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Epidemiological studies have shown high tuberculosis (TB) prevalence among

chronic opioid users. Opioid receptors are found on multiple immune cells and

immunomodulatory properties of opioids could be a contributory factor for ensuing

immunosuppression and development or reactivation of TB. Toll-like receptors (TLR)

mediate an immune response against microbial pathogens, including

Mycobacterium tuberculosis. Mycobacterial antigens and opioids co-stimulate

TLRs 2/4/9 in immune cells, with resulting receptor cross-talk via multiple

cytosolic secondary messengers, leading to significant immunomodulatory

downstream effects. Blockade of specific immune pathways involved in the host

defence against TB by morphine may play a critical role in causing tuberculosis

among chronic morphine users despite multiple confounding factors such as

socioeconomic deprivation, Human immunodeficiency virus co-infection and

malnutrition. In this review, we map out immune pathways involved when immune

cells are co-stimulated with mycobacterial antigens and morphine to explore a

potential immunopathological basis for TB amongst long-term opioid users.

KEYWORDS

immunopathogenesis of tuberculosis, morphine, opioids, opioid receptors, toll-like
receptors, immunosuppression
Abbreviations: APC, Antigen presenting cell; AraLAM, Abinofuranosyl-capped lipoarabinomannan; BCG,

Bacillus Calmette–Guérin; CTLA-4, Cytotoxic T lymphocyte-associated antigen-4; DNA, Deoxyribonucleic

acid; ESX-1, ESAT-6 secretion system 1; HIV, Human immunodeficiency virus; HMGB1, High mobility

group box 1; JAK-STAT, Janus kinase/signal transducers and activators of transcription; ManLAM,

Mannosylated lipoarabinomannan; MAPK, Mitogen-activated protein kinase; NADPH, Nicotinamide

adenine dinucleotide phosphate; NOI, Negative oxygen Ion; PAMP, Pathogen associated molecular

patterns; PD-1, Programmed cell death protein 1; PDIM, Phthiocerol dimycocerosate; ROI, Reactive

oxygen intermediates; TGF, Transferrin growth factor; TRAF6, Tumour Necrosis Factor Receptor

Associated Factor 6; WHO, World Health Organization.
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Introduction

Tuberculosis (TB) remains a longstanding global health

challenge, claiming 1.5 million lives in 2020. Two-thirds of new

cases come from the eight highest-burdened nations, with six of

them in South and Southeast Asia. (1)population is latently infected

with TB. The risk of reactivation of latent Mycobacterium

tuberculosis (MTB) is rising due to international travel, migration,

immunosuppressive co-morbidities, and medication use, affecting

both developed and developing countries. (2) In order to achieve

the World Health Organization goal of reducing 90% of new TB

cases by 2035, it is vital to better understand the key causes of

reactivation of latent TB. Multiple risk factors for TB are clustered

in different subpopulations. (3–5) Epidemiological data have shown

that long-term opioid users are more susceptible to TB than the rest.

(6) As per a comprehensive community-based case-control study,

higher TB risk was independently associated with tobacco smoking,

drug use (especially injectable drugs OR = 5.67; 95%CI: 2.68, 11.98),

homelessness and area-level deprivation. The strongest risk factor

among the intermediate social determinants was misuse of class A

injectable drugs (e.g., Ecstasy, Cocaine, Crack Cocaine, Heroin),

with five times higher TB odds (OR = 5.67; 95%CI = 2·68, 11.98)

compared to those who never misused class A drugs (adjusted for

age, sex, BCG vaccination status and long stays in high TB area). (7)

A multivariate analysis has shown that drug use was associated with

smear-positive TB (OR 2.2, CI 311 – 401, p<0.001). (8) Even

accounting for genetic, environmental, socio-economic, and

culture-related risk factors, raises the possibility of an underlying

immunopathological basis leading to immune suppression. (6, 9–

11) TB is often the most common opportunistic infection in
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endemic areas. (11) This highlights the importance of exploring

independent pathophysiological mechanisms causing immune

impairment in chronic drug use separately in different infections

despite the multiple confounding factors causing generalised

immune suppression.

The World Drug Report of 2021 has reported that around 275

million people used illicit substances in 2020 globally, highlighting

another growing health challenge. Opioids are the most heavily

used substance. Over 75% of substance users live in developing

countries, where the prevalence of TB is also highest. (12) Long-

term use takes different forms, including misuse of prescription

opioids, habitual use without dependence, and increased use as a

long-term analgesic. (13) A recent review published in the Lancet

has highlighted the TB burden among vulnerable groups

worldwide with variable prevalence. (14) Table 1 further

summarises studies assessing a link between drug use and TB.

Except for one study, others point towards a strong link between

drug use and TB risk. As multiple confounders co-exist in these

vulnerable populations, causality cannot be independently

assessed. Epidemiological data assessing TB infection among

drug users taking it as an independent variable is a future need.

