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The differentiation, survival, and effector function of tumor-specific CD8+

cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of

proper costimulation and the abundant immunosuppressive mechanisms,

tumor-specific T cells show a lack of persistence and exhausted and

dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1,

CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and

failed antitumor immunity. These coinhibitory receptors are collectively called

immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs)

targeting these ICRs have become the cornerstone for cancer immunotherapy

as they have established new clinical paradigms for an expanding range of

previously untreatable cancers. Given the nonredundant yet convergent

molecular pathways mediated by various ICRs, combinatorial immunotherapies

are being tested to bring synergistic benefits to patients. In this review, we

summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT,

TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial

strategies to improve existing ICI therapies.

KEYWORDS

immune checkpoint inhibitors, combinatorial immunotherapies, PD-1, CTLA-4, VISTA,
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Abbreviations: ICR, Immune checkpoint receptor; ICI, Immune checkpoint inhibitor; CTL, Cytotoxic T cell;

APC, Antigen presenting cell; MDSC, Myeloid-derived suppressor cell; TCR, T cell receptor; MHCII, Major

histocompatibility complex II; TILs, Tumor infiltrating lymphocytes; PD-1, Programmed death-1; CTLA-4,

Cytotoxic T lymphocyte-associated protein 4; VISTA, V domain immunoglobulin suppressor of T cell

activation; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; TIM-3, T-cell immunoglobulin and

mucin domain-containing protein 3; LAG-3, Lymphocyte activation gene 3.
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Introduction

The cancer-immunity cycle refers to the process wherein tumor

antigen-reactive T cells undergo successful priming and differentiate

into cytotoxic killer T cells that infiltrate tumor tissues and eliminate

cancer cells (1). The differentiation, expansion, survival, and effector

function of these tumor-specific cytotoxic T cells (CTLs) is regulated

by the collective signaling effects of the T-cell receptor, costimulatory/

coinhibitory receptors, and cytokine receptors, which culminate

in transcriptional and epigenetic programs to guide T-cell fate.

Unlike in acute viral infections where effector CTLs and

memory T-cell responses develop properly, tumor-specific CTLs

exhibit dysfunctional states in response to chronic stimulation

and a myriad of immunosuppressive factors in the tumor

microenvironment (TME). These T cells progressively lose

proliferative capacity, memory potential, and effector functions, and

enter an “exhausted” state. Exhausted T cells upregulate the

expression of multiple ICRs, including PD-1, CTLA-4, VISTA,

TIGIT, TIM-3, and LAG-3, which sustain dysfunctional antitumor

T-cell responses (2, 3).

Immune checkpoint inhibitors (ICIs) are antibodies or small

molecules that bind and block the function of ICRs, thereby

reducing tumor-induced T-cell exhaustion and restoring

anticancer immunity. Ipilimumab, the monoclonal antibody

(mAb) blocking cytotoxic T lymphocyte antigen 4 (CTLA-4), was

the first ICI therapy approved by the Food Drug Administration

(FDA) in 2011. Currently, several mAbs targeting CTLA-4, PD-1,

and PD-L1 have been approved for clinical applications. However,

despite revolutionizing the field of oncology, the major challenge of

existing ICI therapies is the overall low response rate.

Understanding the unique molecular and cellular mechanisms of

each ICR may support the development of novel combinatorial

therapies that optimally restore antitumor immunity.
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This review summarizes updated literature regarding the

established and emerging ICRs: PD-1, CTLA-4, VISTA, TIGIT,

TIM-3, and LAG-3. Due to the scope limitation, we omit

discussions of additional emerging ICRs such as B7-H3, B7-H4,

HHLA2, and butyrophilin-like 2 (BTNL2), which have been

reviewed elsewhere (4). Herein, we provide an overview of each

ICR’s structure, expression, signaling mechanisms, and current

preclinical and clinical data. We also elaborate on the concept

that multiple ICRs operate concurrently to impair the expansion,

survival, and effector functions of tumor-reactive cytotoxic T cells

(Figure 1), as well as control the maturation and function of

dendritic cells (DCs), macrophages, and myeloid-derived

suppressor cells (MDSCs) (Figure 2). Given the frequent

coexpression and functional crosstalk of these ICRs, we affirm the

concept that combinatorial targeting of ICRs may achieve

synergistic therapeutic outcomes compared to monotherapies.
Programmed death -1

PD-1 structure and expression

Programmed death -1 (PD-1, CD279) belongs to the B7/CD28

family of receptors, which are type-I transmembrane proteins

consisting of an immunoglobulin variable (IgV) domain, a

transmembrane domain, and a cytoplasmic tail with signaling

capacities. PD-1 engages the ligands PD-L1 and PD-L2 and acts

as a coinhibitory receptor that regulates both the adaptive and

innate arms of the immune system (4, 5).

PD-1 expression is detected in activated T cells, Foxp3+

regulatory T cells (Tregs), natural killer (NK) cells, innate

lymphoid cells (ILC2s), B lymphocytes, macrophages, DCs, and

monocytes. In T cells, PD-1 gene expression is induced by TCR
FIGURE 1

Overview of coinhibitory ICRs and their effects in conventional T cells. T-cell activation requires TCR recognition of cognate antigens presented on
APCs and costimulation provided by B7/CD28 or CD115/CD226 interactions. On the other hand, many coinhibitory ligand/receptor pathways are
activated to dampen T-cell responses. The B7/CTLA-4 and PD-L1/2/PD-1 pathways are the cornerstones of the immune checkpoint paradigm.
Emerging inhibitory ICRs, including TIGIT, LAG-3, TIM-3, and VISTA, each recognized by multiple ligands, play nonredundant yet convergent roles as
the “brakes” of T-cell responses.
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signaling and positively regulated by multiple transcription factors

including AP-1, NFATc1, FoxO1, NF-KB, Notch, STAT, and IRF9

(5). In cancers and chronic viral infections, PD-1 expression in

exhausted T cells is significantly higher than in T cells from healthy

hosts (3). The expression of PD-1 and its ligand PD-L1 on immune

cells and cancer cells may serve as an indicator of disease

progression and poor prognosis in a wide range of cancers (6).
Molecular mechanisms of PD-1

The intracellular domain of PD-1 contains an immunoreceptor

tyrosine-based inhibitory motif (ITIM) and an immunoreceptor

tyrosine-based switch motif (ITSM) (5). In T cells, the engagement

of PD-1 by its ligand PD-L1 results in the recruitment of the

tyrosine-protein phosphatases SHP1 and SHP2, which

downregulate the phosphoinositide 3-kinase (PI3K), mitogen-

activated protein kinase (MAPK), and mammalian target of

rapamycin (mTOR) pathways . CD28 can be direct ly

dephosphorylated by SHP2 and is the major target of PD-1

inhibitory signaling (7). At the cellular level, the consequences of

the PD-1 pathway are multifaceted, resulting in altered T-cell

metabolism with impaired glycolysis and augmented fatty acid

oxidation, reduced cell expansion and effector cytokine

production, and impaired T-cell mobility (3, 4).

