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Background: Glioblastoma (GBM) is a malignant primary brain tumor. This study

focused on exploring the exosome-related features of glioblastoma to better

understand its cellular composition and molecular characteristics.

Methods: Single-cell RNA sequencing (scRNA-seq) and spatial transcriptome

RNA sequencing (stRNA-seq) were used to analyze the heterogeneity of

glioblastomas. After data integration, cell clustering, and annotation, five

algorithms were used to calculate scores for exosome-related genes(ERGs).

Cell trajectory analysis and intercellular communication analysis were performed

to explore exosome-related communication patterns. Spatial transcriptome

sequencing data were analyzed to validate the findings. To further utilize

exosome-related features to aid in clinical decision-making, a prognostic

model was constructed using GBM’s bulk RNA-seq.

Results: Different cell subpopulations were observed in GBM, with Monocytes/

macrophages and malignant cells in tumor samples showing higher exosome-

related scores. After identifying differentially expressed ERGs in malignant cells,

pseudotime analysis revealed the cellular status of malignant cells during

development. Intercellular communication analysis highlighted signaling
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pathways and ligand-receptor interactions. Spatial transcriptome sequencing

confirmed the high expression of exosome-related gene features in the tumor

core region. A prognostic model based on six ERGs was shown to be predictive

of overall survival and immunotherapy outcome in GBM patients. Finally, based

on the results of scRNA-seq and prognostic modeling as well as a series of cell

function experiments, BARD1 was identified as a novel target for the treatment of

GBM.

Conclusion: This study provides a comprehensive understanding of the

exosome-related features of GBM in both scRNA-seq and stRNA-seq, with

malignant cells with higher exosome-related scores exhibiting stronger

communication with Monocytes/macrophages. In terms of spatial data, highly

scored malignant cells were also concentrated in the tumor core region. In bulk

RNA-seq, patients with a high exosome-related index exhibited an

immunosuppressive microenvironment, which was accompanied by a worse

prognosis as well as immunotherapy outcomes. Prognostic models constructed

using ERGs are expected to be independent prognostic indicators for GBM

patients, with potential implications for personalized treatment strategies for

GBM. Knockdown of BARD1 in GBM cell lines reduces the invasive and value-

added capacity of tumor cells, and thus BARD1-positively expressing malignant

cells are a risk factor for GBM patients.
KEYWORDS

exosome, glioblastoma, scRNA-seq, stRNA-seq, prognostic model, tumor
microenvironment, immunotherapy, BARD1
1 Introduction

Glioblastoma (GBM) is a highly invasive primary brain tumor that

originates from glial cells and is considered one of the most common

and aggressive brain tumors in adults. It typically occurs in the central

regions of the brain, including the cerebral cortex, basal ganglia, and

white matter areas (1). The pathogenesis of GBM is complex and

involves multiple factors such as genetic variations, epigenetic changes,

and environmental factors. Some common biomarkers include the

expression levels of glioblastoma surface molecules (such as EGFR,

IDH1, MGMT), 1p/19q chromosomal deletions, and overexpression

of the MDR1 gene (2, 3). The detection of these biomarkers provides

valuable information about the molecular subtypes, prognosis, and

treatment response of the tumor. The treatment of GBM is a

comprehensive approach that includes surgical resection, radiation

therapy, and chemotherapy. However, due to the invasive and

heterogeneous nature of GBM, the treatment outcomes are often

limited (4, 5). In recent years, the introduction of personalized therapy

and immunotherapy has brought hope for the treatment of GBM, but

many challenges remain. With the increasing importance of molecular

alterations in the classification and grading of gliomas, the search for

new biomarkers and the establishment of effective molecular subtyping

systems are crucial in helping clinicians select the most suitable

treatment strategies for GBM patients (6, 7).