More specific details of the nature of drug use and the immune

status will further help fill the missing data gap.

Immunomodulatory properties of opioids vary in the presence

of different microbial antigens. Detailed characterisation of immune

pathways affected by opioids in the presence of specific

microbial pathogens is essential to characterise mechanisms of

immunopathogenesis further. (20, 21) Due to the widespread

testing of morphine in multiple previous pre-clinical studies (22),

this review collates the immunomodulatory properties of morphine,
TABLE 1 Summary of the epidemiological data assessing tuberculosis among drug users.

Study
population

Type of
study/
analysis

Detection rate of TB Confounding risk factor
assessment

Ref

Ukraine Cross-
sectional study

N=680,760 records (68% PWID); 20% of presumptive TB cases were
detected among PWID

– (15)

Global Systematic
Review

N= The overall denominator not quantified.; The prevalence of TB is
higher in prison populations than in the general population, mainly
because of the criminalisation of drug use and the detention of PWID or
use drugs

– (16)

Vietnam Cross-
sectional
survey

N=885 (PWID); TB prevalence was 2.3% (95% confidence interval [CI],
1.0–4.5) and 2.1% (95% CI, 0.8–4.2) among
HIV-positive and HIV-negative people, respectively.

Multivariable exact logistic
regression analysis was used with
TB as the dependent variable. HIV
infection was not associated
with TB but rather with an
accumulation of individual risk
factors.

(17)

Abidjan, Ivory
Coast

cross-sectional
prevalence
estimation
survey

N=532 (PWID) (with an Xpert MTB/RIF® test result), 52 had pulmonary
TB, a prevalence of 9.8%, 95% CI [7.5%-12.7%]. Among them, 17.3% had
rifampicin-resistant TB.
The drug most commonly consumed was heroin (n = 530; 99.6%)

Multivariable analysis
Factors significantly associated with
TB infection: being co-infected with
HIV

(18)

Tanzania Prospective
cohort study

N=901 records (53.5% PWID); TB disease and TB infection prevalence
was 2.6% and 54%, respectively.

Adjusted logistic regression model
adjusting for risk factors, the risk of
TB infection was reduced in PWID.
(OR 0.67, 95% CI 0.49–0.90)

(19)
TB, Tuberculosis; PWID, People with injectable drugs; MTB, Mycobacterial tuberculosis; HIV, Human immunodeficiency virus; OR, Odds ratio; CI, Confidence interval.
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and it suggests a potential role for opioids during chronic use in the

immune pathogenesis of TB.
Opioid receptors in the
immune system

Opioids act on their receptor (OR), a G protein-coupled

receptor (GPCR). They are categorised into two distinct groups:

classical OR, which includes morphine (mu) MOR, ketocyclazocine

(kappa) KOR, and vas deferens (delta) DOR, and non-classical OR,

which includes nociceptin Orphanin FQ peptide receptor (NOR).

(23, 24) ORs are located in multiple immune cells, including

macrophages and lymphocytes, and are widely distributed in the

human body. Both endogenous opioid peptides and exogenous

synthetic opioids with different molecular properties act on the

same receptors, giving rise to variable downstream effects. (21, 25)

Chronic morphine administration is known to cause

impairment of both innate and adaptive arms of the immune

response. (26) The concept of direct and indirect morphine

action was on the immune system first introduced through work

in preclinical studies, which indicated that the MOR mediates

morphine-induced immunosuppression and that although some

functions are amplified in the presence of cortisol or sympathetic

activation. (27) The activation of KOR has also been shown to

reduce antibody production, inhibit phagocytic cell activity, inhibit

T cell development and alter the production of various pro-

inflammatory cytokines, chemokines, and the receptors for these

mediators. (28) In vitro experiments have shown that the DOR

agonist KNT-127 causes immune suppression in rat models with

colitis. (29) It has further shown the functional differentiation of OR

subtypes located on the immune cells responding differently to

endogenous and exogenous opioids. The novel M3OR subtype has

been characterised as an opioid peptide-insensitive and opiate

alkaloid-selective GPCR that is functionally linked to constitutive
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nitric oxide synthase activation. Opioid peptides stimulate

granulocyte and immunocyte activation and chemotaxis via the

activation of a novel leukocyte D2OR subtype. However, opiate

alkaloid M3OR agonists inhibit these same cellular activities. (30)

Chemokine receptors (CCR), which mediate chemokine

response, belong to the same class of GPCR as OR and possibly

share a common evolutionary origin. The evidence suggests that

these receptors cross-desensitise each other, whereas morphine that

binds to OR can block CCR signalling and vice versa. (31, 32) The

mechanisms underlying heterogenous desensitisation could be the

formation of receptor heterodimers and protein kinase C-mediated

phosphorylation of Serine, Threonine and Tyrosine moieties.

Heterogenous desensitisation may be one mechanism of immune

suppression by opioids with high doses and long-term exposure.

