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Thymic epithelial tumors (TETs) are a rare and diverse group of neoplasms

characterized by distinct molecular signatures. This review delves into the

complex molecular networks of TETs, highlighting key aspects such as

chromosomal abnormalities, molecular subtypes, aberrant gene mutations and

expressions, structural gene rearrangements, and epigenetic changes.

Additionally, the influence of the dynamic tumor microenvironment on TET

behavior and therapeutic responses is examined. A thorough understanding of

these facets elucidates TET pathogenesis, offering avenues for enhancing

diagnostic accuracy, refining prognostic assessments, and tailoring targeted

therapeutic strategies. Our review underscores the importance of deciphering

TETs’ uniquemolecular signatures to advance personalized treatment paradigms

and improve patient outcomes. We also discuss future research directions and

anticipated challenges in this intriguing field.

KEYWORDS
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Introduction

Thymic epithelial tumors (TETs) are an uncommon group of neoplasms located

primarily in the anterior mediastinum, representing only a fraction of approximately 0.2-

1.5% of all malignant tumors, with an annual incidence ranging from 1.3 to 3.2 cases per

million (1, 2). TETs exhibit a remarkable histological heterogeneity, as classified by the

World Health Organization in 2021, including thymomas (types A, AB, B1, B2, B3) and

thymic carcinomas (type C) (3). Thymomas are generally characterized as low or
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intermediate-grade malignancies, boasting a favorable 5-year

overall survival (OS) rate exceeding 80% (4). In contrast, thymic

carcinomas exhibit increased invasiveness, metastatic potential and

a higher propensity for recurrence, resulting in a worse 5-year

overall survival rate of approximately 36% (5). Radical surgical

resection remains the gold standard treatment strategy for early-

stage TETs, while advanced or metastatic cases necessitate a

multimodal approach integrating surgery with radiochemotherapy

(6). Nevertheless, it is worth noting that only a small minority of

patients with unresectable thymic epithelial tumors demonstrate

any response to radiochemotherapy (7), and the implementation of

targeted therapies and immunotherapies remains a major challenge

in the clinical management of these malignancies. Due to the rarity

of TETs, their clinical and biological heterogeneity, alterations in

histopathological classification, and the dearth of well-established

cell lines and animal models, the molecular investigation of TETs is

fraught with significant challenges.

Nevertheless, recent advancements in molecular biology

techniques have propelled the discovery of extensive molecular

alterations and perturbations in signal transduction pathways

within TETs. These insights have significantly enriched our

comprehension of the molecular mechanisms driving

tumorigenesis and accelerated progress in the development of

systemic treatments for TETs. The exploration of the molecular

landscape of TETs is of paramount importance for various reasons.

Primarily, it offers a conduit to uncover the intricate mechanisms of

tumorigenesis, thereby refining our understanding of the

pathophysiology of these uncommon tumors. Further, it holds

promise in enhancing diagnostic and prognostic evaluations,

thereby serving as a foundation for personalized patient care.
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Importantly, deciphering the complex molecular architecture of

TETs could steer the development of precision therapeutic

strategies, possessing the potential to improve treatment

outcomes and patient prognosis.

In this comprehensive review, we navigate through the complex

molecular terrain of TETs (Figure 1). We begin by analyzing

chromosomal abnormalities and their role in disrupting key genes

and signaling pathways integral to tumorigenesis. Subsequently, we

explore the molecular subtypes of TETs, discussing their

implications for tailoring therapeutic approaches. The focus then

shifts to the implications of gene mutations and aberrant gene

expressions on disease progression. We also examine the influence

of structural gene rearrangements and epigenetic deviations in

shaping TET pathogenesis. Finally, we underscore the

significant impact of the tumor microenvironment on tumor

behavior and response to therapy. Our goal is to provide an in-

depth understanding of the molecular networks within TETs,

illuminating potential pathways for enhancing diagnostic

precision, improving prognostic accuracy, and advancing

therapeutic strategies.
Chromosome abnormalities

In the landscape of TETs, a vast majority of chromosomal

alterations continue to hold uncertain biological implications.

Observations indicate that arm-level copy number losses are most

frequently identified on chromosome 6, with a prevalence of 26% at

6p and 29% at 6q. These chromosomal losses are followed in

frequency by those on 3p (22%) and 13q (18%). Simultaneously,
FIGURE 1

Main molecular pathways involved in the pathogenesis of thymic epithelial tumors.
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the most recurrent arm-level copy number gains are found to affect

chromosomes 1q (55%), 7p (20%), 7q (15%), and 20p (17%) (8).

The biological consequences of these alterations, however, require

further exploration. It’s noteworthy that chromosomal copy

number aberrations appear with increased frequency in

histological subtypes typified by heightened invasiveness. Reports

suggest that type A thymomas exhibit a comparatively lower

spectrum of copy number aberrations. This stands in stark

contrast to the recurrent observation of arm-level copy number

increase on 1q and decrease on chromosome 6 in type B2/B3

thymomas. Type B3 thymomas and thymic carcinomas display a

copy number aberration profile that echoes that of type B2/B3

thymomas. However, they deviate in terms of the copy number

losses on chromosomes 13q, 16q, and 17p, which are conspicuously

absent in type B2/B3 thymomas (9). The precise biological

significance of these alterations in TETs remains largely elusive,

with much yet to be determined in the vast majority of cases.

However, it is noteworthy that TETs exhibiting copy number

gains in B-cell lymphoma-2 (BCL2) and loss of cyclin-dependent

kinase inhibitor 2A/B (CDKN2A/B) are consistently associated with

an unfavorable prognosis. BCL2, known for its involvement in

apoptosis regulation, has been extensively demonstrated to

contribute to tumorigenesis, as gene amplification disrupts

apoptosis and promotes tumor cell accumulation. Notably, the

oncogenic role of BCL2 is well-established in follicular

lymphomas, where the juxtaposition of IgH-BCL2 is implicated in

lymphomagenesis, perturbing normal B lymphocyte apoptosis (10).

Beyond their established role in apoptosis regulation, members of

the BCL2 family are also implicated in the control of autophagy and

necroptosis pathways. Amplification of the BCL2 gene locus has

been identified in around 10% of TET cases. Furthermore, copy

number gains of MCL1, another member of the BCL2 family gene,

have been observed in 51% of TETs, predominantly in aggressive

histological subtypes (83% in type B2/B3 thymomas, 70% in type B3

thymomas and 57% in thymic carcinomas). It is worth noting that

these MCL1 copy number gains are mostly attributed to the broad

gain of 1q, rather than focal MCL1 amplification (9). The

concurrent expression of MCL1 and BCL2 is frequently observed

in aggressive TETs, thereby suggesting their potential role as

prognostic indicators (11). In vitro studies provide compelling

evidence that the suppression of BCL2 family proteins, including

MCL1 and BCL-XL, precipitates apoptosis in TET cell lines. These

findings hint at the possibility that therapeutic strategies aimed at

the dysregulated anti-apoptotic BCL2 family proteins could provide

a viable avenue for TET treatment (12). Loss of chromosome

6q25.2–25.3 is observed across all subtypes of thymomas, with the

exception of type B1 thymomas. This genetic alteration has been

associated with a decrease in the expression of the FOXC1 protein,

which is encoded by the tumor suppressor gene FOXC1 situated

within the 6p23 locus. Notably, individuals presenting with a

FOXC1 deficiency display an expedited rate of tumor progression,

as well as a markedly abbreviated disease-related survival span

(13). In vitro findings lend credence to the potential tumor

suppressor activity of FOXC1, particularly in its impact on cell

proliferation (14).
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Molecular subtypes

