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Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues.

16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell

activation, tumor invasion and metastasis, and resistance to therapy. However, it is

unclear how TAMs perform these functions. With the application of single-cell RNA

sequencing (scRNA-seq), it has become possible to identify TAM subpopulations

associated with distinct functions. In this review, we discuss four novel TAM

subpopulations in distinct solid tumors based on core gene signatures by scRNA-

seq, including FCN1+, SPP1+, C1Q+ and CCL18+ TAMs. Functional enrichment and

gene expression in scRNA-seq data from different solid tumor tissues found that

FCN1+ TAMs may induce inflammation; SPP1+ TAMs are potentially involved in

metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q+ TAMs

participate in immune regulation and suppression; And CCL18+ cells are terminal

immunosuppressive macrophages that not only have a stronger immunosuppressive

function but also enhance tumor metastasis. SPP1+ and C1Q+ TAM subpopulations

can be further divided into distinct populationswith different functions. Meanwhile, we

will also present emerging evidence highlighting the separating macrophage

subpopulations associated with distinct functions. However, there exist the potential

disconnects between cell types and subpopulations identified by scRNA-seq and their

actual function.

KEYWORDS

tumor associated macrophages, cancer, single cell RNA sequencing, angiogenesis,
metastasis
1 Introduction

Macrophages, which exist in almost all tissues and organs, not only contribute to

immune regulation, tissue regeneration and remodeling (1) but also play critical roles in the

occurrence and development of diseases (2–4). TAMs are important immune cells in the

tumor microenvironment (TME). They determine tumor growth, metastasis and prognosis
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(5–7). They are closely related to poor prognosis and resistance to

therapy (8, 9). These cells include TAMs from embryo-derived

TRMs and inflammatory monocytes (10, 11). TAMs from

monocytes can increase with tumor growth due to self-

proliferation, recruitment, and differentiation from circulating

inflammatory monocytes (7, 12), which are mediated by elevated

secretion of cytokines by cancer and stromal cells in tumors and

associated metastases (13–15).

Macrophages are divided into two different subpopulations, M1

and M2, based on in vitro culture (16–18). TAMs with M1- and M2-

like phenotypes represent two extremes of TAM polarization. These

TAMs display distinct functions in tumor tissues. M1-like TAMs,

which express surfacemolecules such as CD68 and produce cytokines

such as IL-1b, could act as the main forces in innate host defense;

Whereas M2-like TAMs, which express immunosuppressive

molecules such as CD163 and produce cytokines such as IL-10 and

CCL18, are critical in promoting epithelial-mesenchymal transition

(EMT), angiogenesis, and immunosuppression of tumors (7, 19, 20).

However, according to present literatures, it is defective or even

misleading for the M1/M2 dichotomy in cancer biology.

Accumulating evidence has shown that some TAM subpopulations

can express genes of bothM1 andM2macrophages (21). Studies have

also found that TAMs have significant plasticity and heterogeneity,

and are composed of multiple different subpopulations in TME (19).

However, it is unclear how to distinguish these TAM subpopulations

with different functions.

With the application of scRNA-seq, it has become possible to

distinguish TAM subpopulations with distinct functions. scRNA-seq

can not only discover relationships between the genes, and track the

trajectories of different cell lineages, but also more importantly reveal

different subpopulations, especially some rare cell populations. To

distinguish TAM subpopulations with different functions, analyses

can be conducted according to different compositions, functional

enrichment, and differential gene expression.

One of the most frequently employed enrichment analysis tools

for scRNA-seq data is DAVID website (http://david.niaid.nih.gov),

which aims to provide a functional interpretation of large lists of

genes derived from genomic studies (22). It includes the gene

functional classification tool, functional annotation tool, gene ID

conversion tool, gene name viewer, and NIAID pathogen genome

browser (22). According to scRNA-seq data from different solid

tumors in the current literatures, TAMs in solid tumor tissues can

be mainly divided into four different kinds of TAMs, including

FCN1+, SPP1+, C1Q+ and CCL18+ subpopulations. Here, we will

review these macrophage subpopulations, which are related to the

occurrence and development of tumors. The identified TAM

subpopulations in tumor tissues can be potential prognostic

biomarkers(s) and/or candidate therapeutic targets.
2 Origin of tumor-
associated macrophages