Exosomes are a class of small vesicles secreted by cells that are

approximately 30 to 150 nm in diameter (8). Exosomes contain
02
biomolecules such as proteins, nucleic acids (e.g. DNA and RNA),

lipids, and cell membrane proteins whose composition reflects the

origin and state of their parent cells (9). Exosomes have a dual role

in tumor immunotherapy. They can either activate the immune

response and enhance anti-tumor immunity or they may inhibit the

activity of immune cells and provide an escape mechanism for the

tumor (10, 11). The complexity and diversity of exosomes allow

them to possess different immunomodulatory capacities, and their

role depends on the source, environment, and immune status.

Furthermore, the presence of exosomes in the tumor

microenvironment may inhibit anti-tumor immune responses.

Therefore, an in-depth study of the properties and regulatory

mechanisms of exosomes is essential to optimize their use in

tumor immunotherapy (12, 13).

PD-L1, known for its expression on tumor cells’ surfaces, has

been identified as a promoter of tumor immune evasion.

Surprisingly, apart from its cell surface expression, PD-L1 is

released from tumor cells into the extracellular space in the form

of free PD-L1, including exosomal PD-L1 (14). Emerging research

has highlighted the crucial involvement of exosomal PD-L1 in

tumor-induced immunosuppression. Notably, exosomal PD-L1

exhibits higher resistance to degradation by extracellular protein

hydrolases compared to soluble PD-L1. It also contributes to T cell

dysfunction and enhances stability, emphasizing its significant role

in tumor immune modulation (15). In a recent glioma study, GBM

cells were found to excrete oncogenic miRNAs extracellularly via
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exosomes, promoting the conversion of immune cells ’

immunosuppressive phenotypes in the tumor microenvironment,

thus achieving the dual role of promoting malignant tumor

progression (16).

However, despite significant advances in exosome research

using high-resolution technologies such as single-cell sequencing,

our detailed understanding of exosomes in specific tumor types like

glioblastoma remains limited at present (17). These specific tumors

often have complex cellular compositions and microenvironmental

features, where the role of exosomes may involve more diverse and

complex mechanisms. By studying the characteristics of exosome-

related genes, we can unveil their crucial role in regulating immune

cell functions, modulating the tumor microenvironment, and

influencing tumor immune escape. In this study, we

comprehensively characterized the microenvironment of

exosome-related genes (ERGs) in GBM through single-cell

sequencing and spatial transcriptome sequencing. We combined

this data with bulk sequencing to construct a validated prognostic

index to aid clinicians in making better treatment decisions (18).

Finally, we identified a new immunotherapeutic target, BARD1, and

validated our findings through various bioinformatics and cellular

assays. These additional studies will further unravel the regulatory

mechanisms of exosomes and provide a theoretical basis for

developing targeted therapeutic and immunotherapeutic strategies

against exosomes.
2 Materials and methods

2.1 Source of raw data

Bulk RNA-seq data, mutation data, and clinicopathological

features for TCGA-GBM were downloaded from the UCSC Xena

website (https://xena.ucsc.edu/). There are 168 glioma samples in

the TCGA cohort. Gene expression profiling data for 374 GBM

patients in the validation model were obtained from the China

Gl ioma Genome At las (CGGA) data por ta l (ht tp : / /

www.cgga.org.cn/). All expression profile data were in TPM

format. Batch correction and integration of the two sets of gene

expression data were performed using the “limma” and “sva” (19)

software packages. Single-cell RNA sequencing(scRNA-seq) data

for GBM were downloaded from GSE84465 (20) and contained a

total of 3589 cells within and near the tumor. Spatial transcriptome

RNA sequencing(stRNA-seq) for primary GBM from the 10x

Visium platform was downloaded from GSE194329 (21). 121

exosome-related genes were downloaded from the ExoBCD

database (https://exobcd.liumwei.org) (22).
2.2 Processing of single-cell
sequencing data

We conducted an analysis of single-cell RNA sequencing data

using the R packages ‘Seurat’ and ‘SingleR’ (23). To ensure the

inclusion of high-quality cellular data, we considered genes

expressed in a minimum of three single cells. In addition, we
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excluded cells with gene counts fewer than 200 or exceeding

10,000, fewer than 1000 counts, and over 20% of mitochondrial

and ribosomal genes. To address batch effects between cancer and

paracancer samples, we employed the ‘harmony’ R package (24).