In recent years, the Cancer Genome Atlas (TGCA) has

conducted extensive research on TET using multi-platform next-

generation sequencing (NGS). This research has yielded a more

comprehensive understanding of the molecular landscape of TET

and has identified four distinct molecular subtypes. Among these,

Subtype 1 is predominantly associated with type B thymoma and

has a notable prevalence of tumors associated with myasthenia

gravis. Subtype 2, on the other hand, is primarily associated with

thymic carcinoma and exhibits a higher tumor mutation burden

(TMB), upregulation of oncogenes, downregulation of tumor

suppressor genes, and deletion of chromosome 16q. Subtype 3 is

characterized by type AB thymoma and is distinguished by a high

prevalence of GTF2I mutations and abundant lymphocytic

infiltration. Finally, Subtype 4 includes both type A and type AB

thymomas and displays a relatively higher incidence of somatic

mutations in GTF2I and HRAS. These subtypes exhibit distinct

molecular features and are highly consistent with the histological

classification by the World Health Organization (WHO), thereby

confirming the non-continuous nature of TET in terms of its

biological entities (15). Another investigation, leveraging the rich

dataset of TCGA, has compellingly demonstrated the feasibility of

classifying TET into four distinct groups: the GTF2I mutation

group, the T-cell signaling (TS) group, the chromosomally stable

(CS) group, and the chromosomally instability (CIN) group. The

molecular taxonomy correlates with the clinical and histological

characteristics. For instance, The GTF2I subtype aligns with a more

favorable WHO histology, earlier Masaoka-Koga staging, and

absence of myasthenia gravis (MG), while the CIN subtype

exhibits less advantageous WHO histology, advanced Masaoka-

Koga staging, and the presence of MG. The prognostic potential of

this molecular classification system is elucidated by its capacity to

reconcile the heterogeneity in clinical outcomes within identically

classified patient cohorts. Moreover, this molecular classification

system serves as a robust tool for discerning therapeutic

responsiveness. Tumors within the TS group, enriched with genes

implicated in co-stimulatory and co-inhibitory T cell signaling

pathways, such as PD1, may exhibit heightened responsiveness to

immune checkpoint inhibitor (ICI) treatments. The CIN molecular

subtype is characterized by the activation of EGF or SRC-FAK

signaling pathways, while the CS group tumors exhibit an

abundance of genes associated with epithelial-mesenchymal

transition (EMT) pathways and Toll-like receptor signaling (16).

Current investigations have corroborated the therapeutic potential

of drugs targeting these specific molecular points within TETs (17–

20). Indeed, the management of highly heterogeneous tumors, such

as advanced hepatocellular carcinoma and TETs, poses a

formidable challenge in the quest for universally effective

therapies. However, the establishment of molecular classifications

has significantly enhanced our understanding of these

malignancies, paving the way for prospective clinical

investigations centered around these distinct subtypes. Such

pursuits hold paramount importance as they hold the potential to

unlock personalized treatment strategies, tailored to the unique
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characteristics of individual patients, thus optimizing the efficacy of

targeted therapeutic interventions (15, 16, 21, 22).
Gene mutation abnormalities

The scientific community has recently gained advanced insights

into the dynamics of gene alterations within thymic epithelial

tumors (TETs). This progress parallels advancements in other

tumor entities and is largely attributable to the innovative strides

made in next-generation sequencing technologies. A defining

characteristic of TET genomes is the concentration of C > T

mutations in CpG islands, a mutation signature intrinsically

linked with aging and congruent with the median age of disease

onset. Insights gleaned from extensive genomic analyses within

TCGA initiative indicate that distinct molecular modifications are a

hallmark of various histological TET subtypes (15). Generally, the

molecular aberration patterns of thymomas and thymic carcinomas

are markedly different, with only a select few genes demonstrating

significant and periodic mutations. A point mutation p.

(Leu404His) in the general transcription factor II-i (GTF2I) gene,

which has thus far remained elusive in other tumor types, has been

identified with notable frequency within thymomas. On the other

hand, thymic carcinomas bear a higher load of recurrent mutations

within recognized cancer-associated genes, including but not

limited to TP53, Cylindromatosis (CYLD), CDKN2A, BRCA1

associated protein 1 (BAP1), and polybromide 1 (PBRM1) (8).

TMB serves as a quantitative measure of the genomic alterations

occurring within tumor cells, representing a biological marker for

the emergence of novel antigens. Elevated TMB amplifies the

capacity of the tumor to provoke immune responses, thereby

enhancing the likelihood of benefiting from immunotherapeutic

interventions (23). Among human malignancies, TETs stand out as

one of the neoplastic entities with the lowest TMB. Notably, TMB

exhibits a substantial increase in thymic carcinoma samples (3.84

mutations/Mb) when compared to thymomas (1.92 mutations/Mb)

(24). Significantly, TMB exhibits a robust correlation with advanced

clinical staging, more advanced pathological types, and patient age

progression (8).

GTF2I mutations emerge as dominant genetic abnormalities in

the context of TETs, highlighting their importance within the

complex landscape of tumorigenesis. Of note, these mutations

exhibit a discernible predilection for type A (100%) and type AB

(70%) thymomas, with a modest but observable incidence detected

in thymic carcinomas (8%). Interestingly, the mutational events are

primarily localized to the codon L424H, reflecting the characteristic

signatures of oncogenic mutation. Remarkably, the specificity of

GTF2I mutations becomes apparent when scrutinizing other

malignancies, where their occurrence remains a rarity (<1%) and

consistently arises at distinct genomic sites apart from L424H.

Patients with tumors characterized by GTF2I mutations exhibited

a significantly more favorable prognosis when compared to those

harboring wild-type GTF2I, as evidenced by a remarkable disparity

in 10-year overall survival (96% versus 70%). Mechanistically,

GTF2I encodes the pivotal TF2I protein, whose orchestrated

activation in the cellular nucleus imparts profound influence on
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the transcriptional machinery that controls key biological processes

encompassing cell cycle progression, DNA repair, cell proliferation,

and the intricate modulation of TSC/mTOR signaling cascades.

Pertinently, the disruptive L424H missense mutation impairs the

normal degradation kinetics of TF2I protein, culminating in its

intracellular accumulation. Subsequently, this dysregulation sets in

motion a cascade of molecular events leading to discernible

alterations in the gene expression landscape. Notably, genes

associated with cell morphogenesis, receptor tyrosine kinases,

retinoic acid receptors, and WNT/SHH signaling pathways

exhibit augmented expression levels, while those involved in cell

cycle regulation, apoptosis, DNA damage response, hormone

receptor signaling, RAS/MAPK, and mTOR pathways manifest

dampened expression levels (8, 15).

To gain deeper insights into the realm of GTF2I-mutant

thymomas, Y. He et al. successfully engineered a murine model

recapitulating the intricacies of GTF2I mutations, thereby

successfully instigating thymoma formation in aged mice.