With the application of scRNA-seq and modern lineage tracing

techniques, a large body of evidence has shown that TAMs, which
Frontiers in Immunology 02
are derived from embryo-derived TRMs and inflammatory

monocytes, can be found in tumors such as colorectal cancer,

liver cancer, pancreatic cancer, lung cancer, and glioblastoma

(23–25).
2.1 TAMs derived from embryo-
derived TRMs

Recent data utilizing specific fate mapping technologies have

provided evidence for the embryonic origin of tissue macrophages

(26–28). These macrophages possess self-renewal and proliferation

capacity. In most normal tissues, TRMs are mainly embryonic

macrophages (29), which are necessary for the development of

tissues and organs. Notably, solid tumors have requirements similar

to those of developing organs and tissues in forming complex

structures (30). Thus, macrophages in tumor tissues can also be

derived from embryo-derived TRMs (31, 32). These TAMs from

embryo-derived TRMs can contribute to the occurrence and

development of cancers (33, 34).
2.2 TAMs derived from monocytes

In solid tumors, monocyte-derived macrophages (MDMs) are

recruited by cytokines and chemokines and then polarized into

TAMs, which are universally heterogeneous (13–15). MDMs can

also self-renew and proliferate (35). For example, the proliferation

of TAMs can be induced in the presence of granulocyte macrophage

colony stimulating factor (GM-CSF) in liver cancer tissues (36).

These monocyte-derived TAMs can switch from one phenotype to

another. They display remarkable plasticity within the TME (37),

which can result in distinct subpopulations. Tumor-associated

factors, such as tumor hypoxia in the TME, contribute to the

heterogeneity of monocyte-derived TAMs. Thus, monocyte-

derived TAMs may consist of multiple subpopulations generated

through distinct developmental pathways.

In addition, there is also a minor splenic contribution to

monocyte-derived TAMs (38, 39). Although the bone marrow is

the primary hematopoietic tissue and monocyte reservoir, the

spleen is also an identified reservoir of monocytes, which can play

a significant role in the inflammatory response (40). Thus, the

spleen is also an important extra-medullary site that can

continuously supply growing tumors with monocytes (39).
3 Novel TAM subpopulations in
different solid tumors

There are many different gene signatures in TAM populations

and their subpopulations. However, four classes of genes are

generally used to recognize TAMs and their subpopulations,

including macrophage-specific markers such as CD14 and

MHCII, T cell immune checkpoint ligands on TAMs, such as

PD-L1, PD-L2, CD80, and CD86 (41), surface immune suppressive
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molecules such as CD163, CD68 and MRC1 (CD206) (42), and

specific core gene signatures such as FCN1, C1Q, SPP1 or CCL18

in different TAM subpopulations. TAMs in different solid tumors

are mainly divided into four subpopulations based on core gene

signatures by scRNA-seq, including two main subpopulations

C1Q+ and SPP1+TAMs, and two minor subpopulations FCN1+

and CCL18+ TAMs (Figure 1). Notably, there are differences in the

gene expression in each TAM subpopulation in different tumors,

the same tumors in different patients, and even different stages of

the same tumor although there exists a core gene signature.

ScRNA-seq studies have also demonstrated that these TAMs

have high phenotypic plasticity and heterogeneity in cancers

(43–45).
3.1 SPP1+ TAM subpopulation

SPP1+TAM subpopulation is identified by specific expression of

a core gene SPP1. SPP1+ TAM subpopulation also often expresses

the following genes such as FN1, IL1RN, and other TAM genes IDO,

Mrc1(CD206), PD-L1, PD-L2, CD68 and CD163. Notably, TAM

associated CD68 (46) and/or CD206 (47) genes can be found only in

the SPP1+ TAM subpopulation of some solid tumors but not in all

solid tumors (48). In addition, SPP1+CD206+ TAM subpopulation

also produces epithelial growth factor (EGF) (49).
Frontiers in Immunology 03
SPP1+TAM subpopulation was initially found in colorectal

cancers (CRC) (43), and later in lung and breast cancers (50, 51).

In human CRCs, SPP1+ TAM subpopulations not only showed

specific expression of SPP1 but also MARCO and VEGFA (43, 52,

53). SPP1 with glycolysis genes (GAPDH, ENO1, LDHA, ALDOA,

and TPI1) was also expressed in TAMs in non-small cell lung cancer

(NSCLC) (54). In lung squamous cell carcinoma, there also existed

subpopulation of SPP1+TAMs. SPP1+ macrophages were

significantly increased in the tumor microenvironment, which

was related to the poor prognosis of patients with lung squamous

cell carcinoma. SPP1+ macrophages (53) were also found in

hepatocellular carcinoma. Macrophage subsets that express SPP1,

TREM2 and FN1 anti-inflammatory TAMs were found in breast

cancer (8, 55, 56). The patients with SPP1low TAMs had the best

prognosis for cervical cancer, whereas the worst prognosis appeared

in patients with SPP1high TAMs (57). Multi-omics analysis also

revealed the distinct clinical significance of SPP1+ TAMs in cervical

cancer (57). SPP1+, TAM subpopulations could also be detected in

rental cancer. and in pancreatic cancer (58).
3.2 C1Q+ TAM subpopulation

The core gene signature of C1Q+TAM subpopulation is the

expression of C1QA/B/C. C1Q+ TAMs are also characterized by the
FIGURE 1

Tumor associated macrophage (TAM) subpopulations with distinct gene signatures in solid tumor tissues. The genes used to recognize TAM population
and subpopulations, generally including T cell immune checkpoint ligands on the membrane surface such as PD-L1, PDL2, CD80, and CD86, surface
immune suppressive molecules such as CD163, CD68 and MRC1 (CD206) and specific core gene signatures such as FCN1+, C1Q A/B/C+, SPP1+ or
CCL18+ in different TAM subpopulations. Gene with red color, a core gene in each distinct TAM subpopulation.
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expression PD-L1, PD-L2, HAVCR2, LGALS9, and CEACAM1 (52).

