which could be the route for the transport of

molecular cargo wrapped with IL-25 or acetylcholine to the

adjacent cells (18, 23, 24). These lateral interdigitating spinules

appear on TCs ranging from just below the apical tight and

adherent junctional complex to the nuclear level. With no

secretory vesicles extending down the basal lamina, the basal area

of TCs develops protrusions that resemble neuropods, indicating

paracrine communication via neuropods (11) (Figure 1B).
A

B C

FIGURE 1

The distribution, morphology, and functions of TCs. (A) TCs present in the columnar epithelium of hollow endoderm-derived organs including
trachea, thymus, stomach, small intestine, and urethra in mammals (B) The location and morphology of the TCs are shown in the middle. TC is
characterized by its long and compact microvilli, which are connected to a broad network of rootlets that consists of actin, villus, filaments, and
microtubules that hold the direction from apical to basal. (C) The receptor of TCs including Tas1Rs/Tas2Rs, SUCNR1, FFAR3, Vmn2r26, CD300lf, and
some unknown. The pathway of TCs including GNAT3-Plcb2-Ip3r2-TRPM5, GPCR-PLCg2)-Ca(2+) signaling axis and et al. The figure was created
by Biorender.
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By utilizing the single-cell sequence approach, Haber and his

colleagues defined two subtypes of TCs, tuft-1 and tuft-2, in the

intestine (25). Montoro also found the two subtypes in the mouse

tracheal epithelium (26). Tuft-1 signature genes are correlated with

neuronal development, whereas Tuft-2 cells are enriched for

immune-related genes. SH2 Domain Containing 6 (Sh2d6) and G

protein-coupled receptor (GPCR) vomeronasal type-2 receptor 26

(Vmn2r26) have been proposed as exclusive markers for tuft-2 cells

(27), while tubulin polymerization-promoting protein family

member 3 (Tppp3) is primarily expressed in tuft-1 cells (27).

Besides, Tuft-2 cells express significantly higher levels of the Th2-

promoting cytokine, thymic stromal lymphopoietin (TSLP) (25,

28). Markers including Arachidonate 5-lipoxygenase (Alox5),

Cytochrome c oxidase 1 (Cox1), Cytochrome c oxidase 2 (Cox2),

Hematopoietic Prostaglandin D Synthase (Hpgds), HOP

Homeobox (Hopx), and phosphoserine epidermal growth factor

receptor (p-Egfr) (29–31) exist in both subtypes. POU class 2

homeobox 3 (Pou2f3) is a crucial transcription factor for TC

development, showing a shared ancestry with TCs in the

gastrointestinal tract and lingual taste buds (9). In addition,

growth factor-independent 1B (Gfi1b) is identified as TC-specific

master regulators (32, 33). Both markers are expressed

constitutively in all TCs (7). However, tuft-1 and tuft-2 cells both

express IL-25 (25). Table 1.

Since the intestinal epithelium has rapid turnover and vigorous

proliferation, and ISCs renew every 4-7 days, it is essential canonical

Wnt signals combined with TGFb/BMP pathways proceed

unperturbed to maintain the integrity of the intestinal epithelial

barrier (44). ISCs identified as leucine rich repeat-containing G

protein coupled receptor-5 (Lgr5) positive cells, which are

responsible for both renewal and regeneration processes and are

located at the base of crypts (45). TCs are relatively rare in the

intestine and account for 0.4% to 2.3% of the total epithelial cells in

the murine intestinal epithelium (25). Unlike other epithelial cells,

differentiated intestinal TCs still express Lgr5 (29).

The origin of intestinal TCs has been a controversial topic for

years. Gerbe (30) first demonstrated that mature TCs are derived

from Lgr5+ epithelial stem cells and require atonal bHLH

transcription factor 1 (Atoh1) to differentiate, identifying them as

the secretory lineage. However, some researchers hold a different

opinion that doublecortin-like kinase 1 (DCLK1) positive TCs are

derived from Lgr5+ stem cells and require neural input for survival

in the nonsecretory lineage rather than the columnar lineage (43,

46). Herring (47) used p-Creode analysis of single cells in the

intestine with computational and experimental methods to indicate

that TCs were possibly Atoh1-independent secretory lineage in the

small intestine. while in the colon, TCs arise from an Atoh1-driven

alternative developmental program.
2.2 Functional pathways of intestinal TCs

Although TCs were discovered as a unique cell type more than

sixty years ago, their function was not fully explored. Sensory and
Frontiers in Immunology 03
TABLE 1 The biomarkers of intestinal tuft cells.