Impressively, the resultant mouse thymomas mirrored key cellular

features reminiscent of human type B1 and B2 thymomas at the

transcriptional level. Remarkably, a substantial fraction of thymoma

lesions exhibited a conspicuous enrichment in gene signatures

associated with cortical thymic epithelial cells (cTECs) and thymic

epithelial progenitor cells (TEPCs), closely resembling the enrichment

patterns observed in GTF2I-mutant human TETs. Furthermore, our

investigation unveiled an elevated abundance of cTECs and TEPCs

within the thymic tissues isolated from mouse thymic tissue, thereby

suggesting a potential cellular origin of GTF2I-mutant thymomas from

these distinct cell populations. Mechanistically, aberrant activation of

cell cycle-associated pathways mediated by MYC and E2F signaling

cascades likely serves as a crucial driving force behind the initiation and

development of GTF2I-mutant thymomas (25). Impressively, an

investigation into micronodular thymoma with lymphoid stroma

revealed a consistent occurrence of the GTF2I p.L424H mutation

across all twelve sampled thymoma specimens, establishing the

GTF2I p.L424H mutation as an invariable genetic hallmark of

micronodular thymomas with lymphoid stroma. These findings

compellingly infer a profound correlation between micronodular

thymomas with lymphoid stroma and their type A and AB

counterparts (26).

Activation of the PI3K/AKT/mTOR signaling pathway plays a

critical role in driving the proliferation of TETs. The PI3K/AKT/

mTOR signaling pathway is a critical orchestrator of numerous

cellular processes, encompassing proliferation, survival,

metabolism, and angiogenesis. Its dysregulation is frequently

observed in a myriad of cancer types (27). Genetic aberrations at

various levels of this pathway, including PI3K, AKT, TSC, and

mTOR, have been identified within the context of TET.A gene

mutation affecting the regulatory subunit of PI3K has been

identified in a thymic carcinoma cell line. Employing NGS

analysis on a cohort comprising 54 TET samples, three distinct

mutations have been elucidated across three samples, impacting

either the catalytic or regulatory subunits of the PI3K gene. Notably,

compelling evidence from in vitro investigations demonstrates the

potent anti-tumor efficacy of PI3K inhibitors, particularly within

cellular populations harboring mutations in the PI3K gene (28). An
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additional study delved into the expression patterns of Akt, mTOR,

and P70S6K in type A, type B, and type AB thymomas,

substantiating the perturbed Akt/mTOR pathway in these

thymomas. Moreover, the anti-proliferative impact of the mTOR

inhibitor rapamycin on thymic epithelial cells underscored the

significance of the Akt/mTOR pathway as a pivotal mechanism in

tumorigenesis, thereby presenting a promising target for

pharmacological intervention (29). In vitro studies unveiled that

the silencing of the anti-apoptotic molecule BCL2 via siRNA

knockdowns led to diminished cellular proliferation, while in vivo

administration of pan-BCL2 inhibitors elicited notable suppression

of xenograft growth, with mechanistic implications involving the

PI3K/AKT/mTOR pathway (9). In addition, the activation of PIK3

has been validated to be linked with the overexpression of

microRNA clusters located on chr19q13.42 in type A and type

AB thymomas (30). In a single-arm phase II trial, researchers

evaluated the efficacy of Everolimus in 50 patients with TETs,

previously treated with cisplatin-based regimens. A disease control

rate (DCR) of 88% was recorded, with a median progression-free

survival of 10 months (16.6 months for thymomas and 5.6 months

for thymic carcinomas). Indeed, mirroring observations in other

solid tumors, the benefits of Everolimus appeared predominantly

tied to disease stabilization or minor tumor shrinkage. Only 10% of

patients experienced partial remission, and a mere 2% reported

complete remission. Safety remained a concern throughout the trial,

as 14 patients experienced severe drug-related adverse events (AEs),

with 3 thymoma patients succumbing to drug-related pneumonia

(31). Likewise, a clinical trial using the pan-PI3K inhibitor

buparlisib demonstrated modest activity in B2 and B3 thymomas

but was marred by the necessity for early drug cessation in over half

the patients due to skin and lung toxicity (32). This underscores the

need for extreme caution when considering PI3K inhibitors for use

in TETs.

TETs frequently harbor mutations within the RAS family, with

thymic carcinoma exhibiting a markedly higher incidence (24.1%)

than thymoma (12.1%) (33, 34). Notably, NRAS mutations

predominantly manifest in thymic carcinoma, whereas HRAS

mutations are more prevalent in thymoma cases. The vast

majority of mutations in HRAS and NRAS were found to be

localized at recognized gain-of-function codons. Notably, HRAS

mutations were predominantly detected at codons 12, 13, and 117,

while NRAS mutations were primarily observed at codon 61.

GTF2I, HRAS, NRAS, and TP53 have emerged as plausible

candidates for initiating mutations in tumorigenesis or early

stages of tumor development (15).

TP53 stands as one of the most prevalent genes with mutations,

found in approximately 25% of thymic carcinoma cases and 5% of

thymoma cases (8). Patients harboring TP53 mutations experience

worse prognoses and demonstrate lower overall survival rates (35,

36). The TP53 gene encodes the crucial tumor suppressor protein

p53, which assumes a significant role in thymic physiology. Within

normal thymic cells, p53 acts as a regulator, facilitating the

expression of RANK (receptor activator of nuclear factor kappa-

B) and orchestrating the differentiation of medullary epithelial cells.

Notably, p53 exhibits remarkable specificity in transcriptional

control, specifically targeting genes associated with the function of
Frontiers in Immunology 05
medullary epithelial cells. Disruption or loss of p53 function yields

profound consequences for thymic ontogeny, perturbing the

delicate equilibrium of T cell homeostasis and compromising

immune tolerance (37).

The tumor suppressor gene CDKN2A undergoes a process of

selective splicing, resulting in the production of two distinct protein

isoforms, namely p16INK4A and p14ARF. The functional role of

p16INK4A lies in its ability to impede the progression of the cell

cycle through targeted inhibition of cyclin-dependent kinases

CDK4 and CDK6. On the other hand, p14ARF functions as an

activator of the tumor suppressor TP53. Perturbations in CDKN2A

can potentially instigate the activation of cyclin-dependent kinases,

thereby disrupting the finely tuned regulation of the cell cycle (38).

The occurrence of CDKN2A mutations has been reported in

approximately 11% of thymic carcinomas (33), demonstrating an

association with diminished overall survival rates compared to wild-

type counterparts. Notably, a strong correlation has been observed

between homozygous deletion of CDKN2A and loss of p16

expression. This correlation is particularly pronounced among

younger patients with the squamous cell carcinoma subtype and

is linked to unfavorable prognostic outcomes. Encouragingly,

CDK4/6 inhibitors represent a promising therapeutic approach

for CDKN2A-mutated cancers, including thymic carcinoma (39).

Within the context of a multicenter, single-arm phase II trial, an

ensemble of 48 patients, all grappling with recurrent or metastatic

advanced TETs unresponsive to platinum-based chemotherapy,

were administered monotherapy with palbociclib, yielding results

that were decidedly heartening. The median duration of the follow-

up was 14.5 months, and the objective response rate (ORR) stood at

12.5% (four instances of partial response in thymomas and two in

thymic carcinomas). The progression-free survival (PFS) at six

months was noted at 60.2%, with a median PFS of 11.0 months.