PD-L1 and PD-L2, which are checkpoint molecules, can prevent

CD8+ and CD4+ Th1 immunity (59). C1Q+ TAMs can also highly

express TREM2,MERTK, CD80 (43, 57, 60), SLC40A1, GPNMB (43,

52, 61) and other genes in TAMs, such as IDO, Mrc1 (CD206),

CD68 and CD163. In addition, this population of macrophages can

also produce pro-angiogenic cytokines, such as vascular endothelial

growth factor (VEGF).

A subpopulation of TAMs expressing C1QA/B/C is present in

multiple cancers, such as colorectal cancer (43), NSCLC (62), liver

cancer (44), lung cancer (63), rental cancer (60, 64, 65), breast

cancer (8, 50), pancreatic cancer (58) and cervical cancer (57).

Single-cell and spatial analyses revealed immunosuppressive

phenotypes of C1Q+APOE+ TAMs in CRCs (66). The patients

with C1QChigh TAMs had the best prognosis for cervical cancer,

whereas the worst prognosis could appear in patients with C1QClow

TAMs (57).
3.3 FCN1+ TAM subpopulation

Another TAM subset, characterized by high expression of the

core gene FCN1, is also identified in cancer tissues. This

subpopulation of macrophages is a precursors of C1Q+TAM (43,

44). They are derived from inflammatory monocytes. Indeed,

tumor-enriched FCN1+ monocyte-like cells showed a high

similarity to blood CD14+ monocytes, representing a monocyte

population migrating into tumors and harboring a tumor-specific

transcriptional program (43, 45).

FCN1+ TAM subpopulation was also identified in human

multiple solid cancers such as NSCLC (62), liver (44, 53), breast

cancer (8), lung (45), CRCs (43) and pancreatic cancer (58). In

human NSCLC, FCN1+ macrophages, together with typical FYN+

and STAT1+ macrophages, expressed genes related to increased

inflammatory function (62).
3.4 CCL18+ TAM subpopulation

This population is characterized by the expression of a core gene

CCL18. CCL18 is associated with the immunosuppressive nature of

the tumor microenvironment. CCL18+ TAM subpopulation is also

an important element in cancer immune evasion (67). Notably,

both CCL18+ and SPP1+ macrophages highly express

immunosuppressive M2-like genes (62), implying that they are the

same type of TAMs. CCL18+ TAMs should be terminal

SPP1+ macrophages.

CCL18+ TAM subpopulations can be found in many tumors

such as NSCLC (62), breast cancer (68), CRCs (69, 70)

hepatocellular carcinoma (53, 71), thyroid cancer (72) and

intrahepatic cholangiocarcinoma (53).

Thus, four TAM subpopulations with different core genes such

as C1Q+, SPP1+, FCN+ and CCL8+ TAM have been identified in

distinct solid tumors by scRNA-seq data. However, there mainly are

two TAM subpopulations in solid tumors, including C1Q+ and

SPP1+ TAMs (43, 57, 73).
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Notably, there also exist other classification methods based on

single cell RNA sequences. For example, one study separated TAM

into seven TAM subsets in tumor tissues, including inhibin beta A

chain (INHBA)+ TAMs, complement C1q subcomponent subunit

C (C1QC)+ TAMs, ubiquitin like protein ISG15 (ISG15)+ TAMs,

NACHT, LRR and PYD domains containing protein 3 (NLRP3)+

TAMs, LYVE1+ TAMs, and sphingosine- 1-phosphate phosphatase

1 (SPP1)+ TAMs (74). TAMs were also separated into five TAM

subsets in another study, including transcription factor HES-1

(HES1)+, complement component 1q (C1Q)hi, triggering receptor

expressed on myeloid cells 2 (TREM2)+, IL4I1+ and proliferating

TAMs (75). Other also showed seven TAM subsets in tumor tissues,

including interferon-primed TAMs (IFN-TAMs), immune

regulatory TAMs (reg-TAMs), inflammatory cytokine-enriched

TAMs (inflam-TAMs), lipid-associated TAMs (LA-TAMs), pro-

angiogenic TAMs (angio-TAMs), resident-tissue macrophage-like

TAMs (RTM-TAMs) and proliferating TAMs (prolif-TAMs) (76).
4 Potential functions of novel
TAM subpopulations

TAMs are generally associated with a poor prognosis and

treatment resistance (8, 9, 77, 78). These TAMs play different

roles in the occurrence and development of tumors, such as

immunosuppression, angiogenesis, metastasis, tumor stem cell

activation, inflammation, antigen-presenting and phagocytes (5–

7). TAM subpopulations with distinct functions can be identified

through functional enrichment and differential gene expression in

scRNA-seq data (Figure 2).
4.1 SPP1+ TAM subpopulation

The number of SPP1+ macrophages significantly increases in the

tumor microenvironment, which is correlated with poor prognosis

(46, 79–85). SPP1+ TAM subpopulation has multiple roles in tumor

development such as tumor metastasis (62, 86–91), angiogenesis (92–

94), tumor stem cell activation and immunosuppression (95).