Marker Name Description of
Proposed
Function

Reference

Chemosensory

Trpm5 Transient receptor
potential cation

channel subfamily
M member 5

The chemosensory
functional cation channel
induces a type 2 response

(34, 35)

Gnat3 Guanine
Nucleotide-

binding protein G
(t) subunit a3

Activation of calcium
efflux which triggers the

release of signaling
molecules such as IL-25

(36)

Chat choline
acetyltransferase

Chat catalyzes the
transformation of acetyl-
CoA from mitochondria
into ACh in
the cytoplasm

(37)

Sh2d6 SH2 Domain
Containing 6

A signature marker for
CD45+ Tuft-2 cells

related to
immune response

(10, 27)

Vmn2r26 vomeronasal type-
2 receptor 26

High expressed in Tuft-2
cells, which is responsible

for detecting the
bacterial metabolite.

(27)

Tppp3 Tubulin
polymerization-

promoting protein
family member 3

Tppp3 is a unique marker
gene for Tuft-1 cells

(27)

Morphology

Dclk1 Doublecortin-like
kinase 1

Regulate tissue
regenerative responses
and enhance epithelial

repair responses.

(38)

CK18 Cytokeratin 18 Contribute to the
cytoskeletal make-up

(39)

a-tubulin Acetylated
a-tubulin

Part of
microtubule bundles

(7)

Hopx HOP Homeobox Predicted to enable DNA
binding activity. Located
in nucleus. Is expressed in

several structures

(34)

Siglec-F Sialic acid-binding
Ig-like lectin F

A cell surface lectin
whose expression is
evident in intestinal

tuft cells

(40)

Metabolic activity

Alox5 Arachidonate
5-Lipoxygenase

Enables arachidonate 5-
lipoxygenase activity

(29–31)

Cox1 Cytochrome c
oxidase 1

Prostaglandin synthesis
and damage recovery

(29–31)

Cox2 Cytochrome c
oxidase 2

Prostaglandin synthesis
and damage recovery

(29–31)

(Continued)
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secretory functions were the known main functions of TCs,

moreover, they are usually correlated.

TCs exhibit significant similarities with sensory cells. They

possess characteristic apical microvilli that are positioned toward

the luminal interface, like the tongue’s taste buds. This positioning

facilitates access to chemosensory nerve endings. A variety of apical

and basolateral receptors allow TCs to detect different parasites,

bacteria, viruses or their metabolites (8, 48, 49). TCs taste signal

receptors, including Type 1 transduces signals (Tas1Rs) for sweet/

umami substances and type 2 for bitter substances (Tas2Rs) (50,

51), succinate receptor 1 (SUCNR1) (5, 12), and free fatty acid

receptor 3 (FFAR3) (52) are heterotrimeric guanine nucleotide-

binding protein G-coupled receptors (GPCRs). The activation of

these distinct receptors triggers a shared signal transduction

pathway that involves Gnat3, phospholipase Cb2 (Plcb2), inositol
triphosphate receptor type 2 (Ip3r2), and Trpm5 a monovalent

specific, nonselective cation channel for Na+, K+, and Cs+ ions

instead of Ca2+ ions (53). Pou2f3 is the master regulator for the

generation of Trpm5-expressing chemosensory TCs (54). These

Trpm5-expressing TCs are responsible for helminth infection in

the gut (8). However, TCs make use of Ip3r2 to regulate cytosolic

calcium and Trpm5 activity in response to Trichinella spiralis

infection in a small intestinal organoid, while Trpm5 enhanced

the release and hyperplasia of IL-25 (51). The loss of activating

transcription factor 5 (Atf5) enhanced the TC-ILC2 circuit by

promoting TC differentiation in response to parasitic infections

(55). While it is controversial, Heligmosomoides polygyrus seems to
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block the effects of IL-4 and IL-13 and inhibit the gene expression of

TCs both in vitro and in vivo (56). As for the intestinal antimicrobial

immunity, tuft-2 senses bacterial metabolite N-undecanoylglycine,

then Vmn2r26 engages activated G-protein-coupled receptor-

phospholipase C gamma2 (GPCR-PLCg2)-Ca(2+) signaling axis,

which produces prostaglandin D2 (PGD2). PGD2 further

enhances antibacterial immunity (27). Moreover, Vmn2r26

signaling also promotes the expression of Spi-B transcription

factor, which promotes the expansion of Tuft 2 cells (27).