Furthermore, the median overall survival span was registered at

26.4 months (40).
Gene expression abnormalities

The expression of insulin-like growth factor receptor 1 (IGF-1R)

is more frequently observed in histological subtypes characterized by

a higher degree of invasiveness. Notably, a significant proportion

(86%) of thymic carcinomas display moderate to high levels of IGF-

1R expression, which is closely associated with epidermal growth

factor receptor (EGFR) overexpression. Functionally, IGF-1R plays a

pivotal role in processes such as tumorigenesis and resistance to

EGFR inhibitors through the formation of heterodimers with EGFR,

known as EGFR/IGF-1R heterodimers (41, 42). In a phase 2 clinical

trial conducted to assess the therapeutic efficacy of cixutumumab, a

monoclonal antibody targeting the IGF-1R, notable findings were

obtained. Among the cohort of 37 patients diagnosed with

thymomas, a partial response (PR) was observed in 14% of cases,

while stable disease (SD) was achieved in 76% of cases. In contrast,

within the subset of 12 patients with thymic carcinomas, no cases of

partial response were observed, with only 5 cases demonstrating

stable disease. Importantly, it is worth noting that approximately 24%

of thymoma patients experienced the onset of autoimmune disorders
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1264325
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1264325
during the treatment period. The therapeutic application of IGFR

inhibitors is hindered by their pronounced toxicity profile, thus

posing challenges in the management of diverse malignancies (43).

EGFR pathway mutations have emerged as independent

prognostic factors significantly associated with reduced OS (34).

Immunohistochemical analysis has revealed EGFR overexpression

in 70% of thymomas and 53% of thymic carcinomas, with higher

EGFR staining levels demonstrating a notable correlation with

advanced stage III to IV tumors (44). Notably, EGFR mutations

are exceedingly rare occurrences, and although EGFR amplification

has been observed in B3-type thymomas, its association with EGFR

expression remains elusive (45). The utilization of anti-EGFR

agents, including cetuximab and erlotinib, has been documented

in isolated cases (46, 47). However, the efficacy of combined

treatment with erlotinib and bevacizumab in thymic carcinoma

exhibits limited activity (48). The overexpression of the HER2

protein is frequently observed in thymic carcinomas, with HER2

expression detected in 58% of squamous cell thymic carcinomas.

However, HER2 gene amplification is a rare occurrence, thus

limiting the utility of HER2 as a viable therapeutic target in the

context of thymic carcinomas (49, 50).

Aberrant neovascularization plays a pivotal role in the

pathogenesis of TETs, exhibiting a compelling correlation with

their invasive nature. Notably, thymic carcinoma outperforms

thymoma in terms of promoting aggressive angiogenesis (51). A

wealth of empirical evidence substantiates the conspicuous

upregulation of vascular endothelial growth factor (VEGF), platelet-

derived growth factor (PDGF), and other key angiogenic factors and

receptors in TETs, showcasing notable associations with

histologically distinct invasive phenotypes (52–54). Activin A, a

valued member of the transforming growth factor Β (TGF-Β)

superfamily, orchestrates cellular responses by downregulating the

expression of p21 and VEGF, thereby eliciting a notable suppressive

impact on endothelial cell proliferation. Conversely, Follistatin, acting

as an antagonistic counterpart to activin A, effectively counteracts its

growth-inhibitory and pro-apoptotic consequences. Moreover,

Follistatin demonstrates a remarkable capacity to bind and activate

angiogenic factors, thereby stimulating robust angiogenesis. Clinical

studies have unveiled a conspicuous elevation in serum

concentrations of activin A and Follistatin among TET patients,

surpassing those observed in their healthy counterparts. Importantly,

the serum concentration of Follistatin correlates significantly with

tumor staging and microvessel density (MVD), reverting to

physiologically balanced levels upon complete tumor resection (55).

The anti-angiogenic multi-kinase inhibitor, sunitinib, has been

substantiated for its efficacy in the treatment of refractory thymic

carcinoma and thymoma as a first-line therapeutic option.

Impressively, disease control, encompassing complete response,

partial response, and stable disease, was achieved in 91% of thymic

carcinoma cases and 86% of thymoma cases. Administration of

sunitinib instigated an upregulation of CTLA-4 and PD-1, immune

checkpoint molecules associated with improvements in overall

survival (19). As a well-established anti-angiogenic agent, lenvatinib

has demonstrated efficacy in various advanced cancers, including

hepatocellular and thyroid carcinoma (56–58). The results from the

phase 2 REMORA trial have provided the therapeutic effectiveness of
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lenvatinib in treating advanced thymic carcinoma patients. Among

the 42 enrolled patients, 6 cases (38%) achieved a partial response,

while 24 cases (57%) experienced stable disease. The median follow-

up period was 15months, resulting in an overall response rate of 38%.

These findings underscore the potential of lenvatinib as a promising

treatment option for advanced thymic carcinoma (59).

The proto-oncogene KIT encodes the type III receptor tyrosine

kinase c-KIT, which plays a crucial role in several malignant

neoplasms, including gastrointestinal stromal tumors (GISTs),

chronic myeloid leukemia (CML), mastocytosis, melanoma, and

germ cell tumors. KIT mutations and aberrant c-KIT expression are

frequently observed in GISTs, with prevalent occurrences in exons

11, 9, 13, and 17. Noteworthy clinical observations indicate that

patients harboring exon 11 mutations exhibit a heightened objective

response rate to the tyrosine kinase inhibitor imatinib. Despite c-

KIT expression being detected in a modest 0%-5% of thymomas

and a substantial 50%-88% of thymic carcinomas, it does not

consistently parallel the presence of KIT mutations. Remarkably,

KIT mutations manifest in a mere 12.5% of cases and exclusively

within those displaying positive c-KIT expression (60, 61). Thymic

carcinomas harboring KIT mutations have been documented to

display sensitivity to targeted therapeutics such as imatinib.

Notably, mutations within exon 11, including V560del, V559G,

Y553N, and L576P, exhibit discernible responsiveness to imatinib,

while the H697Y mutation (in exon 14) demonstrates sensitivity to

sunitinib. Likewise, the D820E mutation (in exon 17) and the

K642E mutation (in exon 13) manifest sensitivity to sorafenib,

whereas the 577-579del mutation (in exon 11) displays

susceptibility to sorafenib treatment (62). Moreover, an intriguing

observation emerges among approximately 70% of thymic

squamous cell carcinomas, wherein all KIT-positive cases exhibit

a distinctive tuft cell–like phenotype characterized by the robust

expression of POU2F3, an event absent in thymomas. The

remarkable correlation observed between POU2F3 and KIT

expression implies the potential involvement of POU2F3 in the

regulatory mechanisms governing KIT expression. The pronounced

upregulation of POU2F3 represents a novel and enigmatic avenue

within the carcinogenic repertoire (63).