The scRNA-seq data were normalized using the ‘Seurat’ R package

with the ‘NormalizeData’ function. Subsequently, the normalized

scRNA-seq data were transformed into Seurat objects, and the top

2000 highly variable genes were identified using the

‘FindVariableFeatures’ function. To reduce the dimensionality of

the scRNA-seq data, we performed principal component analysis

(PCA) using the ‘RunPCA’ function of the ‘Seurat’ R package.

Significant principal components (PCs) were identified using

JackStraw analysis, and appropriate PCs for cell clustering

analysis were selected based on the proportion of variance. For

the clustering of integrated data, we employed the ‘FindNeighbors’

and ‘FindClusters’ functions, and the resultant cells were visualized

using UMAP or t-SNE methods. To identify genes specifically

expressed in each cluster, we conducted Wilcoxon tests between

pairs of cell clusters using the ‘FindAllMarkers’ and ‘FindMarkers’

functions of the ‘scran’ R package. The expression of specific genes

was depicted using the ‘featureplot’ function (25). Cell type

annotations were based on information from the original text and

the tumor single-cell transcriptome database TISCH (http://

tisch.comp-genomics.org/).

Cell developmental trajectories of malignant cells were analyzed

by pseudotime using the “Monocle” R package (26). After

transforming Seurat objects into cellular dataset objects,

developmental difference genes were selected using unsupervised

analysis. Utilizing the expression of 121 exosome-related genes, we

used five commonly used algorithms to score gene sets from single-

cell data (AddModuleScore, ssGSEA, AUCell, UCell, and

singscore). The “AddModuleScore” algorithm, found within the

“SingleR” R package, is used for scoring gene sets (27). Its essence

lies in first calculating the mean of all genes in the gene set. Then,

the expression matrix is divided into several segments based on the

mean value, and a set of control genes is randomly sampled from

each segment as background values. “ssGSEA” is a single-sample

gene set enrichment analysis method used to evaluate the

enrichment level of gene sets in a single sample or cell. It relies

on the rank-based ordering of gene expression within a sample and

calculates enrichment scores for each gene set. “AUCell” evaluates

whether an input gene set is enriched among the top 5% expressed

genes in a single sample, based on the ranking of gene expression in

individual samples. The distribution of AUC scores across all cells

enables the exploration of relative expression features. Given its

rank-based scoring method, AUCell remains uninfluenced by gene

expression units and normalization procedures. “UCell” (https://

github.com/carmonalab/UCell) (28) is an unsupervised cell type

identification method used to identify and classify the cell types of

individual cells. UCell’s signature score is based on the Mann-

Whitney U statistic, which is robust to dataset size and

heterogeneity. Compared to other available methods, UCell

requires less computational time and memory. “singscore” is a

cell state assessment method used to quantify the activity level of

specific functions or biological processes in a single sample or cell. It

relies on gene sets from the gene expression profile and calculates
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cell state scores for samples or cells by considering gene weights and

directions. These tools and methods have significant applications in

single-cell transcriptomics and gene set enrichment analysis,

helping researchers uncover changes in cell function, biological

processes, and disease relevance, thus providing a deeper

understanding of the complexity of biological systems (29).

The “CellCall” R package is a toolkit for inferring intercellular

communication networks and internal regulatory signals by

integrating intracellular and intercellular signals (30). The most

notable feature lies in its ability to combine intercellular ligand-

receptor communication with intracellular transcription factor

expression, forming a ligand-receptor-transcription factor axis (L-

R-TF axis). Simultaneously, it also encompasses pathway activity

analysis, allowing for the analysis of receptor-cell pathway changes

resulting from communication between two specific cell types.
2.3 Processing of spatial transcriptome
sequencing data

The data is then analyzed using Seurat in R. The UMI counts are

normalized, scaled, and the most variable features are determined

by the “SCTransform” function. Dimensionality reduction is then

performed using “RunPCA” for unsupervised clustering analysis.