Expressed on the intestinal TCs, CD300lf is identified as a murine

norovirus (MNV) receptor, promoting MNV infection in vivo (57).

Denatonium, as a bitter substance, is reported to increase

intracellular calcium levels in colonic TCs (58). SUCNR1 is a

typical receptor that reacts to succinate secreted by symbiotics

and helminths (5). FFAR3, another TC receptor, is reported to be

sensing indolepropionic acid (IPA), restoring IL-25 function,

preventing gut leakage and inhibiting systemic inflammation (52).

Interestingly, most reports indicate that multiple taste-associated

GPCRs initiate intestinal immunity in TCs (Figure 1C).

TCs are important intestinal secretory cells. The majority of

intestinal TCs generate a variety of paracrine and endocrine

cytokines, including IL-25 (8), ACh (41), eicosanoids, TSLP and

b-endorphins (25). TCs release IL-25 upon helminth infection and

activate ILC2s to secrete IL-13, while IL-13 promotes the ISCs

differentiation into TCs and goblet cells (10). The IL-25-dependent

TC circuit requires macrophage migration inhibitory factor (Mif)

(59). TCs express choline acetyltransferase for acetylcholine (ACh)

synthesis, leading to the activation of Trpm5 during helminth

infection (60). TCs also rapidly synthesize leukotrienes and other

eicosanoid derivatives to stimulate competent cells (51, 61).

Moreover, TCs are responsible for opioid (62), prostanoid and b-
endorphin production (30), which are associated with analgesic

effects as well as basic intestinal physiology including intestinal

motility, secretion and nutrition absorption (Figure 1C).
2.3 Intestinal TCs in obesity

The intestines play a crucial role in the absorption of nutrients

and the elimination of waste materials (63). Excess fat uptake in a

Westernized diet is associated with an increased incidence of

inflammatory bowel disease, obesity and food allergies (64). High-

fat diet (HFD) impairs the intestinal immune system, making it

hypersensitive to epithelial damage (65). Besides, it induces the

imbalance in the gut microenvironment and active epithelial

mucosa cells, including TCs (66).

It is controversial that TCs number varies when the mice are fed

with HFD. Widmayer reported that 3 weeks of HFD supply

increased the gastral surface mucous cells, mucosal mast cells,

and TCs (67), and the expansion TCs demonstrated active

leukotriene (LT) secretion. Gastric TCs can quickly sense

saturated long-chain fatty acids (LCFAs) through the apical

receptors GPR120 (67). Then, it is likely that upon detecting

saturated LCFAs, TCs may trigger inflammatory reactions that

produce cysteinyl (cys) LTs and activate surface mucous cells and

mucosal mast cells, thus regulating the function and integrity of the
TABLE 1 Continued

Marker Name Description of
Proposed
Function

Reference

Hpgds Hematopoietic
Prostaglandin
D Synthase

Prostaglandin synthesis
and damage recovery

(41)

p-Egfr Phospho-
Epidermal growth
factor receptor

The enzyme which
regulates the development

and differentiation

(29, 42)

Transcription factor

Sox9 SRY-Box
Transcription

Factor 9

Regulate the
development, cell-fate

determination,
and differentiation

(41)

Pou2f3 POU Class 2
Homeobox 3

Pou2f3 is an essential
transcriptional factor for

TCs development

(7, 32)

Gfi1b Growth Factor
Independent 1B
Transcriptional

Repressor

TCs specific master
regulators

for differentiation

(43)

Atoh1 Atonal bHLH
Transcription

Factor 1

TCs specific master
regulators

for differentiation

(30)

Cytokine

IL-25 Interleukin-25 Solely produced by tuft
cells in the intestine

(12)
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intestinal mucosa (67). This process could potentially play a role in

triggering mucosal inflammation. However, Arora reported that

HFD-induced obese mice present an overall decrease of TCs in the

small intestine due to the inhibition of IL-25 and TSLP mRNA

expression (48). Additionally, Chen (52) and Sun (68)

independently observed a reduction in TC population in mice

subjected to long-time HFD, which coincided with a decrease in

tight junction protein levels. However, TCs were both restored to

normal levels following a weight loss intervention. It suggested that

restoring the number of TCs in individuals affected by a HFD could

potentially promote the restoration of intestinal barrier integrity.