CYLD, a ubiquitin-specific protease, serves as a key regulator

involved in the intricate orchestration of the NF-ΚB signaling

pathway. Notably, CYLD exerts its influence on cellular fate

through modulating the ubiquitination state of receptor-

interacting protein kinase 1 (RIPK1), thereby mediating

programmed cell death. Pertinently, The loss of CYLD hinders

the process of apoptosis by inducing the activation of NF-ΚB and

facilitating the NF-ΚB-mediated transcriptional upregulation of

prosurvival genes (64). Remarkably, CYLD assumes a pivotal role

as a regulatory factor during T cell development, particularly during

the transition from double-positive thymocytes to single-positive

thymocytes. By eliciting proximal T cell receptor signaling, CYLD

orchestrates the differentiation and maturation of thymic medullary

epithelial cells, thus profoundly influencing the intricate process of

negative selection within the thymus microenvironment (65). The

prevalence of CYLD gene mutations in thymic carcinomas exceeds

10%. Investigations have unveiled that CYLD deficiency in TETs

leads to an augmentation in programmed death-ligand 1 (PD-L1)
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expression, with a significant association between reduced CYLD

expression and elevated PD-L1 levels. Notably, patients afflicted

with advanced TETs exhibiting diminished CYLD expression fare

worse in terms of prognosis compared to those with elevated

expression. Considering the low tumor mutation burden

characterizing TETs, heightened PD-L1 expression remains the

most dependable biomarker for prognosticating the therapeutic

efficacy of PD-1 antibodies in TETs. As such, PD-1/PD-L1

inhibitors hold potential as a therapeutic strategy for TETs

patients displaying reduced CYLD expression (66).

The nucleocytoplasmic shuttling of proteins is a fundamental

mechanism by which cells tightly regulate protein activity. Among

the molecular players involved in this intricate process, exportin 1

(XPO1) serves as a pivotal mediator, facilitating the transport of

numerous tumor suppressor proteins and oncoproteins from the

nucleus to the cytoplasm. Aberrant expression of XPO1 disrupts the

function of critical tumor suppressors, including p53, IΚB, p27, and

FOXO3A. Notably, dysregulation of XPO1 has been reported in

leukemia and various solid tumors. Insightfully, heightened XPO1

expression has been observed in aggressive and advanced-stage

TETs, correlating with an unfavorable prognosis (67). Selinexor, a

potent and selective inhibitor of XPO1, has been revealed to

instigate its proteasomal degradation. This biochemical event

facilitates the nuclear retention and subsequent activation of key

tumor suppressor proteins, curtails the translation of oncoprotein

mRNA, and promotes cell cycle arrest and apoptosis in a broad

spectrum of hematological malignancies and solid tumors (68, 69).

Specifically, within the context of TET cells, Selinexor governs the

nuclear accumulation of the tumor suppressor proteins FOXO3a,

p53, and p27. Furthermore, Selinexor mediates cell cycle arrest

through the modulation of a multitude of proteins that orchestrate

cell cycle progression and apoptosis by inducing the expression of

pro-apoptotic proteins such as BIM and BAX. It is noteworthy that

XPO1 also targets GTF2I. In a Phase I clinical trial aiming to assess

the safety and efficacy of Selinexor, a cohort of 189 patients with

advanced solid tumors was evaluated. Critically, within this cohort,

we included four patients diagnosed with TETs. Outcomes included

one patient achieving a partial response and three patients

exhibiting stable disease. These data collectively implicate

Selinexor as a promising candidate for the therapeutic

armamentarium against TETs in the future (67, 70).
Genetic rearrangements

Metaplastic thymoma, a distinctive subtype of TETs, manifests

unique molecular characteristics that set it apart from other types of

thymomas. Notably, the recurrent YAP1-MAML2 fusion has

emerged as a defining molecular alteration in metaplastic

thymoma, playing a pivotal role in its pathogenesis. In cellular

models encompassing ovarian cancer and glioblastoma, the YAP1-

MAML2 fusion generates a chimeric protein that activates YAP1-

related transcriptional programs through a TEAD1-dependent

mechanism, thereby promoting tumor cell proliferation (71, 72).

Additionally, KMT2A-MAML2 translocation has been observed in

6% of clinically invasive type B2 and B3 thymomas, as well as in one
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case of combined thymic carcinoma (type B3 thymoma with small

thymic carcinoma component). Noteworthy for its potent

oncogenic activity upon fusion with partner genes in sarcomas

and leukemias, the KMT2A gene exhibits conspicuous carcinogenic

potential in such rearrangements (73, 74). Furthermore, the

CRTC1-MAML2 fusion has been identified in 56% of thymic

mucoepidermoid carcinomas, exhibiting an association with lower

clinical stages and improved overall survival rates (75). The

detection of these diverse gene fusions underscores the potential

utility of MAML2 gene rearrangements as prospective biomarkers

for the morphological classification of thymomas. While the precise

functional implications of these fusions in metaplastic thymoma

remain elusive, they are postulated to function as pivotal oncogenic

drivers, warranting further investigation.
Epigenetic modifications

Epigenetic modifications, such as DNA methylation changes,

aberrant expression of non-coding RNAs, and post-translational

modifications of histone tails, have emerged as pivotal drivers of

genomic instability and chromosomal aberrations in cancer cells

(Figure 2). These modifications intricately modulate the

gene expression landscape, activating transposable elements,

upregulating oncogenes, and silencing tumor suppressor genes,

thereby fostering the onset and progression of tumorigenesis (76).

Remarkably, a subset of epigenetic genes implicated in chromatin

remodeling (e.g., SMARCA4), histone modifications (e.g., BAP1,

SETD2, ASXL1), and DNA methylation (e.g., TET2, DNMT3A,

WT1) exhibits recurrent somatic mutations. Notably, these

mutations occur at varying frequencies between thymic carcinoma

and thymoma subtypes. In thymic carcinoma, the prevalence of these

mutations reaches 38%, surpassing the observed frequency of 10% in

thymoma (36). This distinct pattern highlights the potential

association between specific epigenetic alterations and the

aggressive behavior of thymic carcinoma. Understanding the role of

epigenetic modifications and their impact on tumor biology is crucial

for elucidating the underlying mechanisms of thymic tumorigenesis.

Further investigations are warranted to decipher the functional

consequences of these somatic mutations in chromatin remodeling,

histone modifications, and DNA methylation. Additionally,

exploring the clinical implications of these epigenetic alterations

may pave the way for the development of targeted therapeutic

approaches and personalized treatment strategies in thymic tumors.

DNA methylation is involved in a series of cellular and biological

processes, including cell differentiation, aging, tissue-specific gene

expression, genomic stability, and genomic imprinting. Apart from its

significance in normal developmental processes, DNA methylation

also plays a role in pathology, such as carcinogenesis (77). The TCGA

dataset analysis uncovered a comprehensive landscape of CpG site

tgfmethylation alterations in TETs. Among the identified sites, 5155

exhibited heightened methylation while 6967 displayed diminished

methylation. Notably, approximately 3600 of these sites were situated

within gene promoters, indicating their regulatory significance.

Hypermethylation within these pivotal regions resulted in the

transcriptional repression of 134 genes, while 174 genes exhibited
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an increase in mRNA expression. Furthermore, the Cox regression

analysis revealed a significant correlation between the methylation

levels of 187 loci in TET patients and overall survival. Remarkably,

specific independent prognostic factors, including cg05784862

(KSR1), cg07154254 (ELF3), cg02543462 (ILRN), and cg06288355

(RAG1), were identified (78). In addition, DNA hypermethylation-

mediated gene silencing affected a diverse array of target genes,

encompassing CDH1, CDKN2A, FHIT, MGMT, and MLH1 (79).