(33, 34) Bivalent molecules can be tested to modify the complex and

its cellular effects. Different immune effects mediated by OR in the

presence of mycobacterial antigens and morphine are discussed in

the subsequent sections. Bivalent molecules that selectively

modulate the OR-CCR complex have therapeutic potential, such

as VZMC013, which targets the MOR-CCR5 heterodimer to inhibit

opioid-exacerbated HIV1 entry into the immune cells. Similar

molecules may have applications in managing opioid-induced

immune suppression, including the potential TB risk (35).
Modulation of the immune cells and
mediators by morphine

A focused literature search in Google Scholar, PubMed and

Medline was carried out to extract the studies conducted to find the

effects of ‘morphine’ on the ‘immune system’. Tables 2, 3

comprehensively summarise the immune cells and mediators

influenced by morphine administration. Morphine suppresses

multiple immune cells, including macrophages, which play a

crucial role in the immunopathogenesis of TB. The consequences
TABLE 2 Effects of morphine on the immune cells.

Cell type Treatment
mode of
opioids

Type of
Study

Effects observed References

NK cells In vivo
murine

Suppressed activity in the spleen via a neuron-mediated mechanism (36–38)

A In vivo
murine

Suppressed via adrenergic and sympathetic neurotransmitters, glucocorticoid,
dopaminergic, and peptide Y signalling

(39–43)

A In vivo
murine

PAG administration – suppressed activity (44, 45)

A In vivo
human

Intrathecal administration – suppressed activity (46)

DD In vivo pigs Increased cytotoxicity (47)

In vitro Suppression cytotoxicity via MOR and KOR agonists but not DOR agonists (48)

DC Ex vivo
murine

Reduced activity and antimicrobial proteins via TLR2 and NLR2 signalling
mechanisms

(49)

(Continued)
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TABLE 2 Continued

Cell type Treatment
mode of
opioids

Type of
Study

Effects observed References

Splenic/thymic/LN
lymphocytes

SR In vivo
murine

Induced atrophy (50, 51)

SR In vivo
murine

Altered CD4/CD8 ratio (52)

SR In vivo
Rhesus
monkey

Altered CD4/CD8 ratio (53)

SR In vivo
murine

Reduced B cells (Ig M+/Ig D-), CD4 and CD 8 cells (naïve and effector memory
depleted)

(54)

In vitro
murine

Reduced NFAT binding to DNA and decreased IL2 production (55)

In vivo
murine

Reduced cellularity and induced Fas (56)

Mononuclear cells,
including PBMC

SR In vivo
Rhesus
monkey

Reduced IL2r expression (57)

In vitro
human

Induced apoptosis via Fas (56)

In vitro
human

Induced apoptosis via NO (58, 59)

In vitro
human/
murine

Th2 switch with increased IL4 and IL5 and decreased IL2 and IFN g (60)

Macrophages Ex vivo
human

Inhibited chemokine-mediated chemotaxis (61)

In vitro &
in vivo

Reduced phagocytosis due to reduced SO anion directly via MOR (62–66)

C In vitro &
in vivo

Inhibited phagocytosis by MOR and D2OP in a dose-dependent manner by inhibiting
actin polymerisation via the inhibition of Rac1-GTPase and p38 MAPK

(51)

Ex vivo
murine

Reduced respiratory burst activity (morphine-stimulated NO release mediated by an
M3OR subtype expressed on the surface of monocytes, in contrast to fentanyl)

(67, 68)

In vitro
murine

Inhibited macrophage colonies (69)

Leucocytes In vivo
murine

Reduced sticking and rolling along the blood vessels (70)

T lymphocytes A In vitro
murine

Reduced response to ConA via a centrally acting mechanism (71, 72)

In vivo
murine

Recused calcium reflux in CD4+ via a glucocorticoid-mediated mechanism (73)

B lymphocytes In vitro
murine

Reduced proliferation stimulated by IL4 and anti-IgM via a centrally acting
mechanism

(74–76)

In vivo
murine

Inhibition of calcium mobilisation is an early event in opiate‐induced immune
suppression.

(73)

Ex vivo
human

IL8-mediated chemotaxis (61)

Ex vivo
human

Reduced SO production (77)
F
rontiers in Immunol
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A, acute; DD, dose-dependent; SR, slow release; C, chronic; Con A, Concanavalin A; DNA, Deoxyribonucleic acid; DOR, d-opioid receptor; GTPase, guanosine triphosphate ase; IFN-g,
Interferon-gamma; IL, Interleukins; KOR, k-opioid receptor; MAPK, Mitogen-activated protein kinase; MOR, m-opioid receptor; NFAT, Nuclear factor of activated T cells; NLR, Nucleotide
oligomerisation domain like receptor; NO, Nitrous oxide; PAG, Periaqueductal grey; SO, Sulphur oxide; TLR, Toll-like receptor.
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of morphine exposure extend to inhibiting chemotaxis and multiple

cellular functions in macrophages, including respiratory burst

activity, phagocytosis, and colony formation (Table 2).