The “FindNeighbors” and “FindClusters” functions were executed

with default parameters and the 30 most significant principal

components. The “SpatialFeaturePlot” function was utilized for

visualizing subgroups and genes.

The “scMetabolism” R package, developed by Fudan University,

quantifies metabolic activity at the single-cell level. It operates based

on a conventional single-cell matrix file and employs the VISION

algorithm to score each cell, deriving a final activity score for each

metabolic pathway (31).

For Python, the Scanpy and stlearn packages are employed.

Scanpy is a Python-based package designed for analyzing single-cell

data, encompassing pre-processing, visualization, clustering, proposed

time series analysis, and differential expression analysis. The Institute

of Molecular Biosciences at the University of Queensland has

introduced an integrated analysis method, the stlearn package

(https://github.com/BiomedicalMachineLearning/stLearn). This tool

employs gene expression data, tissue morphology data, and spatial

location information to initially identify cell types and subsequently

reconstruct tissue cell types within tissues. It also infers evolutionary

pathways and identifies tissue regions with high cell-to-cell

interactions. stLearn integrates analyses to deduce interactions

influenced by information on ligand pairs, gene expression, spatial

location, and spatial cell type distribution.

Reverse Compositional Transcriptomics Deconvolution

(RCTD) is a method utilized to deduce cellular composition in

spatial transcriptomic data. This methodology involves analyzing

the comprehensive gene expression profile of an entire tissue or

sample to reverse-calculate the spatial distribution and relative

abundance of each cell type. RCTD’s key advantage lies in its

capacity to infer cellular composition from the overall gene

expression profile, eliminating the necessity for the isolation and

sequencing of individual cells. This attribute is particularly
Frontiers in Immunology 04
advantageous for spatial transcriptomics research, as it uncovers

the relative distribution and interactions of distinct cell types

within tissues.
2.4 Construction and validation of the
exosome-related index

The TCGA-GBM cohort was used as the training set, while the

CGGA dataset was used as the validation set. First, 121 exosome-

related genes were used as candidate predictors for univariate cox

analysis to identify genes that were statistically associated with

patient OS (p< 0.05). Next, we performed LASSO and multivariate

regression analyses to further screen for genes and risk factors that

were strongly associated with prognosis (32). The exosome-related

index (ERI) was calculated for each GBM patient based on the

coefficients determined by multivariate cox analysis. The risk score/

ERI is calculated as follows:

ERI  =  h0(t) * exp(b1 * x1  +  b2 * x2  +…  +  bp * xp)

Here, h0(t) represents the baseline hazard function, indicating

the risk level when all predictor variables are at 0, serving as the

increment over the risk at time t based on a zero value of predictor

variables. b1, b2, …, bp are the regression coefficients of the Cox

model, and x1, x2, …, xp are the corresponding predictor variables

(gene expression values) at time t, the observed values. Based on the

median value of ERI, the patients in the training and validation sets

were divided into high and low-scoring groups. Survival curves

were also plotted using the Kaplan-Meier method and log-rank tests

were used to determine their statistical significance.
2.5 The creation of Nomograms and the
analysis of mutations

To calculate the probability of patient survival, we created a

nomogram combining factors such as ERI, age, and IDH mutation

status as prognostic factors. Using consistency index analysis and

decision curve analysis (DCA), we further assessed the net benefit of

the line graph and clinical characteristics alone. The ‘oncoplot’

functional waterfall plots from the R software ‘maftools’ package

were used to explore detailed mutation characteristics. In addition,

we investigated the correlation between ERI and tumormutational load

(TMB) and visualized this using the R software ‘ggplot2’ package (33).
2.6 Inference of the immune
microenvironment and prediction of
response to immunotherapy

Using the expression profile data, we employed the R package

“estimate” to estimate the abundance of interstitial and immune

cells, as well as tumor purity, in malignant tumor tissue (34).