Notably, the methylation pattern of the tumor suppressor gene

MGMT exhibited a higher frequency in thymic carcinoma

compared to thymoma, correlating with advanced disease stages

and increased sensitivity to alkylating agents (80). Furthermore, the

overexpression of METTL3 was observed in tumor tissue compared

to its normal counterpart. Silencing METTL3 expression in thymic

carcinoma cells led to decreased cell proliferation and reduced overall

translation efficiency. Notably, METTL3 played a pivotal role in

driving c-MYC expression in TET cells. Specifically, the upregulation

of c-MYC protein was facilitated by the methylation-dependent

delocalization of the long non-coding RNA MALAT1, a process

orchestrated by METTL3 (81). These findings shed light on the

complex interplay between DNA methylation, gene regulation, and

tumorigenesis in thymic tumors, underscoring the potential

therapeutic implications of targeting METTL3 in this context. In

the context of Thymoma-associated myasthenia gravis (TAMG), an

intriguing observation emerges regarding the methylation patterns of

the MTHFR and DNMT3A promoters in tumor tissues. Notably,

these genomic regions display significantly elevated levels of

methylation within the tumor samples compared to blood samples.

Furthermore, the methylation status of MTHFR within tumor tissues

exhibits a remarkable increase when compared to healthy
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neighboring thymic epithelial cells (82). Moreover, a noteworthy

study conducted by Yan et al. reveals an intriguing inverse correlation

between MTHFR methylation and its corresponding expression

levels in TETs. The authors speculate that the diminished activity

of the MTHFR enzyme, influenced by the MTHFR C667T gene

polymorphism, may contribute to significant DNA hypomethylation

in TETs, thereby promoting the activation of crucial oncogenes (83).

Non-coding RNA alterations have emerged as pivotal

determinants in the intricate landscape of TETs, playing a

multifaceted role in their development and progression.

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs)

stand at the forefront, orchestrating a complex interplay of

molecular mechanisms as both oncogenes and tumor suppressors.

Through amplification, deletion, aberrant epigenetic modifications,

and transcriptional regulation, these non-coding RNA species wield

their influence with precision. Notably, discernible disparities in

miRNA expression profiles exist not only between TET and normal

tissues but also across distinct histological subtypes of TET. A

comprehensive understanding of these non-coding RNA alterations

holds the promise of unraveling the underlying pathogenesis of

TET, paving the way for targeted therapeutic interventions in

the future.

In TETs, there is a notable upregulation of miRNA-21-5p and a

downregulation of miRNA-145-5p. Of particular significance,

miRNA-145-5p is recognized as a prominent tumor suppressor

and exhibits a reciprocal relationship with the expression of EGFR.

The expression of miRNA-145-5p is tightly controlled by epigenetic

modifications. Intriguingly, investigations have demonstrated that

the administration of epigenetic modulators can induce the

expression of miRNA-145-5p in TET cells, resulting in the
FIGURE 2

The three mechanisms of epigenetic modifications: DNA methylation, post-translational modification of histone tails, and dysregulated expression of
non-coding RNAs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1264325
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1264325
downregulation of its target genes and enhancing its anti-tumor

properties (84). The dysregulation of specific miRNAs, such as

miRNA-142-5p, miRNA-363-3p, and miRNA-16-2-3p, has

emerged as a noteworthy phenomenon in thymic carcinoma,

exerting potential regulatory roles in pivotal molecular pathways

encompassing BIRC3, SCYA20, and MYC-associated pathways

(85). Remarkably, a miRNA cluster located on chromosome

19q13.42 exhibits prominent overexpression in type A and AB

thymomas, leading to the activation of the PI3K/AKT/mTOR

signaling cascade. In a fascinating contrast, this miRNA cluster

experiences transcriptional repression attributed to promoter

methylation in thymic carcinoma (30). Conversely, a notable

reduction in the expression of the miRNA cluster on

chromosome 14q32 has been observed in thymic carcinoma

compared to type A thymomas (33). Moreover, an extensive

analysis has uncovered intriguing associations between specific

miRNAs and overall survival in thymomas. Notably, miRNA-140,

miRNA-450b, miRNA-542, miRNA-639, miRNA-3613, and

miRNA-3913-1 exhibit a positive correlation with overall survival,

suggesting their potential as prognostic indicators in thymomas.

Conversely, miRNA-1976 displays a negative correlation with

overall survival, underscoring its potential utility as a prognostic

biomarker in this context (86).

The dysregulation of lncRNAs has emerged as a crucial factor in

tumor progression. In the context of TETs, notable associations

have been uncovered between specific lncRNAs and key molecular

players. For instance, an upregulation of LOXL1-AS1 has been

observed, which correlates positively with HSPA9 expression, while

concomitantly exhibiting a concordant downregulation of miR-

525-5p. Remarkably, miR-525-5p acts as a tumor suppressor by

restraining cell growth and invasion through the targeted inhibition

of HSPA9, consequently inducing apoptosis. Acting as a molecular

sponge for miR-525-5p, LOXL1-AS1 amplifies HSPA9 expression,

thereby facilitating the progression of thymic carcinoma (87).

Similarly, LINC00174 serves as a molecular sponge for miR-145-

5p, thereby promoting the expression of SYBU, FEM1B, and SCD5

genes. Among these genes, SCD5, one of the target genes of

LINC00174, plays a role in lipid metabolism control and

enhances the migration of thymic carcinoma cells (88). The

differential expression of lncRNAs exerts regulatory control over

diverse biological processes and molecular pathways, thereby

positioning them as potential prognostic factors and therapeutic

targets for patients (89). Moreover, in the context of TAMG,

lncRNAs exhibit specific expression patterns. Notably,

XLOC_003810 promotes the activation of CD4+ T cells and

inflammatory factors, including IFN-g, thereby regulating the

delicate balance between Th17 and Treg cells (90, 91).

Furthermore, immune-related lncRNAs, such as AC004943.1,

FOXG1-AS1, and WT1-AS, display elevated expression levels in

TAMG patients due to their hypomethylation status, implicating

their involvement in the mechanisms underlying TAMG

pathogenesis (92).

Post-translational modifications of histones play a pivotal role

in the dynamic regulation of gene expression, exerting a profound

influence on the interplay between DNA and histone proteins.

These modifications, including acetylation, methylation, and
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ubiquitination, modulate chromatin structure and function,

ultimately impacting transcriptional processes. Among these

modifications, acetylation has been extensively studied for its role

in enhancing gene expression by neutralizing the positive charge of

histones and promoting a more relaxed chromatin state. On the

other hand, methylation of histones can either activate or repress

gene expression depending on the specific residues and context

involved. Furthermore, ubiquitination serves as a versatile

modification that regulates various cellular processes, including

DNA repair, transcriptional activation, and protein degradation

(93). One intriguing area of research in the field of histone

modifications is the development of therapeutic strategies

targeting these epigenetic marks. Notably, the histone deacetylase

inhibitor belinostat has emerged as a promising candidate for

cancer treatment. Belinostat has demonstrated remarkable

efficacy, particularly when combined with the PAC chemotherapy

regimen, in patients with thymoma and thymic carcinoma. The

objective response rates observed in these cohorts highlight the

potential of targeting histone deacetylases as a viable therapeutic

approach for these malignancies. In addition to its direct impact on

chromatin remodeling and gene expression, belinostat has also been

found to possess immunomodulatory properties. Studies have

revealed that belinostat treatment leads to a reduction in

regulatory T cells and exhaustion of CD8(+) T cells in the

peripheral blood of patients. This observation suggests a potential

link between epigenetic modifications and the immune

microenvironment in thymic epithelial tumors (94).