Suppression of the critical immune mediators such as tumour

necrosis factor (TNF a), interferon (IFN g), and nitrous oxide (NO)
produced by macrophages was also reported in multiple studies

(Table 3). Figure 1 illustrates the immune pathways affected during

the co-stimulation of macrophages by mycobacterial antigens and

morphine. Suppression of the neutral killer (NK) cell by morphine

is modulated via direct and centralised mechanisms. Lymphocytes

are inhibited by multiple means, including reduced cytotoxicity and

altered CD4/CD8 cell ratios.
Frontiers in Immunology 05
The role of TLR during the
interaction with mycobacterial
antigens and morphine

TLRs are found in various immune cells and play a critical role

in recognising molecular patterns of pathogens to trigger the

immune system. Multiple TLRs, including TLR2, TLR4, TLR8,

and TLR9, interact with various mycobacterial antigens.

Morphine interacts with TLR2, TLR4, and TLR9, and co-

stimulation by morphine and mycobacterial antigens may lead to

complex immune effects downstream (49, 101–105).
TABLE 3 Morphine effects on the chemical mediators.

Component of the immune
system

Mediators Type of Study Effects observed References

Macrophages IL1b, IL6, IFN g Ex vivo murine Reduced levels (78)

IL1b, IL 6, TNFa Ex vivo murine Reduced levels (KOR) (79)

NO, IL4, MMP9, arginase 1 Ex vivo murine Reduced levels (80–82)

IL10 In vivo murine* (In both WT/RelB-/-) Reduced levels (83, 84)

IL10 Ex vivo human Increased levels (85)

IL12 In vivo murine* (Only in WT, not in
RelB-/-)

Reduced levels (83, 84)

IL12, TNF a In vivo murine Increased levels (86)

IL10 In vivo murine Unchanged (86)

IL6, TNF a In vitro murine Increased levels with low
dose
Reduced levels with high
dose

(87)

DC as well IL23 Murine Reduced levels (56, 68, 69)

PBMCs Reactive oxygen species, O2−,
H2O2

Ex vivo human Reduced levels (88)

IFN g, TNF a Ex vivo human Reduced levels (88, 89)

CCL2, CCL5, CXCL10 Ex vivo human Increased levels (90)

TGF b1 Ex vivo human Increased levels (91)

T lymphocytes IL17 In vivo murine Reduced levels (92)

IL4 In vivo murine Reduced levels (93)

IL 2 Murine Reduced levels (89, 92)

TNF a, IL1b, IL4, IFN g In vivo murine Reduced levels (via
MOR)

(94)

Neutrophils MPO In vitro Weak reversible inhibitor (95)

Astrocytes CCL2, CCL4, CXCL1 In vitro human Reduced levels (96)

CCL5, CCL12 In vitro murine Reduced levels (97)

CXCL10 In vitro human Increased levels (98)

Intestinal epithelial cell line IL8 In vitro human Reduced levels (via KOR) (99)

IL8 In vitro human Increased levels (MOR) (100)
*Same study, related.
CCL, Chemokine ligand; CXCL, C-X-C motif chemokine ligand; H2O2, Hydrogen peroxide; IFN g, Interferon gamma; IL, Interleukins; KOR, k-opioid receptor; MMP, Matrix metallopeptidase;
MOR, m-opioid receptor; MPO, Myeloperoxidase; NO, Nitrous oxide; RelB, v-rel reticuloendotheliosis viral oncogene homolog B; TGF, Transferrin growth factor; TNF, Tumour necrosis factor;
WT, Wild type.
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Multiple mycobacterial antigens interact with immune cells via

TLR-dependent and independent mechanisms. Figure 1 illustrates

the co-binding of mycobacterial antigen and opioids with the TLR4

and its adaptor proteins. Rapidly growing, non-pathogenic

mycobacteria containing AraLAM in their cell walls activate

CD14 cells expressing TLR2 and macrophages. In contrast, slow-

growing pathogenic MTB containing ManLAM has shown a

relative inability to activate macrophages independent manner,

potentially contributing to their virulence (Figure 2). However,

other soluble and cell wall-associated mycobacterial antigens

distinct from LAM can mediate immune cell activation via TLR.

For example, a soluble heat-stable and protease-resistant factor

mediates TLR2-dependent activation of immune cells, whereas a

heat-sensitive cell-associated mycobacterial factor mediates TLR4-

dependent activation of them. (106–112) Interestingly, induction of

adaptive T cell response in TB does not require TLR2/4/9. In TLR2/

4/9-deficient mice, mycobacterial replication is controlled by TLR-

independent mechanisms to induce an adaptive T-cell

response (113).

Morphine interacts with TLR2, TLR4, and CD14 cells, causing

inhibitory effects. (Figures 2, 3) These effects of morphine are

exerted on different immune cell types interrupting their

functions, which are vital for the immune defence against TB.