In addition to the canonical PD-L1/PD-1 interactions, PD-L1

binds to CD80, which is expressed on antigen-presenting cells

(APCs) and activated T cells (8). Trans-interactions of PD-L1 on

APCs and CD80 on T cells could transmit inhibitory signaling to T

cells and impair antitumor immunity (8, 9). On the other hand, cis-

interactions of PD-L1/CD80 on APCs reduced PD-L1/PD-1

interactions and CD80/CTLA4 interactions, without affecting

interactions between CD80 on APCs and CD28 on T cells (10–

12). Blocking cis-interaction of PD-L1/CD80 reduced CD80

expression on APCs and impaired antitumor immune responses
Frontiers in Immunology 03
(11). An anti-CD80 antibody blocking PD-L1/CD80 cis-

interactions augmented PD-L1/PD-1 interactions and alleviated

autoimmune disease (13).

In addition to T cells, PD-1 is expressed in tumor-associated

macrophages and inhibits their phagocytic function, which in turn

controls antitumor immune responses (14). Furthermore, PD-1

plays a role in regulating tumor-driven emergency myelopoiesis.

PD-1 deletion in myeloid progenitors reduced the accumulation of

GMPs andMDSCs, which may be the result of elevated ERK1/2 and

mTORC1 signaling and metabolic reprogramming (15). In

preclinical models and cancer patients, blocking interactions of

PD-1 with PD-L1 augments the effector function of PD-1+

exhausted CTLs, and induces the expansion of TCF1+ progenitor-

like exhausted T cells with self-renewal capacity (16). On the other

hand, blocking PD-1 may trigger hyperproliferation and

suppressive function of Tregs and contribute to hyperprogressive

diseases (17).
Targeting the PD-1/PD-L1 axis for
cancer immunotherapy

Monoclonal antibodies specific for PD-1 (nivolumab,

pembrolizumab), and PD-L1 (durvalumab, atezolizumab, and

avelumab) have proven to be clinically effective and gained FDA

approval across a wide range of cancers, such as skin cancer, lung

cancer, Hodgkin lymphoma, renal cell carcinoma (RCC), head and

neck cancer, bladder cancer, colorectal cancer, liver cancer, gastric

cancer, triple negative breast cancer, and cervical cancer (18, 19).

Additional antibodies blocking PD-1, such as cemiplimab,

camrel izumab, s int i l imab, tor ipa l imab, t i s le l i zumab,

zimberelimab, prolgolimab, and dostarlimab, have been approved

for cancer applications worldwide. A meta-analysis of randomized

controlled trials has concluded that anti-PD-1/PD-L1 inhibitors are

more advantageous for treating advanced and metastatic cancers
FIGURE 2

The signaling effects of ICRs in antigen-presenting cells. Aside from suppressing T-cell activation, many ICRs regulate the maturation, antigen
presentation, cytokine production, and other effector functions of DCs and tumor-associated macrophages. CTLA-4 reduces the surface expression
of B7 molecules through trans-endocytosis. LAG-3 and TIGIT trigger signaling in a reverse direction by engaging their respective binding partners
MHCII and CD155. On the other hand, PD-1, TIM-3, and VISTA are expressed in APCs and transmit inhibitory signals to inhibit the effector functions
of APCs, including phagocytosis, antigen presentation, and cytokine production. Both PD-1 and VISTA are also expressed in tumor-driven MDSCs
and contribute to the differentiation and suppressive function of MDSCs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1264327
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Roy et al. 10.3389/fimmu.2023.1264327
than conventional therapies, with better overall survival and

progression-free survival particularly in male patients with

younger age, without central nervous system or liver metastasis,

no EGFR mutations, and with higher PD-L1 expression (18).

While PD-L1/PD-1 inhibitors are approved for treating an

expanding list of cancers, their use as monotherapies generated

an overall low response rate, due to mechanisms of primary and

acquired resistance (20, 21). To improve the response rate to ICIs,

numerous combination strategies have been studied in preclinical

and clinical trials, including combining PD-L1/PD-1 inhibitors with

chemotherapeutics such as cyclophosphamide, radiotherapy,

targeted therapy, agonistic costimulatory antibodies targeting

CD134, CD137 or ICOS, innate immune stimulators such as

STING agonists, epigenetic modulators, and cancer vaccines such

as oncolytic viruses (19, 22, 23). On the other hand, these

combinatorial regimens fail to address the roles of other non-

overlapping ICRs that constitute one of the dominant resistance

mechanisms to PD-1/PD-L1 inhibitors. In the rest of this review, we

will summarize studies of emerging ICRs (i.e., VISTA, TIGIT, TIM-

3, and LAG-3) and demonstrate the rationales for combinatorial

therapies targeting non-redundant ICRs together with PD-1/PD-

L1 inhibitors.
CTLA-4

CTLA-4 structure and expression

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4,

CD152), together with CD28, represents the B7 family of

receptors. Similar to PD-1, CTLA-4 contains an extracellular IgV-

domain, a transmembrane domain, and a cytoplasmic tail with

motifs for intracellular signaling (24, 25). CTLA-4 is constitutively

expressed on Foxp3+ regulatory T cells (Tregs) and is inducible

upon activation in conventional T cells. In addition, CTLA-4

expression has been detected in natural killer cells, B cells,

dendritic cells, and myeloid cells (26–31).