Tumor metastasis includes multiple steps, such as epithelial-to-

mesenchymal transition, trans-endothelial migration, extracellular

matrix remodeling, and formation of pre-metastatic niches. In the

patients with tumors, the enrichment SPP1+ TAMs was associated

with worse overall survival (86, 96). SPP1+ macrophages from tumor

tissues showed high expression of MMP9, MMP12, MMP14, and

MMP19, which could contribute to the degradation of the basement

membrane for the invasion of tumor cells (82). There had also an

interaction between SPP1 and CD44 in SPP1+ macrophages to

promote metastasis. The interaction between SPP1+ macrophages

and tumor epithelial cells activated downstream genes to mediate the

activation of NF-kB, PI3K/Akt, VEGF, uPA, andMMPs, which could

promote endothelial cell proliferation. The interaction of SPP1+

macrophages with FAP+ fibroblasts also appeared in colorectal

cancer to promote metastasis (97). In SPP1+ macrophages, the

main metabolic pathway was glycolysis, which could promote

tumor metastasis via angiogenesis and matrix remodeling (62).
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SPP1+ macrophages were predominant in liver metastasis (86) and

also potential biomarker for early lymph node metastasis (89).

Colorectal cancer metastases in the liver could establish

immunosuppressive spatial networking between tumor-associated

SPP1+ macrophages and fibroblasts, which supported colorectal

cancer growth in the immunosuppressed metastatic niche in the

liver (98). Studies also found that SPP1+macrophages were metastasis

accelerators of colorectal cancer (99). They were often found in

mesenteric lymph node (MLN) with metastases. SPP1+ macrophages

also promoted prostate tumor progression by increasing the

incidence of prostate intraepithelial neoplasia (100).

For tumor angiogenesis, SPP1+ TAMs can be acted as

“angiogenic switch.” They produce cytokines, such as VEGFA,

platelet-derived growth factor (PDGF) and angiopoietin, to

promote angiogenesis (93, 101). SPP1+ TAMs with high

angiogenesis scores showed the expression of genes related to

angiogenesis. There was also a strong enrichment of tumor

angiogenesis and tumor vasculature pathways in SPP1+ TAMs

(43). Under the influence of hypoxia, SPP1+TAMs could develop

a pro-angiogenic phenotype by directly upregulating angiogenic

molecules, such as VEGF-A (102) and angiogenic modulators, such

as matrix metalloproteinase (MMP)7 (103). These cells could also

interact with endothelial cells to promote angiogenic functions (94).

Cancer stem cells (CSCs) are subsets of tumor cells that play a

key role in tumorigenesis. SPP1+TAMs could regulate CSC

activation (104–106). For example, SPP1+TAMs promoted tumor

growth and proliferation by secreting collagen (107) and insulin-

like growth factor-1 (IGF-1) (108).
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SPP1+ TAMs are also implicated in T cell suppression (97, 109),

and play a role in immune evasion in the cancers such as colon

cancer (52, 62). Upregulation of PD-L1 by SPP1 could mediate

macrophage polarization and facilitate immune escape in lung

adenocarcinoma (110). A dramatic increase in SPP1+ TAMs was

positively correlated with FAP+ fibroblasts in CRC tissues, which

could impair the immunotherapeutic effects (97). The patients with

high SPP1 expression achieved less therapeutic benefit from an anti-

PD-L1 therapy cohort (97). A tumor immune barrier (TIB) formed

by the interaction of SPP1+ macrophages and cancer-associated

fibroblasts (CAFs) was related to immunotherapy efficacy.

Disruption of the TIB structure by blocking SPP1 should be

considered a relevant therapeutic approach to enhance the

therapeutic effect of immune checkpoint blockage (ICB) in

HCC (111).