Further, endomorphin-1, the endogenous form of opioids, has been

shown to down-regulate TLR expression as a part of the negative

feedback control. Consequently, external opioids, when strongly

influencing the same pathway, may contribute to impaired and

delayed antigen processing. (114) Consequently, the cells’ capacity
Frontiers in Immunology 06
to interact with mycobacterial antigens and trigger a protective

immune response is ultimately reduced.
Cross-talk between receptors

Figure 3 summarises the cross-talk between OR, TLR, and

nucleotide-binding and oligomerisation domain-like receptors

(NLR) 2 via multiple cytosolic second messengers during the

interaction with morphine and mycobacterial antigens. In the

central nervous system, cross-taking between OR and TLR share

common cytosolic molecules such as MAPK, b-arrestin-2/TRAF6
complex, and the DNA-binding protein HMGB1. (115) NLR2 on

the immune cells interacts directly with mycobacterial antigens and

cross-talks with TLR 2/9 to modulate the immune response. (61)

Cross-talk between MOR and TLR in cancer models has shown

decreased NK cytotoxicity, decreased leucocyte migration,

suppression of mast cell recruitment, and the induction of M2

cell polarisation, which may contribute to the immune impairment

in TB (116). Further exploration of the role of these compounds

within the immune system in modulating cellular function

is required.
Variations in the antigenic stimulation

Co-stimulation of TLRs with antigenic material of a pathogen,

together with morphine, has shown entirely different effects than

the binding of either alone. Extensive in vitro and in vivo studies

have consistently shown that morphine binding to TLR4 triggers a

proinflammatory cytokine response downstream. In contrast, its

binding to OR (opioid receptors) elicits an anti-inflammatory

response. (104, 117) We hypothesise that opioid compounds

interact with TLR as other natural compounds, modulating the

host immune response, and it needs direct testing of this in pre-

clinical models in the presence of tuberculosis antigens. (Figure 3).

Morphine causes an antiinflammatory response in dendritic

cells (DC) cells via TLR2 and NLR2 when co-stimulated with S.

pneumoniae, in contrast to the proinflammatory response induced

by S. pneumoniae alone (Figure 3). (49) Morphine has also been

shown to inhibit the TLR9 pathway when co-binding with HIV,

promoting its replication in macrophages. (105) Similar variations

of the immune effects have been observed with morphine and

mycobacterial antigens in preclinical studies. Plasmacytoid DC

expresses TLR9 in both humans and mice. (118–120) M.

tuberculosis and morphine cotreatment have significantly

upregulated TLR9 expression in mice. Its role is more

proinflammatory, enhancing the levels of critical cytokines

including TNF a, (interleukin) IL1b, and IL6, which contrasts

with the antiinflammatory response exerted by TLR2/4 when co-

stimulated by the same. (20, 121) This contracting proinflammatory

action of TLR9 compared to other TLRs indicates the downstream

receptor action heterogeneity, possibly explained by the unique

binding of TB antigens with TLR9.
FIGURE 1

Illustration of the co-binding of M. tuberculosis (MTB) antigens and
opioids with TLR4. Illustration of the co-binding of MTB antigens
and opioids with TLR4. Co-stimulation of the TLR4 leads to MyD88-
dependent and independent activation, leading to NFkB-dependent
and independent mechanisms affecting chemical mediators
downstream. [TLR, toll-like receptor; NF-kB, Nuclear factor-kB;
TIRAP, Toll-interleukin-1 Receptor (TIR) domain-containing adaptor
protein; TRIF, TIR-domain-containing adaptor-inducing interferon-
b; TRAM, TRIF-related adaptor molecule].
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Discussion

Immunomodulatory effects of morphine in
the immunopathogenesis of tuberculosis

In the immunopathogenesis of tuberculosis, morphine exerts

immunomodulatory effects, as depicted in Figure 4. The acquisition

of TB bacilli occurs through the inhalation of respiratory droplets

containing the organism. Morphine’s influence leads to the

suppression of NK cells and DC, as highlighted in Table 1.

Consequently, this suppression can impair the initial defence

against TB bacilli, including nonspecific killing and antigen

presentation by these cells, ultimately increasing the host’s

susceptibility to TB infection.
Effects on the TB granuloma

A TB granuloma is a unique pathological entity comprising

activated macrophages, monocytes, DC, neutrophils, and T

lymphocytes (Figure 4). An established granuloma contains

infected activated macrophages and epithelioid cells forming a
Frontiers in Immunology 07
central necrotic core and activated macrophages and layers of

CD4+ and CD8+ T cells defining a dense cellular wall encircling

the necrotic core. (122, 123) It is a dynamic structure that controls

two processes: the induction of apoptosis of infected macrophages

and the recruitment of uninfected macrophages by creating a

chemotactic gradient (123).