In T cells, CTLA-4 gene expression is induced by Foxp3 and

NFAT (32). The stability of CTLA-4 mRNA is regulated post-

transcriptionally, by microRNAs such as miR-145 and miR-155 (33,

34). In resting T cells, a majority of CTLA-4 resides intracellularly

within endosomes and relocalizes to the cell surface upon TCR

stimulation (27, 31, 35–37). CTLA-4 protein localization is

dynamically regulated by clathrin-mediated endocytosis and

endosomal recycling, which is dependent upon the tyrosine

phosphorylation status of its cytoplasmic domain (38).
Molecular mechanisms of CTLA-4

CTLA-4 inhibits the expansion, cytokine production, and

differentiation of conventional T cells and contributes to the

development and function of Foxp3+ Tregs. CTLA-4 exerts

inhibitory effects by competing against CD28 due to its higher

affinity for B7 molecules, as well as by recruiting phosphatases SHP2

and PP2A, which in turn downregulate signaling of TCR and CD28
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(39–42). In addition to T-cell intrinsic mechanisms, CTLA-4

indirectly suppresses T-cell responses by modulating dendritic

cells: CTLA-4 downregulates the surface expression of B7

molecules through trans-endocytosis (43) or induces the

expression of indoleamine 2,3-dioxygenase (IDO), which in turn

impairs T-cell proliferation (44). CTLA-4 also reverses the stop

signal in activated T cells and reduces the contact time between T

cells and APCs, leading to decreased cytokine production and T-cell

proliferative responses (45).

The mechanisms of CTLA-4-mediated immunosuppression in

cancers are distinct from PD-1 and potentially synergistic with PD-

1 (46): although both receptors act on activated conventional T

cells, PD-1 controls effector T-cell function at a later stage, mainly

within peripheral tissue sites and the tumor microenvironment,

while CTLA-4 intercepts T-cell priming in the lymph nodes and

governs the function of Tregs (47, 48). CTLA4 is constitutively

expressed in Foxp3+ Tregs and CTLA-4-specific antagonistic

antibodies not only augment effector T-cell activation but also

induce ADCC-mediated depletion of tumor-infiltrating Tregs

(49–51). On the other hand, unlike PD-1 and PD-L1, CTLA-4 is

not expressed in myeloid cells and does not directly regulate

suppressive myeloid cells within the TME. These functional

distinctions provide mechanistic rationales for developing

combination therapies targeting both axes.
Combinatorial blockade of PD-1
and CTLA-4

Studies have shown that while CTLA-4 and PD-1 blockade each

boosts antitumor T-cell responses, dual blockade results in stronger

therapeutic outcomes in preclinical models and human patients

(52–54). ICI monotherapies induced the expansion of different

tumor-infiltrating T cells (TILs), i.e., PD-1 blockade expanded

exhausted-like CD8+ CTLs, whereas CTLA-4 blockade expanded

both ICOS+ Th1-like CD4 effectors and exhausted CD8+ CTLs. In

contrast, the combined blockade induced the expansion of

terminally differentiated effector CD8+ CTLs that are not seen in

monotherapies and further increased Th1-like CD4+ effector T cells

(52, 53). Similar findings have been shown in human melanoma

patients treated with ipilimumab and nivolumab therapy. In

addition to melanoma, dual blockade of CTLA-4 and PD-1 was

studied in a murine breast cancer model (53). While monotherapies

showed modest effects, combination therapy led to complete tumor

regression in a majority of mice. The synergistic efficacy was due to

the anti-CTLA-4 antibody-induced expansion of the T-cell receptor

(TCR) repertoire and augmented functionality of TILs,

accompanied by intratumoral Treg depletion. Taken together,

these studies have demonstrated the mechanisms of synergy with

dual ICI therapy that may guide clinical applications.

Ipilimumab (Yervoy) was the first FDA-approved monoclonal

antibody for cancer immunotherapy, owing to robust clinical

responses for metastatic melanoma (55, 56). We summarize

recent clinical trials that have advanced PD-1 and CTLA-4

combinatorial therapy; comprehensive overviews of other clinical

trials involving ipilimumab can be found in other reviews (57, 58).
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As a monotherapy, the effect of ipilimumab is not as strong as that

of the PD-1 antibody nivolumab (Opdivo) for resected stage III or

IV melanoma and showed shorter survival and higher toxicity for

patients than the PD-1 antibody pembrolizumab (Keytruda) (59,

60). However, when ipilimumab was given concurrently with PD-1

antibody, dual blockade therapy demonstrated significantly

improved outcomes in clinical studies. The advantages of dual ICI

therapy were first noted in a Phase I dose-escalation study using

nivolumab and ipilimumab administered together, which led to

better response rates and progression-free survival compared to

previously reported results from either monotherapy (61). A

subsequent phase III study highlighted better responses and

survival with combinatorial therapy when used for metastatic

melanoma patients with PD-L1 negative tumors compared to

either nivolumab alone or ipilimumab alone, despite the higher

occurrence of grade 3 or 4 treatment-related adverse events (62).

Follow-up studies showed durable responses and sustained benefits

for survival in these patients across multiple years (63–65).

Treatment-naive patients with advanced melanoma also benefited

from nivolumab-plus-ipilimumab treatment, once again producing

higher objective-response rates and progression-free survival with

acceptable safety profiles compared to ipilimumab alone (57).

Current research continues to advance PD-1 and CTLA-4

combinatorial immunotherapy in the treatment of other cancers.

Beyond melanoma, FDA approval of anti-PD-1 and anti-CTLA-4

dual therapy has expanded to hepatocellular carcinoma (HCC),

unresectable pleural mesothelioma, RCC, metastatic non-small cell

lung cancer (NSCLC), and advanced or metastatic esophageal

squamous cell carcinoma (66–68). Combinatorial ICI therapy in

the neoadjuvant setting has also shown promise, with tolerance and

strong pathological responses for late-stage melanoma, early-stage

colon cancers, and late-stage urothelial cancer (69, 70). Dual

blockade of CTLA-4 and PD-1 is currently being evaluated in

numerous clinical trials for advanced solid tumors, such as head

and neck squamous cell carcinoma (HNSCC) and glioblastomas

(NCT04080804, NCT04606316). For testing combined treatment

with pembrolizumab (anti-PD-L1), a randomized, double-blind

phase III KEYNOTE-598 study (NCT03302234) showed that in

patients with metastatic NSCLC, adding ipilimumab to

pembrolizumab did not improve efficacy and exhibited greater

toxicity than pembrolizumab monotherapy (71). Another phase I

expansion trial (NCT02089685) evaluated the efficacy and safety of

pembrolizumab combined with a reduced dose of ipilimumab in

patients with advanced melanoma and RCC and showed

manageable toxicity profile and robust antitumor activity (72).
VISTA

VISTA structure and expression

V-domain immunoglobulin suppressor of T-cell activation

(VISTA, alias Gi24, Dies-1, PD-1H, DD1a) is homologous to B7

family receptors and acts as a negative regulator of antitumor

immunity and autoimmunity (73–78). VISTA is a type I

transmembrane protein containing a single IgV-like extracellular
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domain (ECD), a transmembrane segment, and a cytoplasmic tail

that does not contain ITAM, ITIM, or ITSM motifs. Structural

studies have revealed unique features of the VISTA ECD that are

distinct from those of other Ig superfamily members, including two

additional disulfide bonds, the insertion of an unstructured C-C’

loop, the striking enrichment of histidine residues within the ECD,

and an extra H b-strand that forms an intramolecular clamping

disulfide bond (79, 80). Mutagenesis studies have demonstrated that

these structural features contribute to the surface orientation and

suppressive function of VISTA (79, 80).