SPP1, an osteopontin, from SPP1+ macrophages is a

multifunctional secreted phosphorylated glycoprotein (112). It is

also present in other cells such as osteoblasts, fibroblasts, and in

tumor cells (112). The correlations between levels of circulating

SPP1 and/or increases in SPP1 expression on tumor cells had poor

prognosis in many types of cancer (112). The interaction of SPP1

and FN1 in TAMs with certain integrins promoted tumorigenesis in

CRCs (43). SPP1-CD44 signaling in the glioma perivascular niche

also enhanced cancer stem cell phenotypes and promoted

aggressive tumor growth via the g-secretase-regulated intracellular

domain of CD44 (113). SPP1 was a key gene in the lymph node

metastasis and a potential predictor of poor prognosis in head and

neck carcinoma (114). In addition, SPP1 is involved in resistance to
FIGURE 2

Potential functions of FCN1+, C1Q+, SPP1+ and CCL18+ TAM subpopulations in tumor microenvironments. SPP1+ tumor associated macrophage
(TAM) subpopulation exerts multiple roles in tumor development such as tumor metastasis, angiogenesis and tumor stem cell activation; Whereas a
main function of C1Q+TAM population is immunosuppression. CCL18 TAM subpopulation has stronger immunosuppressive function. FCN1+ TAM
subpopulation is inflammatory macrophages, which can cause inflammation. Dotted line arrow, predicted TAM subpopulations based on core
gene signatures.
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chemoradiotherapy through the induction of EMT, autophagy,

epigenetic alterations, aberrant glucose metabolism and reduction

of drug uptake (79, 111, 115).
4.2 C1Q+ TAM subpopulation

The main functions of C1Q+ TAM subpopulation are immune

regulation and immunosuppression (116–119). Indeed, TAMs with

high C1Q A/B/C, HLA-DR, APOE, and TREM2 expression have a

classically immunosuppressive phenotype (65, 116). These TAMs

exert their immunosuppressive effects through surface molecules,

cytokines, and metabolites. Surface molecules such as PD-L1, PDL2,

CD80, and CD86, and cytokines such as IL-10 from TAMs could

induce the differentiation of CD4+ T cells to Tregs (iTregs) (120,

121). A metabolite of tryptophan mediated by indoleamine 2, 3-

d ioxygenase ( IDO) in C1Q+ TAMs a l so p layed an

immunosuppressive function directly or via the aryl hydrocarbon

receptor in Treg, NK, and DC cells (122). Arginine depletion in

TAMs could cause “arginine starvation” in T cells to inhibit these

cells (123). Increased levels of IDO also limited the proliferation of

cytotoxic CD8 cells (124). C1Q+ macrophages could effectively

suppress T cells (65, 125, 126). In RCC, the presence of C1Q+

macrophages correlated with exhausted T cells, forming a

dysfunctional immune circuit (65, 127).

Notably, C1Q+ TAMs are also related to positive responses to

ICB therapy in melanoma and lung-carcinoma patients (117–119).

Indeed, C1Q+ cell density was correlated with inhibitory receptors

PD-1 and LAG3 at the CD8+ T cell surface (128). These C1Q+

macrophages express additional immune checkpoint ligands, such

as PD-L1, PDL-2 (127, 128) and others such as CD40L, CTLA4,

LAG3, PD-1, and TIGIT (57). Thus, these C1Q+ TAMs may be a

beneficial population for clinical applications (86). Notably, patients

with C1Qhigh and SPP1low TAMs had the best prognosis, whereas

the worst prognosis appeared in the patients with C1Qlow and

SPP1high TAMs (57, 129). In lung cancer, increased CXCL-10 was

described in C1Q+ TAM, which was related with an enrichment of

the transcription factors IRF1, IRF7, and STAT1 (62). Interestingly,

IRF1 was correlated with STAT1, HLA-DR, PD-1, and LAG-3 in

metastases of colorectal cancer (130). In addition, C1Q+ TAMs were

also involved in phagocytosis and antigen presentation (43).

C1Q+ macrophages to exert their functions also depend on

C1Q, a recognition molecule of classical complement pathway,

which can bind to immune complexes or other activators in the

tumor microenvironment. Indeed, C1Q could regulate human

macrophage polarization via interactions with LAIR1 (131), and

modulate the cytokine expression while they digested lipid proteins,

causing anM2-like polarization (132). C1Q also directly regulated T

cell phenotype through internalization, binding to mitochondria,

and regulation of mitochondrial metabolism (133, 134). However, it

is incompletely clear how it controls immune activation, tolerance

and exhaustion. In addition, C1Q could also interact directly with

endothelial cells (EC) to promote neoangiogenesis, via still

unknown cell surface receptors (128, 135).
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4.3 FCN1+ TAM subpopulation

FCN1+ TAM subpopulation comprises inflammatory

macrophages. This subpopulation of macrophages is associated

with increased inflammatory function (62). Enriched FCN1+

TAMs were detected in tumor-adjacent tissues. These FCN1+

TAMs were considered an intermediate stage from monocytes to

tumor macrophages (136). They were associated with angiogenesis.

Subsequently, these cells can produce C1Q+ and SPP1+ TAM (43).