Epigenetic modifications play a crucial role in the development

and progression of thymic tumors. Dysregulation of DNA

methylation, non-coding RNAs, and histone modifications leads

to aberrant gene expression patterns, contributing to genomic

instability, tumor suppressor gene silencing, and oncogene

activation. Understanding the functional consequences of these

epigenetic alterations is essential for elucidating the underlying

mechanisms of thymic tumorigenesis and identifying potential

therapeutic targets. Furthermore, integrating epigenetic

biomarkers into clinical practice may facilitate personalized

treatment approaches for patients with thymic tumors.
The tumor microenvironment

In the field of oncology, there has been a growing interest in

investigating the tumor microenvironment (TME) and its potential

response to ICIs targeting the PD1/PD-L1 interaction. Similar to

highly heterogeneous tumors such as hepatocellular carcinoma and

melanoma, delving into the complexities of the TME plays a pivotal

role in assessing prognostic outcomes and the efficacy of

immunotherapeutic interventions (95, 96). The components of

the TME exert diverse influences on tumor progression and anti-

tumor immune responses. Within the TME, dominant cellular

subpopulations encompass diverse leukocyte lineages, including

myeloid and lymphoid origins. Certain immune cells exert

tumor-suppressive functions, while others act in a permissive

manner, thus facilitating the coexistence of pro-tumoral

inflammation and anti-tumor immune responses, establishing a
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dynamic equilibrium within the TME. The abundance and

activation status of different cell populations determine the

direction of this delicate balance. Firstly, T lymphocytes exhibit

distinct levels of maturity and functional states across various

histological subtypes, establishing themselves as the most

abundant cellular subset in the TET tumor microenvironment.

Notably, in type A, AB, B1, and B2 thymomas, a higher

prevalence of immature T lymphocytes displaying dual positivity

for CD4 and CD8 immune markers is observed. Conversely, type

B3 thymomas and thymic carcinomas showcase a substantial

infiltration of late-stage differentiated T cells, predominantly

featuring either CD4 or CD8 single positivity, with a notable

polarization towards a CD8 cytotoxic phenotype (97). Notably,

research has revealed a compelling finding in type B3 thymomas

and thymic carcinomas with CD4 and CD8 single-positive T cell

characteristics. The administration of anti-PD-1 antibodies has

been shown to enhance T cell cytokine production and

cytotoxicity in these tumors, suggesting that type B3 thymomas

and thymic carcinomas represent promising targets for anti-tumor

immune therapy (98). Additionally, B cells demonstrate a subtype-

specific distribution pattern, exhibiting a prominent enrichment in

micronodular thymic neoplasms with follicular lymphoid

hyperplasia. Within this subset, B cell presence is observed in

micronodular thymoma with lymphoid B cell hyperplasia, as well

as in micronodular carcinoma with lymphoid hyperplasia where

they assemble into lymphoid aggregates with germinal centers (97).

Dendritic cells, as specialized antigen-presenting cells in the

immune system, play a crucial role in orchestrating the effective

priming of CD8 T cells and generating soluble paracrine factors to

recruit T cells into TME, thereby enhancing local cytotoxicity (99).

Tumor-associated macrophages (TAMs) assume a crucial role

within the tumor microenvironment, exerting dual influence on

immunosuppression and tumor progression. These macrophages

release a diverse repertoire of factors, including epidermal growth

factor (EGF) and TGF-Β1, orchestrating cellular proliferation,

survival, and extracellular matrix degradation, thereby facilitating

invasive potential (100).

Moreover, TGF-Β acts as a pivotal player in the intricate

immunoregulatory network. Its overexpression in advanced

thymic carcinoma patients indicates its potential role in the

pathogenesis of this malignancy, exerting negative modulation on

cytotoxic CD8+ cells and promoting the activation of CD4+

regulatory T cells, thereby fostering self-tolerance and facilitating

tumorigenesis (101). Previous research has identified that TGF-Β

released from platelets plays a role in inhibiting NK cell activity

upon intravital injection, contributing to distant metastasis (102).

Furthermore, TETs exhibit distinct expression profiles of heat shock

proteins, such as HSP27 and HSP70, which play a pivotal role in

driving tumor progression through their pro-inflammatory and

anti-apoptotic functions. Notably, a progressive reduction in the

immunohistochemical expression of these heat shock proteins is

observed across the spectrum from type A thymomas to thymic

carcinomas, diverging from the trends observed in other

malignancies. Conversely, an inverse correlation is observed in

the serum concentration levels of these proteins. These intriguing

findings position heat shock proteins as potential serum biomarkers
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for disease monitoring and promising targets for future

immunotherapeutic approaches, particularly in conjunction with

o t h e r t h e r a p e u t i c r e g im e n s ( 1 0 3 ) . I n a d d i t i o n ,

immunohistochemical analysis has confirmed the elevated

expression of fibronectin B-domain in the stromal cells of TME,

with particularly abundant expression observed in type B3

thymomas. The induction of fibronectin by thymoma-associated

stromal cells leads to its transformation into the ED-B isoform,

which represents a crucial step in tumor progression and

metastasis (104).

In the field of oncology, the TET microenvironment and its

potential responses to ICIs targeting PD1/PD-L1 interactions have

recently garnered widespread attention. Immunohistochemical

investigations have revealed the widespread presence of PD-L1 in

the majority of TETs. Padda et al. reported PD-L1 overexpression in

68% of 69 TET patients (105). Similarly, Katsuya et al.

demonstrated high PD-L1 expression in 70% of thymic

carcinomas and 23% of thymomas within their cohort of 141

TET specimens (106). Consistently, Yokoyama et al. observed an

elevation in PD-L1 expression in 80% of thymic carcinoma samples

(107). However, the prognostic implications of PD-L1 expression

remain contentious (105–107). Notably, PD-L1 and TMB have

emerged as pivotal predictive factors for the response to ICIs

(15). Giaccone et al. reported a modest response rate of 22.5% for

the ICI pembrolizumab in thymic carcinoma, albeit accompanied

by significant autoimmune toxicity affecting 15% of patients (108).

Similarly, Cho et al. investigated the therapeutic efficacy of

pembrolizumab in a cohort of 33 TET patients (comprising 7

thymomas and 26 thymic carcinomas), with an overall response

rate of 21.2% (109).

Nevertheless, the use of ICI therapy in TETs has been associated

with the emergence of severe toxic reactions, notably myocarditis,

myositis/myalgia, transaminitis, and myasthenia gravis. In the

context of thymic carcinoma, the administration of ICIs as

monotherapy has shown a substantial occurrence rate of severe

immune-related adverse events (IRAEs), ranging from 15% to 20%

(108, 109). However, when avelumab and axitinib are combined, a

relatively more tolerable profile of AEs is observed, with 12% of

patients experiencing severe IRAEs, including instances of

pneumonia and polymyositis (110). For patients with thymoma,

the utilization of ICIs has been linked to a higher incidence (ranging

from 38% to 71.4%) of severe and occasionally fatal immune-

mediated toxic reactions (109, 111). Importantly, compared to

other solid tumors treated with ICIs, TETs exhibit a distinct

propensity for multi-organ involvement and treatment-resistant

IRAEs. Consequently, a judicious approach to immune-based

therapies is warranted in this patient cohort, even in cases of

thymic carcinoma.