VISTA expression in mice is largely restricted within the

hematopoietic compartment, with the highest expression on

CD11b+ myeloid lineages such as monocytes, macrophages,

granulocytes, and dendritic cells (73, 74). VISTA is also expressed

in lymphocytes including NK cells, TCRgd T cells, naïve CD4+ and

CD8+ TCRab T cells, and Foxp3+ Tregs. A similar expression

pattern of VISTA is seen in human peripheral blood monocytic

cells. VISTA gene expression is positively regulated by the

transcription factors P53, HIF1-a, and STAT3 (81–83). However,

whether VISTA exerts any impact on the functions of HIF1-a and

STAT3 remains unknown. VISTA expression is also regulated by

TGF-b/Smad3 signaling in T cells and myeloid cells (84).

In human cancer tissues, VISTA expression was mostly

enriched in tumor-infiltrating myeloid cells and T cells (75, 85).

In addition to immune cells, VISTA expression was detected in

mesothelioma (86), gastric cancer (87), and AML (83, 88, 89).

VISTA expression has been associated with resistance to

immunotherapy and poor patient survival in many cancers,

including prostate cancer, lymphoma, bladder cancer, melanoma,

breast cancer, and AML (88, 90–95),
Molecular mechanisms of VISTA

VISTA impairs antitumor immunity through its ligand

activity in myeloid cells and T cell-intrinsic activity. Although it

has been speculated that VISTA also acts as an inhibitory receptor

(96), the signaling mechanism is unclear and it remains possible

that T cell-intrinsic activity may rely on cis interactions with other

signaling partners. At the molecular level, several partners, such as

PSGL-1, VSIG3, and galectin-9, have been identified to engage

VISTA (97–99). While PSGL-1 was suggested as an inhibitory

receptor for VISTA, VSIG3 was considered a ligand. Galectin-9

binds VISTA and forms a protein complex that promotes galectin-

9-mediated apoptotic signaling. At the cellular level, VISTA

regulates the development and function of macrophages,

MDSCs, neutrophils , TCRgd T cells , and CD4+/CD8+

conventional T cells (74, 75, 78, 100, 101). In macrophages,

VISTA impairs TLR signaling by regulating the ubiquitination

and stability of TRAF6 (102). Blocking VISTA synergizes with a

TLR-agonistic vaccine by augmenting the activation of DCs and

macrophages, increasing the production of stimulatory cytokines

such as IL-12 and IL-27, and promoting the effector function of

tumor-specific CTLs. VISTA also contributes to the suppressive

function of MDSCs, although the exact molecular mechanisms

remain undefined (82, 102).
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Combinatorial blockade of VISTA and PD-1

In preclinical models, genetic deletion of VISTA or treatment

with anti-VISTA mAb delayed tumor regression by inducing DC

maturation, reducing the abundance of adaptive Foxp3+ Tregs,

reducing the abundance of MDSCs, and augmenting the effector

function and abundance of CTLs (73, 76).

Studies led by Liu et al. first established the nonredundant and

synergistic role of VISTA and PD-1 in mounting immune responses

against self and tumor antigens (103). In both B16 melanoma and

CT26 colon tumor models, combinatorial treatment with anti-

VISTA and anti-PD-L1 mAbs resulted in tumor regression and

long-term survival in comparison to monotherapies (103, 104). A

separate VISTA-blocking mAb, SG7, suppressed the interaction

between VISTA and VSIG3 or PSGL-1 and showed efficacy in

combination with PD-1 blockade in the MC38 colon tumor model

(105). Finally, a unique role of VISTA in promoting naive T-cell

quiescence has been identified (106). Accordingly, a study in a CT26

tumor model showed that a triple blockade of VISTA/PD-1/CTLA-

4 could improve the efficacy of PD-1/CTLA-4 dual blockade by

promoting antigen-presentation in myeloid cells and reducing the

quiescent state of CTLs (107).

Several clinically relevant VISTA-blocking agents have been

developed and entered clinical trials. VSTB112 (Janssen Inc) was

the first anti-VISTA mAb tested in the clinic (NCT02671955).

CA-170 (Curis Inc) is an orally available small molecule that has

dual targeting activities against PD-L1/L2 and VISTA. In

preclinical models, CA-170 rescued T-cell function similarly to

PD-1 antagonists and inhibited the growth of B16 melanoma,

CT26, and MC38 murine tumor models (108, 109). CA-170 was

tested in a phase I trial (NCT02812875) and a phase II trial

(Clinical Trials Registry-India CTRI/2017/12/011026) (110). CA-

170 showed an excellent safety profile and encouraging clinical

activity in classic Hodgkin lymphoma and advanced NSCLC

(109). HMBD-002 (Hummingbird Bioscience) is a human

VISTA-specific mAb that binds to the C-C’ loop of VISTA and

blocks its interaction with VSIG3 (111). Studies of murine and

humanized mouse models showed the effects of HMBD-002 in

reducing MDSCs and augmenting T-cell responses. The phase I

trial of HMBD-002 is ongoing (NCT05082610). W0180 (Pierre

Fabre Inc) is a human VISTA-specific mAb being tested in a phase

I trial (NCT04564417). The NCT05082610 and NCT04564417

trials will both test VISTA inhibitors in combination with

pembrolizumab. KVA12123 (Kineta Inc) is a third human

VISTA-targeting mAb that has recently been granted FDA

acceptance for testing in phase I/II trials.
TIGIT

TIGIT structure and expression

T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is

an ICR that contains an IgV-like ECD, a type I transmembrane

domain, and a cytoplasmic domain with ITIM and ITT motifs
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(112). TIGIT is expressed on NK cells, CD4+/CD8+ conventional T

cells, and Foxp3+ Tregs. In T cells, TIGIT expression is upregulated

following TCR activation and is sustained with increased

exhaustion (112).