In addition, FCN1 (ficolin-1) from FCN1+ TAMs can be as a novel

macrophage infiltration-associated biomarker for the diagnosis of

pediatric inflammatory bowel diseases (137).
4.4 CCL18+ TAM subpopulation

The effects of CCL18+ TAM subpopulation on tumor cells

include tumor cell proliferation, migration induction, invasion,

EMT, angiogenesis, and lymphangiogenesis (67). CCL18+

macrophages can be found in solid tumor tissues (53, 71) and in

an immunosuppressive state in tumor tissues (70). They have a

stronger tumor-promoting role than SPP1+ macrophages (53).

Single-cell spatial transcriptomic analysis also identified highly

metabolic CCL18+ TAMs in colorectal liver metastasis sites.

In the tumor, CCL18 chemokine produced by CCL18+ TAMs

(67) was a marker of neoplastic diseases (67). Notably, elevated

CCL18 levels in the serum and tumor are related to a worse

prognosis in patients (53). Indeed, CCL18 is associated with

immunosuppressive functions and cancer immune evasion. The

CCL18 could recruit CD4+CD45RA+CD25- naïve T cells into the

tumor niche, and then differentiated into Treg cells, as shown in

gastric cancer (138) and breast cancer (139). Notably, the

importance of CCL18 in neoplastic processes mainly includes a

signal transduction from PITPNM3 (one of CCL18 receptors) in

CCL18-dependent migration, invasion, and epithelial- EMT cancer

cells (67). Studies with human umbilical vein endothelial cells

(HUVECs) showed that CCL18 could cause the VEGF-

independent migration and tube formation of these cells (140).

CCL18 also had an influence on the proliferation of cancer cells, but

this effect was dependent on the type of tumor (67). In breast

phyllodes tumor, CCL18 also participated in myofibroblast

differentiation (141). Thus, CCL18 should be a potential

therapeutic target for anti-cancer therapy. However, there is very

few studies on the effects on tumor development through blocking

the activity of CCL18.
5 Differentiation of novel
TAM subpopulations

TAMs have both embryonic and monocyte origins (142, 143).

Genes related to immunosuppression and inflammation can be

expressed by FCN1+ and C1Q+ TAMs (86, 87, 89, 97). Since

monocyte-derived TAMs highly express genes related to
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inflammation and immunosuppression, FCN1+ and C1Q+ TAM

subpopulations may be derived from monocytes. Whereas other

two SPP1+ and CCL18+ TAM subpopulations express genes related

to tissue remodeling, wound healing, metastasis and angiogenesis

(67, 144). Notably, the genes related to tissue remodeling and

wound healing also appear in embryo-derived TRMs (11, 24, 29,

142, 145). Thus, SPP1+ and CCL18+ TAMs might be derived from

embryo-derived TRMs. Based on the scRNA-seq data, we suggest

differentiation models of TAMs by tracking the development

trajectories of distinct cell lineages (Figure 3). Monocyte-derived

TAMs subsequently differentiate from peripheral blood CD14+

and/or CD16+-expressing monocytes to mature C1Q+

macrophages through FCN1+ inflammatory macrophages and

pre-C1Q+macrophages; Whereas the differentiation of TAMs

from embryo-derived RTMs to CCL18+ macrophages happens via

pre-SPP1+ and mature SPP1+macrophages. Mature C1Q+ and

SPP1+ macrophages can be further divided into the populations

with distinct functions. However, others have also suggested that

FCN1+ inflammatory macrophages can subsequently give rise to

both C1Q+ and SPP1+ TAM populations (43).
5.1 From FCN1+ to C1Q+ TAMs

Monocyte subsets that highly expressed FCN1, S100A8,and

S100A9 could subsequently produce C1Q+ TAM populations (43).

C1Q+ TAMs include pre-mature and mature C1Q+ TAMs. Pre-

C1Q+ macrophages possess pro-inflammatory and phagocytic

phenotypes based on the TAM differentiation routine. C1Q+ and

FCN1+ macrophages with a pro-inflammatory phenotype could be

detected in NSCLC (62). C1Q+ TAMs with high phagocytic activity

were also found in tumor tissues (125, 128). These TAMs highly

also express genes involved in antigen presentation (43, 60).

However, mature C1Q+ macrophages are the predominant

contributors to immunosuppression. These C1Q+ macrophages

express multiple immunosuppressive genes such as PD-L1, PD-

L2, HAVCR2, LGALS9, and CEACAM1 (52). In addition, several

different gene signature clusters in C1Q+ TAM subpopulations have

been reported, such as C1Q+TAMs with genes C1QA/B/C,

SLCO2B1, NRP1, SLAMF8, FCGR1A, MERTK, and SIGLEC1 (43);