Granuloma formation is triggered by the mycobacterial

virulence factor ESX-1 (124) It triggers matrix metallopeptidase

(MMP)9 secretion by the epithelial cell matrix surrounding a

granuloma (Figure 4). (125) It potentially induces the chemotaxis

of macrophages via (chemokine ligand (CCL)7, a substrate for

MMP9 produced by macrophages. (126–129) Both well-

coordinated processes of new macrophage recruitment and

infected macrophage apoptosis are essential to maintain the

immune integrity of TB granulomas. Morphine decreases the

levels of MMP9 and increases the tissue inhibitor of MMP1,

dysregulating this process (Figure 4) (108).
Macrophages

Macrophages, crucial in granuloma formation, face inhibition

through various mechanisms induced by morphine (Figure 2).
FIGURE 2

Illustration of the interactions by tuberculous antigens and morphine with the cell surface and intracellular receptors of a macrophage. The
interaction between tuberculous antigens and morphine within macrophages. Morphine (M) and Mycobacterial antigens engage with TLR 2/4/9,
while Mycobacterial antigens interact with NLR, MR, and Dectin-1. M enhances Mycobacterial antigen virulence by inhibiting TLR 2/4 and OR.
Morphine influences various macrophage functions: (1) Desensitizing multiple CCRs via MOR and DOR. (2) Inhibiting FcR-mediated apoptosis via
MOR, DOR, and KOR. (3) Enhancing TGF-induced apoptosis. (4) Impairing NO and SO synthesis, respiratory burst activity, and bacilli killing. NLR2
augments TLR 2/4 actions through cross-talk. (6) M inhibits NFkB-mediated cytokine and chemokine synthesis via OR-TLR cross-talk. TLR9 elicits a
proinflammatory response with Mycobacterial antigens and M, while TLR2/4 induces an anti-inflammatory response. (7) MR, present in AM, regulates
protective macrophage responses. MTB or ManLAM upregulates PPARg via MR, increasing IL8, COX2, and PGE2. ManLAM generates an anti-
inflammatory response, inhibiting proinflammatory TNF and IL12 while inducing immunosuppressive IL10 and TGF b. ManLAM signalling via TLR2 and
TLR4 triggers chemokine secretion in monocytes, with M exerting inhibitory effects via TLR 2/4 (10). Dectin-1, in combination with TLR2, induces
TNF production in macrophages, particularly in attenuated MTB strains (11). LM blocks TLR2-induced TNF biosynthesis, permitting MTB to evade the
host immune response. Antigen-specific variations are noted, with M-induced immune suppression amplifying antigen virulence mechanisms. (A
more detailed version of this figure legend is provided in the Online Data Supplement).
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When infected with M. tuberculosis, macrophages experience

heightened caspase-8-dependent apoptosis due to TLR2

signalling. However, mycobacteria take advantage of this situation

during the initial stages of infection, as they depend on

macrophages to penetrate deeper tissues and subsequently

undergo apoptosis to expand within the granuloma. (123, 130)

Morphine causes enhancement of TLR9-induced apoptosis of

macrophages by stimulating TLR9 signalling, and multiple

chemical mediators also potentiate apoptosis (Figures 1, 2). (20,

59) The impact of the induction of apoptosis by morphine depends

on the exact stage of the infection.

MOR located on macrophages inhibits chemotaxis, which

supports the notion of an antiinflammatory role of MOR. (131)

Morphine’s effects on phagocytosis were variable, with inhibition

observed through a naloxone-reversible mechanism. Mycobacteria

employ the cell wall-associated lipid Phthiocerol dimycocerosate

(PDIM) to conceal underlying pathogen-associated molecular

patterns (PAMPs), effectively evading the recruitment of

microbicidal macrophages via TLR-dependent pathways.

Additionally, a structurally related molecule called Surface-associated

Phenolic glycolipid induces the expression of CCL2, leading to the
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recruitment and infection of CCR2-expressing macrophages.

Morphine suppresses CCL2, counteracting this pathway and

suppresses multiple chemokines important in chemotaxis (Table 3).
Lymphocytes

Studies have shown that the reduction in total T cell counts and

altered CD4/CD8 cell ratios are caused by morphine. Suppression of

IL2 levels by morphine leads to a drop in T cell count (Table 2).