Studies investigating the potential of ICIs in TETs have

examined PD‐L1 expression and genomic alterations as putative

biomarkers for treatment response. Elevated PD-L1 expression has

shown a positive correlation with a more favorable response to

pembrolizumab (108, 109). Conversely, in patients with B3

thymoma and thymic carcinoma, although PD-L1 expression

correlates positively with higher tumor TMB, it does not

significantly impact the response rate to avelumab and axitinib
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(110). Noteworthy differences have been observed between patients

with high PD‐L1 expression and those with low or no PD-L1

expression, where the latter group is more likely to harbor TP53

mutations, while patients with CYLD mutations exhibit elevated

PD-L1 expression (108). Peripheral blood mononuclear cell analysis

revealed that patients responding to avelumab have higher absolute

lymphocyte counts and lower frequencies of B cells, regulatory T

cells, conventional dendritic cells, and natural killer cells (111).

These findings highlight the significance of immune cell

characteristics both in the tumor microenvironment and

peripheral blood. It is imperative to develop biomarkers for

predicting the risk of IRAEs to ensure the judicious use of ICIs in

this high-risk patient population.

In addition to PD-L1, Arbour et al. identified other immune co-

stimulatory and co-inhibitory markers, such as TIM-3, CTLA-4,

GITR, ICOS, and CD137, exhibiting high expression within the

TET tumor microenvironment. These findings provide potential

avenues for targeted therapeutic interventions (112).

Myasthenia gravis (MG) is an autoimmune disorder

characterized by the production of self-directed antibodies against

diverse targets at the neuromuscular junction. Approximately 30-

40% of thymomas occur in patients with a specific type of MG

known as thymoma-associated MG (TAMG) (113). The

pathogenesis of TAMG hinges crucially on alterations in the

tumor immune microenvironment, which disrupt central

tolerance mechanisms and impede immune regulation. In

particular, defective expression of the autoimmune regulator

(AIRE) and the forebrain-expressed zinc finger 2 (Fezf2) has been

observed in the majority of thymomas, potentially contributing to

compromised negative selection of self-reactive T cells, as well as

defective positive selection of immunosuppressive central

regulatory T cells, thereby offering a partial explanation for the

link between autoimmune diseases and thymomas (114). Apart

from the downregulation of AIRE and Fezf2, other pivotal

mechanisms in central immune tolerance disruption and

predisposition to autoimmunity include perturbation of the

normal thymic architecture and loss of expression of major

histocompatibility complex (MHC) class II molecules in

thymoma cells. Immune dysregulation fosters an abundance of

lymphocytes in an immature state, which may serve as a reservoir

for self-reactive cells upon entry into the bloodstream (115). TAMG

is characterized by a microenvironment that facilitates the

generation of autoantibodies, encompassing the formation of

ectopic germinal centers, the accumulation of T follicular helper

cells, and the migration of type 2 conventional dendritic cells (116).

Transcriptomic analysis within the tumor revealed the upregulation

of genes encoding medium-sized neurofilament (NEFM) and

ryanodine receptor type 3 (RYR3), which share sequence

similarities with major antigenic targets implicated in myasthenia

gravis, such as acetylcholine receptor (AChR), titin, and ryanodine

receptor type 1 and 2 (RYR1, RYR2). These findings suggest a

potential role of a “molecular mimicry” mechanism in the

development of myasthenia gravis in TAMG. Furthermore,

autoimmune syndromes in TAMG patients may be linked to

specific genomic alterations, as evidenced by a higher rate of

aneuploidy (15).
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Gaining a comprehensive understanding of the composition

and dynamics of the TME not only sheds light on the mechanisms

driving tumor progression but also reveals potential targets for

therapeutic interventions. Moreover, this knowledge paves the way

for the development of personalized treatment strategies tailored to

the unique characteristics of individual TET patients. Thus,

investigating the TME in TETs represents a crucial avenue for

advancing our comprehension of these tumors and ultimately

improving patient outcomes.
Conclusion

In this comprehensive review, we delve into the intricate

landscape of TETs, covering chromosome abnormalities,

molecular subtypes, gene mutation abnormalities, gene expression

dysregulation, genetic rearrangements, epigenetic abnormalities,

and the tumor microenvironment. Our synthesis of current

knowledge and research findings significantly contributes to the

understanding of TETs and underscores their clinical significance.

The study of TETs holds paramount importance due to their rarity

and heterogeneous clinical behavior. By unraveling the underlying

mechanisms and molecular characteristics, we can enhance

diagnostic precision, prognostic stratification, and personalized

treatment modalities for TET patients. This review serves as a

pivotal resource, consolidating existing evidence and catering to the

needs of researchers, clinicians, and oncologists immersed in

this field.

While this review presents a comprehensive synthesis of the

molecular characteristics of TETs, it is essential to acknowledge the

limitations inherent in the field and this review. The rarity of TETs

inherently restricts the sample sizes of the discussed studies,

potentially impacting the generalizability of certain findings.

Additionally, we have not delved into potential discrepancies and

conflicting results present in the literature, which may stem from

differences in study design, methodologies utilized, or the inherent

heterogeneity of TETs themselves. It is pertinent to note that, while

encompassing a broad spectrum of molecular features, from

chromosomal abnormalities to epigenetic changes, further

exploration is needed to understand the relative importance and

interplay of these features. Moreover, the strength of evidence varies

across topics, with certain areas, such as the role of non-coding

RNAs, necessitating additional studies for confirmation. Lastly,

while touching upon potential therapeutic implications, the

translation of these molecular insights into clinical practice is a

complex process. Identifying robust therapeutic targets and

devising effective treatment strategies remain daunting tasks.

Integrating knowledge of genetic abnormalities, gene expression

dysregulation, and the intricate interplay with the tumor

microenvironment will be pivotal for designing novel therapeutic

approaches. Multidisciplinary collaborations, encompassing

oncology, pathology, genomics, immunology, and bioinformatics,

will be instrumental in surmounting these challenges. Looking

ahead, future TET research should prioritize several key areas.

Large-scale collaborative endeavors are imperative to establish

comprehensive datasets and bolster the statistical power of
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studies. Additionally, integrating multi-omics approaches,

including genomics, transcriptomics, and epigenomics, can

provide a holistic comprehension of TET biology, facilitating the

identification of potential therapeutic targets. Furthermore,

developing preclinical models that faithfully recapitulate TET

characteristics will expedite the evaluation of novel treatment

strategies and bridge the translational gap. For example,

nomograms play a crucial role in predicting clinical outcomes in

cancer, aiding in the enhancement of survival prognosis, and

subsequently generating rational treatment strategies and

recommendations (117–119).

In summary, this review sheds light on the unique molecular

landscape of TETs, emphasizing the significance of unraveling

TETs for refined diagnostics, prognostication, and therapeutic

interventions. By addressing current challenges and embracing

future research directions, significant advancements can be

achieved in the field of TETs, ultimately enhancing patient

outcomes and quality of life.
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