C1Q+TAMs with genes C1QA/B, APOE, TREM2, GPNMB and

SLC40A1 (44), C1Q+TAMs with genes TREM2, CD81, MARCO,

APOE, CALR, CD63 and SPP1 (63); and C1Q+TAMs with genes

C1QB, APOE, FN1, CD276, TREM2, CHIT1, CCL18, MARCO,

CD81 and NRP2 (50). Since C1Q+ TAMs mainly exert

immunosuppressive functions, which are related to multiple

immune cells, these TAMs with different gene signatures suggest

the existence of multiple C1Q+ TAM populations with distinct

immunosuppressive functions (Figure 3).
5.2 From SPP1+ to CCL18+ TAMs

SPP1+ macrophages not only promote tumorigenesis, but also

metastasis and angiogenesis, which are possessed by embryo-

derived TRMs (11, 24, 29, 142, 145), implying that this
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subpopulation is derived from embryo-derived TRMs. Several

different gene signature clusters in SPP1+ TAM subpopulations

have been reported, such as SPP1+TAMs with genes SPP1, BCL6,

ADM, MARCO, FN1, AQP9, TIMP1, VEGFA, and IL1RN (57);

SPP1+ TAMs with genes SEPP1,CD68, LYZ,MARCO, APOC1, SPP1

(82), SPP1+ TAMs with genes SPP1,MARCO, and VEGFA (43, 52);

and SPP1+ TAMs with genes SPP1, AQP9, TNS3, FN1, C15ORF48,

PHLDA1, and NDRG1 (43). These TAMs with different clusters

suggest that SPP1+ TAM can be divided into different populations

with distinct functions. In addition, SPP1+macrophages possessed

anti-inflammatory phenotypes (62), which played a role in immune

suppression and tumor evasion in colon cancer (97, 109).

CCL18+ macrophages belong to terminal TAMs. Increased

immunosuppressive CCL18+ TAMs with a terminally differentiated

state and metabolically energetic phenotype could be found in

tumors. CCL18+ macrophages with high expression of CD163,

MARCO, and CSF1R also exhibited stronger tumor-promoting

effects than SPP1+ macrophages (53). These macrophages with an

anti-inflammatory phenotype could also induce a worse prognosis

(53, 62). The effects of CCL18 on tumor cells were similar to SPP1

TAM (67), implying that this CCL8+ macrophage subpopulation was

originated from SPP1+ TAMs.
6 Relevance of TAM subpopulations
by scRNA-seq with old M1 and
M2 paradigm

Activated macrophages are usually divided into two categories,

M1 and M2 (146). M1 is involved in pro-inflammatory responses,

whereas M2macrophages are mainly involved in anti-inflammatory

responses. In tumor environments, M1 macrophages typically exert

anti-tumor functions, including directly mediate cytotoxicity and

antibody-dependent cell-mediated cytotoxicity to kill tumor cells;

Whereas M2 macrophages can promote the occurrence and

metastasis of tumor cells, inhibit T cell-mediated anti-tumor

immune response, promote tumor angiogenesis, and lead to

tumor progression (5). There are mainly two classes of TAM

subpopulations identified by scRNA-seq in solid tumors,

including C1Q+ and SPP1+ TAM subpopulations. C1Q+

subpopulation in solid tumors possesses the characteristics of

both M1 and M2 functions. This subpopulation is potentially

involved in immunosuppression but also exhibits pro-

inflammatory phenotypes. C1Q+ TAM subpopulation (43, 44, 50,

63) also expresses common genes with both M1 and M2

macrophages (5, 20, 147). M2 TAMs are critical in promoting

EMT, angiogenesis, and immunosuppression of tumors (7, 19, 20);

Whereas SPP1+ subpopulation can also potentially perform

immunosuppression and mediate metastasis and angiogenesis

although SPP1+ TAM subpopulation also possesses other

functions such as promotion of cell proliferation and tissue

repair. This SPP1+ TAM subpopulation also shares some genes

with M2 macrophages (43, 50, 51). Thus, although C1Q+ and SPP1+

TAM subpopulations are different from old M1 and M2 paradigm,

there also exist some common characteristics such as genes and
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functions between C1Q+ and M1 TAM macrophages, and between

SPP1+ and M2 TAM subpopulations.
7 Tumor-associated macrophages as a
target against tumor

TAMs, the most abundant immune cells in the TME, not only

influence cancer progression and metastasis but also tumor recurrence

(148). Thus, it is a critical strategy to target macrophages against tumor,

which not only ameliorate the tumor-associated immunosuppression

but also elicit anti-tumor immune responses. Different targeting

strategies for TAMs have been developed, such as small molecular

inhibitors and immune checkpoint inhibitors and antibodies.

The differentiation and function of macrophages can be

manipulated by targeting PI3Kg, JAK-STAT, C/EBPa, PPARg
and JNK1/2 signaling pathway using small-molecule inhibitors

(149–151), and targeting immune-metabolism pathways such as
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arginine, adenosine, glutamine, tryptophan, kynurenine and lactate

which have all been implicated in TAM reprogramming (152–154).