In human cancers, TIGIT gene expression was found to be

upregulated in tumors and correlated with poor prognosis for

KIRC, KIRP, LGG, and UVM cancers (113). TIGIT protein

expression is abundant in CD4+/CD8+ TILs and Tregs from a

wide range of cancer types and is often correlated with poor clinical

outcomes or resistance to ICI therapies (114). Coexpression of

TIGIT and PD-1 on CD8+ TILs, which is associated with

dysfunctional antitumor immune responses, has also been

observed in cancers such as HCC, glioblastoma (GBM), acute

myeloid leukemia, NSCLC, and melanoma (114).
Molecular mechanisms of TIGIT

TIGIT binds to three ligands CD112, CD113, and PVR

(CD155), out of which CD155 exhibits the highest affinity (115,

116). The TIGIT/CD155 interaction inhibits the functions of NK

cells, T cells, and APCs. Phosphorylation of both the ITT and ITIM

domains is required for the inhibitory signaling of TIGIT in NK

cells and T cells, partly by recruiting the adaptors Grb2 and SHIP1,

which in turn dampen the PI3K, MAPK, and NF-KB signaling

pathways (117, 118). TIGIT also outcompetes CD226 for binding to

CD155 and disrupts the costimulatory signal from CD226 in T cells

(119). In addition to effector T cells, TIGIT is expressed in Foxp3+

Tregs and plays a role in promoting their differentiation, stability,

and suppressive function (120–122).

In APCs such as DCs and macrophages, CD155 is

phosphorylated upon engaging TIGIT and subsequently inhibits

MAPK signaling, resulting in tolerogenic APCs that produce

elevated levels of IL-10 but reduced levels of IL-12, and fail to

properly stimulate cognate T cells (123). Another recent study

demonstrated that leukemia-associated macrophages express

TIGIT and that blocking TIGIT drives M1-like phenotypes and

increases phagocytosis (124).
Combinatorial blockade of TIGIT and PD-1

The efficacy of the dual blockade of TIGIT and PD-L1 has been

demonstrated in murine breast and colon carcinoma models (112).

The combination therapy rejuvenated tumor-specific CD8+ CTLs

by augmenting their expansion, effector functions, and the

development of memory responses (112). A recent study has

shown that the PD-1 and TIGIT pathways converge to regulate

CD226, as both receptors impair the phosphorylation of CD226

(125). Furthermore, when CD8+ TILs from human liver cancers

were treated with TIGIT and PD-1-blocking mAbs, the coblockade

of TIGIT and PD1 significantly improved the expansion, cytokine

production, and cytotoxicity of CD8+ TILs compared with single

PD-1 blockade (126). Similar results were seen in an adoptive T-cell

transfer study to treat human lung cancer, where dual blockade of
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TIGIT/PD-1 or TIM-3/PD-1 resulted in greater tumor control than

PD-1 monotherapy (127). Together, these studies provide a strong

rationale for blocking both the PD-1 and TIGIT pathways to allow

optimal CD226-dependent costimulatory signaling in CD8+ T cells.

Currently, there are approximately > 50 clinical trials in the US

testing several TIGIT-targeted mAbs, either as monotherapy or in

combination with PD-L1/PD-1 inhibitors (clinicaltrials.gov).

Bispecific antibodies targeting both TIGIT and PD-1 are also

being tested in these trials. In a phase II clinical trial sponsored

by Roche (NCT03563716), anti-TIGIT mAb (Tiragolumab) was

granted breakthrough therapy designation and was tested in

combination with anti-PD-L1 (atezolizumab) in metastatic

NSCLC (128). The combination treatment has improved the

overall response rate, progression-free survival, and overall

survival, over atezolizumab alone (128). Notably, the benefit of

the combination treatment was mainly observed in patients with

high PD-L1 expression (> 50%) (128, 129). Another TIGIT

antibody Vibostolimab (MK-7684) was evaluated in a phase I

trial (NCT02964013) with and without combination with

pembrolizumab for advanced solid tumors, including NSCLC,

and showed promising antitumor activity (130). Additional

TIGIT inhibitors, such as BMS-986207 (NCT04570839) (131),

ASP8374 (NCT03260322, NCT04826393) (132), Domvanalimab

(AB154) (NCT04262856) (133), BGB-A1217 (NCT04047862)

(134), and Etigilimab (OMP-313M32) (NCT04761198) (135) are

under investigation as single agents and in combination with PD-1/

PD-L1 inhibitors in solid tumors.
TIM-3

TIM-3 structure and expression

T-cell immunoglobulin and mucin domain-containing protein

3 (TIM-3), along with TIM1 and TIM4, belongs to the TIM family

of immunoregulatory proteins. The ECD of TIM-3 contains an

immunoglobulin variable domain that binds to several ligands:

galectin 9, phosphatidylserine, CEACAM1, and HMGB1 (136).

Following the ECD is a mucin domain, a transmembrane

domain, and a cytoplasmic domain that does not contain

canonical inhibitory signaling motifs such as ITIM or ITSM motifs.

TIM-3 is expressed on subsets of activated CD4+ and CD8+

conventional T cells, Foxp3+ Tregs, NK cells, myeloid cells, and

mast cells (136). TIM-3 can be cleaved into a soluble form by

ADAM10 and ADAM17 (137). TIM-3 expression in T cells is

coregulated with other ICRs including PD-1, TIGIT, and LAG-3

(138). Cytokines such as IL-12, IL-27, and IFN-b can upregulate

TIM-3 expression (139, 140). In human cancers, TIM-3 is highly

expressed in terminally exhausted CD8+ CTLs, Foxp3+ Tregs,

tumor-associated macrophages, and MDSCs. TIM-3 expression

levels have been shown to correlate with resistance to

immunotherapies and poor prognosis in many cancer types such

as melanoma, HCC, prostate cancer, RCC, colon cancer, bladder

cancer, cervical cancer, gastric cancer, and esophageal squamous

cell carcinoma (122, 141–149).
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Molecular mechanisms of TIM-3

In conventional T cells, TIM-3 is recruited to the immune

synapse upon TCR activation (150). Y256 and Y263, two of the five

tyrosines on the cytoplasmic tail of TIM3, bind BAT3, a protein

involved in the TCR signaling pathway (151). Bound BAT3 recruits

LCK, a major upstream player in the TCR signaling pathway (152).

However, engagement with galectin 9 results in the phosphorylation

of Y256 and Y263 by interleukin-2-inducible T-cell Kinase (ITK),

which releases BAT3 and impairs TCR signaling (153, 154).

Another ligand, CEACAM1, binds TIM-3 in cis to promote the

stability of TIM-3, while the trans interaction induces similar

signaling outcomes as galectin-9 (154). The Galectin 9/TIM-3 axis

induces apoptosis of effector Th1 cells and CD8+ CTLs (152, 155,

156). In Foxp3+ Tregs, TIM-3 signaling drives an effector-like

phenotype and enhances suppressive function (157).