Aliluev (69) used single-cell sequencing on small intestinal crypt

cells in nutrient-induced obese mice and found a decrease both in

TCs and tuft progenitors. Mice fasted for 48 hours presented

elevated levels of TCs after refeeding (29). However, a short-term

HFD diet for 1, 3, or 7 d decreased the amount of TCs (70).

Interestingly, the number of TCs exhibits considerable variation

when they are subjected to HFD. It is plausible that the duration of

HFD exposure, such as the 3-week HFD regimen employed by

Widmayer (67) or the 9-week HFD regimen employed by Arora

(48), may contribute to this difference.

Li reported that the succinate-SUCNR1 axis attenuates HFD-

induced metabolic disturbance via activating type 2 immune

responses and repairing intestinal barrier dysfunction (71). In

mice infected with MNV, researchers discovered that intestinal

TCs were targeted by MNV to activate mucosal immunity. This

activation included various components such as B cell subsets,

macrophages, and T cells, which collectively protected against type

1 diabetes in the mice (72).

The listed references provide evidence indicating a connection

between disorders in taste cells and metabolic diseases, particularly

obesity. Nevertheless, additional research especially the knockout of

TCs or the key pathway is needed to further explore the role of TCs

in these conditions.
3 ILC2s altered immunity in obesity

3.1 Origin, distribution, and function
of ILC2s

ILC2s were recently found to be tissue-resident cells that lack

recombination activating gene (RAG)-dependent rearrangement of

antigen receptors, despite their particular lymphoid morphology

compared to that of T and B cells (73). ILC2s were initially found in

early infection of helminths (74). They are defined by biomarkers,

including CD127 (IL-7Ra), CD161 (Klrg1) and CD294 (CRTH2)

(75) (Table 2), which originate from the common lymphoid

progenitor (CLP) in the fetal liver or bone marrow and migrate

to peripheral tissues to develop into tissue-resident lymphocytes to

combat specific types of infections (88, 89). CLPs are induced by

Gata3, Id-2 (90, 91) and the transcription factors Gfi1 and Bcl11b to

differentiate into ILC2s (92). ILC2s constitutively express high levels

of GATA3 and ROR-a (90, 91), which are required for functional

maturation and maintenance. The upstream regulator Bcl11b

maintains Gfi1 expression in mature ILC2s (92). ILC2s show the
Frontiers in Immunology 05
immune function of type 2 immunity, which is stimulated by

extracellular parasites, food, microbes and allergens (93–95). IL-

25, IL-33, and TSLP activate ILC2s and produce type 2 cytokines IL-

4, IL-5, IL-9, IL-13 and amphiregulin, which contribute to pathogen

defense, metabolic homeostasis, and tissue remodeling (49, 96–

100). ILC2s are divided into two types: natural ILC2s (nILC2s)

and inflammatory ILC2s (iILC2s). nILC2s respond to IL-33 and

produce IL-9 (93), while iILC2s respond to IL-25 (101) and highly

express killer cell lectin-like receptor G1 (KLRG1) (101) and

promote their production of IL-13 (102).
3.2 Intestinal ILC2s are involved in obesity

HFD induces systemic low-grade chronic inflammation in

animal models and humans. ILC2s work as a bridge linking

epithelial cells and the immune system to promote immunity and

metabolic homeostasis (103). In adipose tissue, ILC2s induce the

type 2 cytokines IL-5 or IL-13 and increase eosinophils numbers,

and M2 macrophages stimulate inflammation, which promotes

immunity and metabolic homeostasis and curbs obesity (104,

105). In the intestine, Sasaki (14) used Il2rg−/−Rag2−/− mice,

which genetically lack all types of ILCs and are resistant to HFD-
TABLE 2 The markers of intestinal ILC2s.