Notably, STING (stimulator of interferon genes) could regulate the

polarization of tumor-associated macrophages to inhibit liver

metastasis of colorectal cancer (155). Targeting tumor-associated

macrophages with STING agonist improved the antitumor efficacy

of osimertinib in a mouse model of EGFR-mutant lung

cancer (156). STING agonist overcomed STAT3-mediated

immunosuppression and adaptive resistance to PARP inhibition

in ovarian cancer (157). The activation of STING signaling also

enhanced anti-tumor immunity (158), and improved cancer

immunotherapy against tumor (159). In addition, epigenetic

regulators such as histone deacetylases could also modify

macrophage phenotypes (160, 161). However, these agents are

not specific to macrophages, which have been associated with

adverse toxicity.

Immune checkpoint inhibitors and antibodies which target

TAMs can be used in therapy against tumors. TAMs and/or their
FIGURE 3

Differentiation of tumor associated macrophages with distinct functions. Tumor associated macrophages (TAMs) are both embryonic and monocyte
origins. Monocytes derived TAMs highly express genes related to inflammatory and immunosuppression; While embryo-derived TAMs highly express
genes related to tumorigenesis, metastasis and angiogenesis. FCN1+ and C1Q+ TAM subpopulations are derived from peripheral blood monocytes,
whereas SPP1+ and CCL18+TAMs are derived from tissue-resident macrophages (pre-SPP1+ macrophages from embryo and monocyte derived
macrophages). Differentiation of TAMs from peripheral blood monocytes to C1Q+ macrophages includes monocytes, FCN1+ macrophages, and pre-
C1Q+ and mature C1Q+ macrophages. Differentiation of TAMs from tissue-resident macrophages into CCL18+ macrophages occurs via pre-SPP1+

and mature SPP1+. Furthermore, mature C1Q+ and SPP1+ macrophages can be divided into different populations with distinct functions. iDC,
inflammatory dendritic cells; tDC, tolerant dendritic cells; MDSCs, myeloid-derived suppressor cells; NK, natural killer cells. Dotted line arrow:
predicted pathway based on gene expression.
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subpopulations can overexpress different immune-checkpoint

molecules such as PD-L1, which contribute to T cell exhaustion

(162). Li et al. developed a hydrogel loaded with Pexidartinib and

anti-PD-1-conjugated platelets to prevent of tumor recurrence after

surgery (163). CD47 could interact with the inhibitory receptor

SIRPa on the macrophages to transmit the “don’t eat me” signal

(164). Several antibodies or small molecules targeting CD47-SIRPa
axis have entered clinical trials (165, 166). A bispecific single-

domain antibody was also used in the treatment of malignant

tumors, which could efficiently and specifically bind and

neutralize CCL2 as well as CCL5. They significantly induced the

polarization of TAMs, and reduced immunosuppression in the

TME (167). CD206 blockade also enhanced antitumor immune

response in syngeneic models and the mouse pancreatic tumor

model (168). Blockade of complement receptor C5aR1 also

reprogramed tumor-associated macrophages (169).

In addition, other strategies such as depletion of TAMs and

genetic engineering of macrophages with chimeric antigen receptor

(CAR), which allows them to recognize tumor antigens and

perform tumor cell-specific phagocytosis have also been used in

therapy against tumors (170). One attractive target for TAM

depletion is the CSF1-CSF1R axis (170). More than 30 phase I/II

trials of small-molecule inhibitors or blocking antibodies to CSF1R

have been initiated (149).

Notably, with the finding of new macrophage subpopulations

by single cell RNA sequencing, more precise strategies which can

target different TAM subpopulations will be developed. However, to

the success of TAM subpopulation targeted therapies, it will be

important to determine the exact functions of TAM

subpopulations. Future studies should offer sufficient functional

and phenotypic markers in the different TAM subsets. This will

pave the way for the future development of targeted drugs to

macrophage subsets. Notably, it may be difficult to study how

embryo-derived TRMs and monocyte-derived TRMs influence

tumors owing to limited consensus markers for these TRMs (149).
8 Conclusion and perspectives

TAMs and their subpopulations are related to tumor growth

and progression. These TAMs and their subpopulations can act as

potential new targets for cancer immunotherapy. Owing to the

plasticity and heterogeneity of TAMs, it is difficult to define TAM

subpopulations and their functions. However, scRNA-seq has

served as a powerful tool for identifying these different TAM

subpopulations. Here, we review subpopulations of TAMs in solid

tumors in the phenotypic and transcriptomic levels, as well as their

differentiation at the single-cell level. This review not only offers

important insights into redefining subpopulations with different

functions but also offers the possibility of precisely targeting TAM

subpopulations. The application of scRNA-seq will undoubtedly
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promote our understanding of the biological characteristics

of tumors.

However, there exists the potential disconnect between cell

types and subtypes identified by scRNA-seq and their actual

function. Thus, although scRNA-seq data have suggested TAM

subpopulations with distinct functions, further clarification of these

subpopulations with different functions is necessary for precise

therapy and understanding of TAM characteristics. Next step will

be to establish the actual function per TAM subpopulation. To

determine the exact function of these TAMs, TAM population and

subpopulation can be deleted through specific cytotoxicity or

conditioned knockout.
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