TIM-3 is also expressed in DCs, where its ligation induces the

activation of Bruton’s tyrosine kinase and c-Src, which inhibit NF-

kB activation and subsequently reduce DC activation (158). In

macrophages, TIM-3 has been reported to promote M2-like

polarization by inducing SOCS1 (159). In monocytes and DCs,

TIM-3 inhibits the cellular responses to TLR signaling and reduces

the production of proinflammatory mediators (160). In a breast

cancer model, blocking TIM-3 augmented the production of a key

chemokine CXCL9 from CD103+ DCs, thereby improving the

an t i tumor immune re sponse s when combined wi th

chemotherapy (161).
Combinatorial targeting of TIM-3 and PD-1

In preclinical models, dual blockade of TIM-3 and PD-1

restored the function of both CD4+ and CD8+ T cells and led to

complete tumor regression whereas either monotherapy was not

effective (162, 163). A recent study has shown that PD-1 binds

galectin-9 and that PD-1/TIM-3/galectin-9 may crosslink and form

a lattice. As such, PD-1 functions to attenuate galectin-9/TIM-3-

induced apoptosis (164). It should be noted that VISTA also binds

to galectin-9 and augments the inhibitory effects of TIM-3 (99).

Thus, these findings may provide a rationale for future studies to

test the combined blockade of PD-1, TIM-3, and VISTA, to

improve the persistence and functions of tumor-reactive PD-1+

TIM-3+ CTLs.

In human cancers, TIM-3 and PD1 are often coexpressed on

CD8+ T cells and mark the most dysfunctional T cell subsets. An

earlier study of advanced melanoma showed that NY-ESO-1-

specific PD-1+CD8+ TILs upregulate TIM-3 expression, which is

correlated with dysfunctional phenotypes (165). Blocking TIM-3

augmented cytokine production and proliferation of T cells, while

combined blockade of both TIM-3 and PD-1 showed synergistic

effects. Similar findings were reported in colorectal cancer, where

TIM-3+PD-1+CD8+ TILs represented the predominant fraction of

TILs and targeting both TIM-3 and PD-1 enhanced cell expansion,

cytokine production, and cytotoxic activity (166). Recent studies of

diffuse large B-cell lymphoma found that TIM-3+PD1+ TILs
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exhibited a transcriptomic signature of T-cell exhaustion, reduced

proliferation, and impaired cytokine production, but these

dysfunctions were restored by the blockade of PD1 or TIM-3

(167, 168). Although there have not been any FDA-approved

therapeutics targeting TIM-3, the pipelines for novel TIM-3

inhibitors are expanding: several TIM-3-specific antibodies (i.e.,

cobolimab, MBG453, Sym-023, BMS-986258, AZD7789,

INCAGN02390, etc.) or TIM-3/PD-1 bispecific antibodies are

being tested in clinical trials (169). A phase I/II trial

(NCT02608268) evaluated MGB453 (anti-TIM3) in combination

with PDR001 (anti-PD-1) in advanced solid cancers such as

melanoma and NSCLC and showed excellent safety profile and

preliminary antitumor activity (170). Similar encouraging results

were shown by trials (NCT02817633 and NCT03680508) that

evaluated TSR-022 (anti-TIM3) in combination with PD-1

inhibitors (171, 172). In addition, a phase Ia/b trial evaluated the

safety, pharmacokinetics, and efficacy of LY3321367 (anti-TIM3)

plus LY3300054 (Anti-PD-L1) and showed modest antitumor

activity (173).
LAG-3

LAG-3 structure and expression

Lymphocyte activation gene 3 (LAG-3, CD223) is an Ig

superfamily ICR and is homologous to CD4 (174, 175). The ECD

of LAG-3 contains four IgV or IgC-like domains that are involved

in ligand binding. The cytoplasmic domain of LAG-3 contains a

serine phosphorylation site, the conserved KIEELE motif, and the

glutamate-proline dipeptide repeat motif that is involved in its

inhibitory signaling (176).

LAG-3 is expressed in many immune cell types including

activated conventional CD4+/CD8+ T cells, Foxp3+ Tregs, TCRgd
T cells, NK cells, dendritic cells, and B cells (175). In T cells, LAG-3

expression is induced upon TCR stimulation or by cytokines such as

IL-12, IL-2, IL-15, IL-7, IL-6, and IL-8 (177–179). LAG3 expression

is promoted by transcription factors such as TOX, NFAT, and

NR4A, while suppressed by T-bet (180–186). Studies of human

cancers have shown that LAG-3 expression is abundant in TILs and

associated with T cell dysfunction or insensitivity to PD-1 blockade.

These include breast cancer (187), kidney renal clear cell carcinoma

(188), melanoma (189), NSCLC (190, 191), HCC (192, 193), and B-

cell lymphoma (194). LAG-3 expression in peripheral blood

lymphocytes is also associated with resistance to ICI therapies in

patients with melanoma and urothelial carcinoma (195).

Furthermore, the clinical resistance to PD1 blockade may be

correlated with reduced shedding of LAG-3 in CD4+ conventional

T cells due to reduced expression of the protease ADAM10 (196).
Molecular mechanisms of LAG-3

LAG-3 is recognized by multiple ligands including MHCII

(197–199), fibrinogen-like protein 1 (FGL-1) (200), galectin-3
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(201), and liver sinusoidal endothelial cell lectin (LSECtin) (202).

In conventional T cells, LAG-3 signaling suppresses T cell

activation, proliferation, cytokine secretion, and cytotoxic

functions (203). LAG-3 interacts in cis with the TCR/CD3

complex and inhibits TCR signaling by promoting local

acidification and Lck dissociation (204). LAG-3 and PD1 interact

in cis and cluster with pLck at the immunological synapse and

recruit SHP1/2, thereby exerting inhibitory effects on T-cell

signaling (205). LAG-3 also promotes the activation and

suppressive function of Foxp3+ Tregs (206). Soluble LAG-3 acts

as an MHCII agonist and induces tyrosine phosphorylation and

activation of the AKT and ERK1/2 signaling pathways, thereby

inducing DC maturation and improving antitumor T-cell responses

(207, 208).
Combinatorial targeting of LAG-3 and PD-1

Preclinical studies have established that LAG-3 cooperates with

PD-1 in controlling antitumor immunity (175, 209). The striking

synergy between LAG-3 and PD-1 has been demonstrated in

murine melanoma, colon cancer, and ovarian tumor models,

where the dual blockade against LAG-3 and PD-1 effectively

controlled tumor progression that was resistant to respective

monotherapies (205, 210). A study in the MC38 colon cancer

model has shown that PD-L1 blockade elevated the expression of

both costimulatory receptors (ICOS) and coinhibitory receptors

(LAG3 and PD-1) in TILs, thereby providing a new mechanistic

rationale for coblocking LAG3 (211).