Marker Name Description Reference

CD25
(IL-2Ra)

Interleukin-
2 receptora

Showing percentages
of ILC2s

(76)

CD45 CD45 CD45+ Lin− cells, showing
percentages of ILC2s

(77)

CD90
(Thy1)

Thy-1 cell
surface antigen

Marker of ILC2s (78)

CD127
(IL-7Ra)

Interleukin-7
receptor a

Favors ILC2 differentiation (79)

CD161
(Klrg1)

Killer cell lectin-
like receptor G1

Marker of mature
tissue ILC2s

(75, 80)

CD294
(CRTH2)

chemoattractant
receptor-

homologous 2

Support ILC2 accumulation
and migration in tissue

(81)

CysLT1R Cysteinyl
leukotriene
receptor 1

Promote ILC2 production
of IL-4, IL-5, and IL-13

(82)

IL-17RB Interleukin-17
receptor B

The receptor of IL-25
essential to induce an
expansion of ILC2

(83)

Ly6a
(Sca-1)

Stem cells
antigen-1

Typical ILC2
surface markers

(84)

ICOS Inducible T-
cell costimulator

Regulates ILC2 homeostasis
by promoting proliferation

and accumulation

(85)

NMUR1 Neuromedin U
receptor 1

Production of innate
inflammatory and tissue

repair cytokines

(86)

ST2 suppression of
tumorigenicity 2

Promote type 2
immune responses

(87)
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induced obesity, to reveal that intestinal ILC2s rather thanWAT are

more important in the development of obesity. The controversial

results between the intestine and adipose tissue indicate that the

immune function of ILC2s is likely dependent on the tissue/organ

microenvironment. Administration of succinate in HFD-induced

obese mice could enhance goblet cell production via activating type

2 immune responses in the small intestine (71). The expression of

IL-4, IL-13, and IL-5 decreased in HFD-fed mice and was restored

by berberine, indicating that ILC2s inhibit obesity-related intestinal

inflammation (68). In obese human and mouse models,

representative cytokines of ILC2s decreased and were rescued by

IPA (52). In vitamin A deficient mice, dramatic expansion of IL-13

to produce ILC2 and resistance to nematode infection revealed that

ILC2 might be the primary sensor of dietary stress, and innate type

2 immunity may represent a powerful adaptation of the immune

system to promote host survival in the face of ongoing barrier

challenges (89). The detailed effect of intestinal ILC2s on obesity

still needs to be further investigated.
4 The TC-ILC2 circuit in obesity

4.1 Obesity intestinal microbial metabolites
disorders potentially altered the circuit

Obesity and obesity-associated inflammation are closely

correlated with dysbiosis in the intestinal microbiota (106). Short-

chain fatty acids (SCFAs), including acetate, propionate and

butyrate, are mostly produced by the gut microbiota (107).

Mammalian cells produce succinate as an intermediate metabolite

in the tricarboxylic acid cycle (TCA), yet microbes excrete succinate

as a metabolic byproduct (108). Obese people have higher serum

levels of succinate, which is associated with worse metabolic and

specific intestinal microbiota (109). In a diet-induced obese model,

succinate reduced body weight and promoted mitochondrial

protein metabolism in brown adipose tissue (110). McKinley (29)

noted that fasting and refeeding, as well as the introduction of

microbiota to germ-free mice, caused dynamic changes in the

quantity, composition and protein expression in TCs. Succinate is

sufficient to promote the ISC to proliferate into TCs and goblet cells.

However, at homeostasis, low levels of intestinal succinate cannot

activate TCs (111). In response to the changes in TCs, intestinal

microbial metabolites caused by HFD-induced obesity may affect

the circuit, but further compelling evidence is required to support

this claim.
4.2 The TC-ILC2 circuit potential function
in obesity

The process of the circuit being affected can be explained as

follows. The IL-25 receptor is the heterodimer of IL-17RB and IL-

17RA. IL-25R is expressed in various respondent cells, including

smooth muscle cells, basophils, eosinophils, and ILC2s throughout

skin, brain, airway, and intestinal tissues (112–114). While TCs are

the only cellular sources of IL-25 in the intestine (10), IL-25 induces
Frontiers in Immunology 06
ILC2s to produce type 2 immunity, which promotes the early

immune response when infected (83). CysLTs and IL-25

collaborate to alert ILC2s to synthesize IL-4, IL-5 and IL-13 (61).