CTLA-4 and PD-1 are two members of the CD28 family of

receptors involved in T-cell inhibition by morphine. (132–134) In

murine studies, MOR agonists have been shown to upregulate the

expression of MOR, DOR, CD28, CTLA-4, and PD-1, which

suppresses T-cell response. However, chronic opioid use has led

to increased expression of CTLA-4, with unchanged PD-1

expression favouring an anti-inflammatory response among

humans. (135) Morphine further triggers the Th2 switch, which

may impair the cytotoxic potential of T cells against TB bacilli

(Figure 4). Further studies are required to explore variable immune

effects caused by different opioids on T cells.
FIGURE 3

Co-stimulation of OR, TLR, and NLR with mycobacterial antigens and morphine and their intracellular cross-talking. Interactions between
Mycobacterial antigens, morphine (M), and various receptors within macrophages. Both M and Mycobacterial antigens engage TLR 2/4/9. Specific
antigens (LTA, HSP, PE6) interact with TLR4, inducing proinflammatory cytokines and apoptosis. Several interactions and pathways are highlighted:
(1) M and bacterial antigens induce cross-talk between TLR2 and NLR2, inhibiting IL23 synthesis. (2) PE6 triggers proinflammatory cytokines via TLR4,
possibly blocked by M. (3) M indirectly induces HMGB1, promoting TLR4 upregulation. (4) TLR4/OR pathways activate MAPK with proinflammatory
effects in the CNS. (5) Intracellular TLR4/OR cross-talk affects cytokine secretion. (6) M inhibits LPS-induced NFkB activity. (7) M and M. tuberculosis
induce TLR9 expression with pro-inflammatory consequences. (8) TLR9 regulates mycobacteria-induced Th1 responses. (9) NLR2 activates NFkB
and cross-talks with TLR9. (10) M influences apoptosis-related molecules. (11) TLR2 plays a role in cytokine production regulation. (12) b-arrestin-2
negatively regulates TLR2-mediated apoptosis. (13) TLR2 activates PI3K/Akt signalling with M. (14) AraLAM induces cell activation and MTB killing. (15)
TLR2-dependent inhibition of TLR9-dependent IFN a/b expression leads to decreased MHC-I cross-processing. (16) b-arrestin-2 regulates GPCR
desensitization. These interactions reveal intricate immune responses in tuberculosis and opioid co-stimulation. (A more detailed version of this
figure legend is provided in the Online Data Supplement).
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Neutrophils

Neutrophils are abundant in both early granulomas and late

cavitary granulomas. (32, 136) They exhibit reduced NADPH

oxidase-dependent mycobacterial killing when they ingest

mycobacteria. However, their role in mediating the clearance of

infected, dying macrophages appears to be host-protective. This

mechanism lowers the mycobacterial load and reduces intercellular

spread into uninfected macrophages. (123) The inhibition of

neutrophils and IL8 secretion by morphine may lead to reduced

neutrophil-mediated killing, increasing the risk of TB bacilli

dissemination (Table 3).
Interferons

IL17 recruits Th1 cells that secrete antigen-specific IFN g,
inhibiting MTB growth. Th1-mediated IFN g is the critical

chemical controller in granuloma formation. M. tuberculosis

induces an IFN g response through TLR9’s action. (21) Once

stimulated by TB antigens via TLRs, macrophages and DCs

secrete cytokines, including IL-12 and IL23, to induce IFN-g
production by T and NK cells. IFN-g increases phagocytosis,

phagolysosomal fusion, oxidative burst, and other nonoxidative

mechanisms. (137) For an effective T helper 1 (Th1, IFN-g producer
cells) differentiation, costimulation (e.g., CD40L-CD40 and CD28-
Frontiers in Immunology 09
CD80/CD86 interactions) and NF-kB dependent signalling are

essential. (138) IFN g deficiency leads to a failure in granuloma

formation, with subsequent infiltration of neutrophils leading to

cellular necrosis. (122, 123) Bloom et al. have shown that

macrophage-induced NO is the primary bactericidal mechanism

of macrophages. It is established that IFN g is an inducer of

macrophage inducible NO synthase that leads to the production

of NO (Figure 2). (139) IL1b is another mediator induced by

mycobacterial antigens, which upregulate iNOS and subsequent

NO production. NO-mediated killing by macrophages is the

primary mechanism for controlling mycobacterial replication. A

hypothesis can be proposed that the inhibitory effects of morphine

on IFN g, NO, and IL1bmay lead to a dysregulation of this process,

ultimately exerting negative impacts on granuloma formation

(Figure 4; Table 2). Therefore, the suppression of INF-g by

morphine induces multiple significant negative implications on

the immune defence against TB.

The role of IFN a/b on TB immunity is highly variable in

contrast to the protective role of IFN-g. Type I IFNs (IFN a/b) are
potent inhibitors of IL-12 production by macrophages, which