In human ovarian cancer, NY-ESO-1-specific CD8+ TILs

demonstrated impaired effector function and enriched

coexpression of the inhibitory molecules LAG-3 and PD-1. Dual

blockade of LAG-3 and PD-1 during T-cell priming efficiently

augmented proliferation and cytokine production by NY-ESO-1-

specific CD8+ T cells (212).

These preclinical and clinical studies have provided the

backbone for combinational treatment strategies. Currently,

numerous clinical trials are exploring the therapeutic benefits of

simultaneously targeting LAG-3 and PD-1 (209, 213). LAG-3

targeted agents include soluble LAG-3, LAG-3-specific mAbs, or

bispecific antibodies recognizing both LAG-3 and PD-1. Relatlimab

(anti-LAG-3) in combination with nivolumab received FDA

approval in March 2022 for treating unresectable or metastatic

melanoma (214). Favezelimab (MK-4280) in combination with

pembrolizumab was tested in a phase III trial (NCT02720068) for

colorectal cancer and showed promising antitumor activity in PD-

L1-positive tumors (213, 215). Ieramilimab (LAG525) was tested in

a phase I/II study (NCT02460224) in combination with

spartalizumab (PDR001, anti-PD-1) in advanced/metastatic solid

tumors such as melanoma and TNBCs, demonstrating a good

toxicity profile but moderate antitumor activity (216). Fianlimab

(REGN3767, anti-LAG3) is being tested in combination with

cemiplimab (anti-PD-1) in a phase I dose-escalation study

(NCT03005782) in advanced melanoma patients and showed

clinical activities (217). Eftilagimod alpha, a soluble LAG-3 fusion
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protein, is being tested along with pembrolizumab for treating

recurrent or metastatic head and neck squamous cell carcinoma

(NCT03625323) (208) . An ongoing phase I/I I s tudy

(NCT04370704) is testing retifanlimab (INCMGA00012, Anti–

PD-1), INCAGN02385 (Anti–LAG-3), and INCAGN02390

(Anti–TIM-3) triple combination therapy in patients with

advanced solid tumors (218). Multiple trials tested BI-754111

(anti-LAG3) combined with BI-754091 (anti-PD-1) in patients

with advanced solid tumors but no significant antitumor activity

was reported (219). Lastly, bispecific antibodies targeting PD-1/

LAG3, including tebotelimab (MGD013, NCT04212221) and

RO7247669 (NCT04140500) are under early-stage clinical

investigations (220).
Conclusions

Since the first FDA approval of ICIs in 2011, significant progress

has been made toward optimizing existing ICI therapies. Taking the
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lessons from existing ICIs that target PD-1, PD-L1, and CTLA-4,

current efforts in the field focus on identifying and targeting

nonredundant ICRs that may potentially synergize with existing

therapies. VISTA, TIGIT, TIM-3, and LAG-3 represent such

candidates in the pipeline. Recent advances in understanding the

converging role of ICRs in driving the dysfunction of both APCs

and T cells (Figures 1, 2) have set the conceptual foundation for

developing combinatorial therapies targeting these ICRs. Based on

the frequent coexpression of ICRs in tumor tissues and the distinct

yet convergent mechanisms of action (Table 1), it is expected that

combined blockade of these emerging ICRs with PD-L1/PD-1 will

result in additive or synergistic outcomes. Indeed, many novel ICI

combination therapies are being investigated in early-stage trials

(Table 2). To advance this concept into clinical applications, the

field still faces some challenges, such as defining the molecular

pathways and hierarchy of emerging ICRs, identifying the optimal

ICR combinations for distinct cancer types and discrete biomarkers,

and developing better preclinical models that present the full extent

of immune-related toxicities as seen in human patients. In
TABLE 1 Blocking individual ICRs augments antitumor immune responses by convergent cellular and molecular mechanisms.

Effect in
immune
cell

PD-1 block-
ade

CTLA-4 blockade VISTA block-
ade

TIGIT
blockade

TIM3 block-
ade

LAG3
blockade

Conventional
T cells

Augment CD28-
mediated
costimulation;
enhance the
proliferation and
effector function of
CTLs; Expand
progenitor-like
exhausted CTLs.

Expand ICOS+Th1-like CD4+
effector T cells; expand terminally
differentiated effector CD8+ CTLs;
expand CTL TCR repertoire;
enhance CTL effector function;
Improve T cell stop signal and
interaction with DCs; combined
blockade with anti-PD1 obtain
synergistic effects

Enhance CTL cell
proliferation,
cytokine production
and cytotoxic
function; reduced
CTL quiescence;
combined blockade
with anti-PD1 obtain
synergistic effects.

Enhance CTL cell
proliferation,
cytokine
production and
cytotoxic
function;
combined
blockade with
anti-PD1 obtain
synergistic effects.

Enhance CTL cell
proliferation,
cytokine production
and cytotoxic
function; improve T
cell survival;
combined blockade
with anti-PD1
obtain synergistic
effects

Enhance CTL cell
proliferation,
cytokine
production and
cytotoxic
function;
combined
blockade with
anti-PD1 obtain
synergistic effects

FOXP3+
Tregs

Induces hyper-
expansion of Tregs
and contribute to
hyper-progressive
diseases.

Reduce intratumoral Tregs. Reduce the
differentiation of
adaptive Tregs and
their suppressive
functions

Reduce Treg
stability and
suppressive
function

Reduce the
suppressive
activity of Tregs

Antigen
presenting
cells (APCs)

Augment
macrophage
phagocytosis and
M1 polarization.

Increase surface expression of B7
on APCs; reduce IDO expression

Promotes antigen
presentation in DCs
and macrophages;
promote TLR-
mediated activation
and cytokine
production of DCs
and macrophages

Promotes M1
polarization of
macrophages and
DC activation;
increase the
production of
chemokine Cxcl9
and cytokines

Promotes M1
polarization of
macrophages; TLR
signaling; DC
activation

Soluble LAG-3
acts as a MHCII
agonist and
induces DC
activation

Myeloid
derived
suppressor
cells
(MDSCs)

Reduce the
expansion of tumor
driven GMP and
MDSCs; augment
ERK1/2 and
mTORC1 signaling;
metabolic
reprogramming in
myeloid
progenitors.