IL-13 promotes Lgr5+ epithelial stem cells to differentiate into TCs

or goblet cells, possibly by the Notch signaling pathway (115). In

addition, IL-13 also promotes TC production and restores immune

homeostasis and mucosal barriers (10). In response to dietary, the

TC-ILC2 circuit regulates adaptive intestinal remodeling (12).

However, this circuit is disrupted and downregulated IL-25 and

TSLP marked TCs in obesity (48). Gut-microbiota-derived

succinate promotes TC increase and reduces intestinal

inflammation (111). Both TCs and IL-25 decreased in obese

patients and animal models (52). These decreases could be

restored by berberine via the TAS2Rs Ga-gustducin/Gb1g13
signaling pathway (68). IL-25 was first identified as a cytokine

that induced naive CD4+ T cells into CD4+ Th2 cells (116). It plays a

crucial role in regulating Th2-type immunity by modulating actin

related gene 1(Act1) (117) and also promoting the secretion of Th2

cytokines (74) (Figure 2). Studies on TCs, ILC2s and the circuit

response to obesity are limited and more TCs models including

organoids and knockout mice could be applied to investigate the

mechanism of obesity barrier damage.
5 The TC-ILC2 circuit may be a
potential intervention target in obesity

Obese mice induced by HFD were administered IL-25 for 21

days, their body weight, serum glucose and intraperitoneal glucose

tolerance were remarkably reversed (118). Despite the circuit, Feng

reported that IL-25 promotes M2 macrophage polarization and

thereby stimulates lipolysis and mitochondrial activity against

obesity (119). IPA supplementation prevents the development of

HFD-induced obesity (52), and the dosage of IPA is negatively

correlated with obesity-induced inflammation (120). IPA holds

potential as a reagent for obesity treatment due to its ability to

activate TCs and promote IL-25 production. Furthermore, it

exhibits interaction with FFAR3, further highlighting its potential

as a valuable tool in combating obesity (52). A recent study by Sun

(68) discovered that berberine, when sensed by TAS2Rs in TCs,

stimulates the synthesis of IL-25. This feedback in TCs may turn out

to be a novel mechanism by which berberine ameliorates obesity.

Supplementation of drinking water with succinate robustly

suppressed weight gain and improved glucose tolerance in HFD

mice, resulting in an elevation in global energy expenditure (121).

Thus, intervention targets on TCs, ILC2s or the circuit including IL-

25, IPA, berberine and succinate, dramatically reduced the

obesity status.
6 Conclusion and prospects

TCs use apical microvilli to taste danger signals, particularly

metabolites derived from worms, viruses and bacteria. In response,

TCs trigger downstream pathways to produce cytokines such as IL-
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25 to promote ILC2 activity, leading to Lgr5+ stem cell

differentiation into TCs in a positive feedforward loop. In obese

subjects, the TCs, ILC2s and the circuit are disrupted. IL-25, IPA

and berberine have been reported to rescue the altered TC-ILC2

circuit in obese subjects, yet the underlying mechanisms remain to

be fully elucidated. TC knockout models (27) and organoids (68,

122) could be better tools for further revealing the mechanism of

TCs and ILC2s in obesity.
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FIGURE 2

Schematic diagram of the intestinal TC-ILC2 circuit in obesity. Bacteria, metabolic byproducts (e.g., IPA and succinate), and helminths can be sensed
by receptors on the surface of tuft cells (TCs) in the intestinal lumen. TC-derived IL-25 can induce Th2- and ILC2-secreted cytokines. Th2 cells
mainly secrete IL-4, IL-5 and IL-13. ILC2s produce type 2 cytokines including IL-13 and IL-5. IL-13 can promote stem cell differentiation into TCs. IL-
25 is the main molecule by which TCs “taste” metabolites (e.g., succinate) and activate signaling downstream pathways, including GNAT3 and
TRPM5. The figure was created by Biorender.
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