induces IFN-g. (140) Conversely, they induce IFN-g production

by T and NK cells in an IL-12-independent way. (141) IFNa/b is

shown to reduce monocyte viability. compromises their

bacteriostatic activity and antigen presentation ability. (142) Type

I IFNs have been used as an adjunctive therapeutic agent for PTB

patients harbouring multi-drug resistant MTB strains. (143, 144)
FIGURE 4

Effects due to the interactions of mycobacterial antigens and morphine with the immune cells and their mediators in the context of TB
immunopathogenesis. The impact of mycobacterial antigens and morphine (M) on immune responses in tuberculosis (TB) immunopathogenesis.
(1) TB bacilli virulence factors trigger a robust immune response. (2) ESX-1 induces MMP9 and MMP1 secretion; M reduces MMP9 and elevates MMP1
levels. (3) Neutrophils reduce initial Mycobacterial load. (4) M enhances TGFb, lowering reactive oxygen intermediates. (5) M modulates CCR and
CCL levels, affecting IFNg-positive CD4 T cell migration. (6) M inhibits IL23 by dendritic cells. (7) M inhibits IL8 from neutrophils. (8) M suppresses NK
cells. (9) M suppresses B cell activity. (10) M inhibits IL1, TNFa, and IL12, impacting IFNg-induced T cell responses. (11) M inhibits IFNg and TNFa from
Th1 cells. (12) M inhibits IL2 from T cells. (13) M induces Th2 cell differentiation. (14) M promotes M2 macrophage switch via IL4. (15) MMP9 inhibition
leads to M2 macrophage transformation. (16) Methadone increases CTLA-4 expression with variable PD-1 expression, impacting immune regulation
in TB. (A more detailed version of this figure legend is provided in the Online Data Supplement).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1265511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bataduwaarachchi et al. 10.3389/fimmu.2023.1265511
Multiple studies have reported that the induction of Type I IFNs

precedes the onset of clinical tuberculosis. (145, 146) MTB inhibits

the production of IFN a/b in response to TLR9 signalling.

Morphine further suppresses this, producing complex effects

requiring further characterisation in controlled studies

(Table 2; Figure 3).
Tumour necrosis factors

M. tuberculosis–induced TNF a production appears to be

controlled via TLR2. (122) Both TNF a deficiency and excess can

lead to granuloma necrosis. (147, 148) The TNF a signalling

deficiency in mice produced disorganised tuberculous granulomas.

(149, 150) Deficient TNF a signalling increases intra-macrophage

mycobacterial load and accelerates the formation of disorganised

granulomas, ultimately leading to granuloma necrosis (130, 151).

Morphine has been shown to suppress TNFa levels in many studies,

which may enhance the progression locally (Tables 2, 3). It may

further affect disorganised secondary granuloma formation in distal

organs, leading to disseminated disease.
Interleukins and chemokines

Morphine upregulates CCR expression while downregulating

CCL levels, causing a net deficiency of CCL. (Figure 2) (21) IL6

stimulates macrophage and cytotoxic T-cell differentiation. At the

same time, IL10 inhibits proinflammatory cytokines, blocks the

generation of ROI and NOI, blocks antigen processing and

presentation in different APCs, and diminishes T-cell responses.

IL12 is a crucial cytokine in developing and maintaining type 1

cellular response in MTB infection. IL12 binds to its receptor

IL12R-b2 and activates the JAK-STAT pathway, inducing IFN g to

differentiate CD4+ T cells into Th1 effectors. Preclinical evidence has

shown that IL-12 p40−/− deficient mice could not control bacterial

growth, which appeared to be linked to the absence of both innate and

acquired sources of IFN-g. (152) This shows the central role played by
IL12 in the defence against TB infection. IL23 induces IL17

production by memory T cells, creating an inflammatory response

by Th17 cells, and it generates protective cellular responses. Morphine

blocks the synthesis of all these vital mediators and damages the

chemical coordination in the immune defence against TB. Moreover,

IL12 induces inflammation by suppressing TGF ß and stimulating NK

cells, contributing to increased CCL2 and CCL3 levels. (153) However,

this effect may be counteracted by overall anti-inflammatory actions

caused by morphine and the virulence mechanisms of mycobacterial

antigens. (Table 3, Figure 4).
Conclusion

Chronic morphine administration causes suppression of

multiple protective immune pathways vital in the defence against
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MTB. Multiple cellular receptors in immune cells, including OR,

TLR2, and NLR 2, play critical roles in immunosuppression via

complex intracellular cross-talk. Various cell types and their

mediators involved in granuloma formation are inhibited by

morphine via multiple mechanisms. This leads to a state of

immunodeficiency that likely contributes to the reactivation,

progression, and dissemination of MTB. Further studies are

required to characterise potential therapeutic immunomodulatory

targets in chronic opioid users at risk of infection with/reactivation

of MTB.
Limitations

In vitro and in vivo preclinical studies assessing the

immunomodulatory properties of opioids have been mostly

limited to the testing of morphine. Considering the wide

structural diversity and functional variation of opioids, direct

testing of other categories of opioids and their antagonists is

needed to delineate further the postulated mechanisms of the

immunopathogenesis of TB potentiated by chronic opioid use.

The duration and dosage of morphine use in patients may vary

widely, with the added effect of the landscape of genetic

heterogeneity across cultures, the impact of this review may be

biased towards findings reported from the majority of studies

originating from the Western, further studies are desperately

needed from third-world nations investigating this phenomenon

associating opioid use and the predisposition to TB. Chronic opioid

use is associated with confounding factors, socioeconomic

deprivation, malnutrition and infections associated with IVDU

which may contribute to immune suppression.
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