Reduce the
abundance and
suppressive function
of MDSCs.
This table summarizes the multitudinous effects of blocking each ICR, including PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, in regulating antitumor immune responses. The relevant
effector cell types include effector T cells, Foxp3+ Tregs, APCs, and MDSCs.
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TABLE 2 Clinical trials testing combined targeting of ICRs.

ICI combina-
tions

Agents Company Clinical trials Cancer types

CTLA4 + PD-1/
PD-L1

Ipilimumab+ Nivolumab Bristol-Myers
Squibb

FDA approval HCC, pleural mesothelioma, metastatic melanoma,
colon cancer, urothelial cancer, metastatic NSCLC, RCC

Ipilimumab+ Nivolumab Bristol-Myers
Squibb

NCT04080804 NCT04606316 HNSCC
Glioblastoma
Results: recruiting

Ipilimumab+ Pembrolizumab Merck Sharp
& Dohme

NCT02089685
NCT03302234
NCT03873818

Metastatic melanoma, RCC
Results: showed tolerability and antitumor activity
NSCLC
Results: combination therapy failed to improve efficacy
over monotherapy.
Metastatic melanoma (recruiting)

VISTA + PD-1/
PD-L1

CA170 (dual activity) Curis NCT02812875 CTRI/2017/12/
011026

Hodgkin lymphoma, NSCLC
No results

HMBD-002 + Pembrolizumab Hummingbird NCT05082610 Advanced solid tumors, TNBC, NSCLC
No results

W0180 + Pembrolizumab Pierre Fabre NCT04564417 Locally advanced or metastatic solid tumors,
No results

KVA12123 + pembrolizumab Kineta NCT05708950 Advanced solid tumors,
Recruiting

TIGIT + PD-1/
PD-L1

Tiragolumab + Atezolizumab Roche NCT03563716 Metastatic NSCLC
Results: show improved ORR and PFS

Vibostolimab (MK-7684) +
Pembrolizumab

Merck Sharp
& Dohme

NCT02964013
NCT04725188
NCT04738487
NCT05665595
NCT02625961
NCT05298423
NCT05845814

Advanced solid tumors, including NSCLC, melanoma,
bladder cancer, urothelial carcinoma
Results: recruiting

BMS-986207 + Nivolumab+
Ipilimumab

Bristol-Myers
Squibb

NCT05005273 NSCLC
Results: terminated

BMS-986207 + Nivolumab+
COM701 (anti- PVRIG)

Bristol-Myers
Squibb

NCT04570839 Advance solid tumors
No results

ASP8374 + Pembrolizumab Astellas NCT03260322 NCT04826393 Advance solid tumors
Recurrent glioma
No results

Domvanalimab (AB154) +
Zimberelimab (AB122, anti-PD-
1)

Arcus
Bioscience

NCT04262856 Metastatic NSCLC
Results: improved ORR and PFS in combination
therapy.

BGB-A1217 + Tislelizumab
(anti-PD-1)

Beigene NCT04047862 metastatic squamous NSCLC
Results: recruiting

Etigilimab + Nivolumab Mereo
BioPharma

NCT04761198 Advanced solid tumors, cervical cancer, uveal
melanoma, ovarian cancer, NSCLC.
Results: showed early efficacy

TIM3 + PD-1/PD-
L1

Cobolimab (TSR-022) +
Nivolumab or TSR-042 (anti-
PD-1)

Tesaro NCT02817633
NCT03680508

Advanced solid tumors such as NSCLC, melanoma,
HCC,
Results: showed clinical efficacy

Sabatolimab (MBG453) +
Spartalizumab (PDR001, anti-
PD-1)

Novartis NCT02608268 Advanced solid cancers such as melanoma and NSCLC
Results: preliminary antitumor activity

Sym023 + Sym-021 (anti-PD-1) Symphogen NCT03311412 Advanced solid tumors, lymphomas,
No results.

LY3321367 + LY3300054 (Anti-
PD-L1)

Eli Lilly NCT03099109 Advanced solid tumors,
Results: modest antitumor activity.

(Continued)
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conclusion, we emphasize that antitumor immunity is controlled by

multiple nonredundant ICRs that together maintain immune

dysfunction. Recent preclinical and early clinical data strongly

support the rational design of novel ICI combinations to achieve

synergistic therapeutic efficacies with manageable toxicities.
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TABLE 2 Continued

ICI combina-
tions

Agents Company Clinical trials Cancer types

BMS986258 + Nivolumab Bristol-Myers
Squibb

NCT03446040 Advanced solid tumors,
Recruiting

LAG3 + PD-1/PD-
L1

Relatlimab + Nivolumab Bristol-Myers
Squibb

FDA approval Unresectable or metastatic melanoma

Favezelimab (MK-4280) +
Pembrolizumab

Merck Sharp
& Dohme

NCT02720068
NCT03598608
NCT05064059

Colorectal cancer, Lymphomas,
Recruiting

Ieramilimab + Spartalizumab
(PDR001, anti-PD-1)

Novartis NCT02460224 Advanced solid tumors, melanoma, TNBCs,
mesothelioma,
Results: modest antitumor activity

Fianlimab + Cemiplimab (anti-
PD-1)

Regeneron NCT03005782 Advanced melanoma,
Results: preliminary antitumor activity, ongoing
biomarker analysis

Eftilagimod alpha +
Pembrolizumab

Immutep NCT03625323 Metastatic NSCLC and HNSCC,
Results: showed antitumor activity

Encelimab (TSR-033) +
Dostarlimab (TSR-042, anti-PD-
1)

Tesaro NCT03250832 Advanced solid tumors,
No results.

BI-754111 + BI-754091 (anti-
PD-1)

Boehringer
Ingelheim

NCT03156114 NCT03433898
NCT03697304 NCT03780725

Advanced solid tumors, NSCLC,
Results: manageable safety profile but no improved
antitumor activity

Sym-022 + Sym-021 (anti-PD-1) Symphogen NCT03311412
NCT03489369 NCT03489343

Advanced solid tumors, lymphomas,
Results: preliminary antitumor activity

LAG3 + TIM3
+PD-1

INCAGN02385 (anti-LAG3) +
INCAGN2390 (anti-TIM3) +
Retifanlimab (INCMGA00012,
Anti–PD-1)

Incyte NCT04370704 Advanced solid tumors
Results: recruiting
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