Subsequently, we assessed the extent of immune infiltration in

GBM patients using the TIMER 2.0 database, which encompasses

results from seven evaluation methods. These data were utilized to
frontiersin.org

https://github.com/BiomedicalMachineLearning/stLearn
https://doi.org/10.3389/fimmu.2023.1263329
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2023.1263329
generate a heat map visualizing the relative fraction of immune cell

infiltration within the tumor microenvironment (TME). To

quantify the relative fraction of infiltrating immune cells and

immune-related functions, we utilized the “ssGSEA” R package

(35). Xu et al. created a website that provides us with a collection of

genes related to cancer and immunology (36), as well as a collection

of genes related to Mariathasan’s findings and a list of genes with

favorable responses to anti-PD-L1 drugs (37). We utilized the

GSVA approach to quantify both gene sets and evaluate their

correlation with ERI. Furthermore, we explored the association

between the model genes and the 51 immune genes, presenting the

results in a circular heat map (38). To investigate variations in

biological function across populations, we conducted Gene Set

Enrichment Analysis (GSEA) using the MsigDB database

“c2.cp.kegg.v6.2.” Additionally, we employed TIDE (http://

tide.dfci.harvard.edu/), which stands for Tumor Immune

Dysfunction and Rejection, as a computational framework to

assess the potential for tumor immune escape based on the gene

expression profile of tumor samples. The Cancer Immunome Atlas

(TCIA) web tool provided comprehensive immunogenomic

analysis results. The Immunophenotype Score (IPS), a

quantitative tumor immunogenicity score ranging from 0 to 10,

was used to denote the immunophenotype score (39). IPS can be

used to predict response to immune checkpoint inhibitors.
2.7 Transfection of cells and real-time PCR

U251MG, LN229, and SW1783 human glioma cells and human

astrocytes (NHA) were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM, Gibco, C11995500BT, Canada) supplemented

with 10% fetal bovine serum (FBS, Gibco, 10091148, Canada) and

1x penicillin/streptomycin (Gibco, 15140-122, Canada). All cultures

were maintained in a CO2 incubator (TFS3111, USA) at 37°C with

5% CO2. BARD1 gene knockdown was achieved using small

interfering RNA (siRNA). The specific BARD1 siRNA sequences

can be found in Supplementary Table 1. In brief, cells were seeded at

50% confluency in 6-well plates and transfected with negative

control (NC) and siBARD1 using Lipofectamine 3000

(Invitrogen, USA).

Total RNA was extracted from cell lines and tissues using

TRIzol (Sigma-Aldrich, T9424, America) according to the

manufacturer’s instructions. cDNA was synthesized using the

PrimeScriptTM RT Reagent Kit (Takara, RR047, Japan). Real-

time polymerase chain reaction (RT-PCR) was performed using

SYBR Green Master Mix (Q111-02, Vazyme) to quantify mRNA

expression levels normalized to GAPDHmRNA levels. The 2−DDCt
method was used to calculate the expression levels. All primers were

provided by Qingdao BioScience (Beijing, China), and the primer

sequences can be found in Supplementary Table 1.
2.8 Cell counting Kit8 assay, Wound-
healing assay, and Transwell assay

First, cells (1000 cells per well) were seeded into a 96-well plate

and incubated at 37°C for 4 hours with CCK-8 reagent (10 mL)
Frontiers in Immunology 05
(Dojindo, CK18, Japan). The absorbance was measured at a

wavelength of 450 nanometers using an ELx800 plate reader

(Thermo, Multiskan Spectrum, USA) to count the cells. Cell

growth was represented as fold change from day 0 to day 4 and

presented in a graph.

In a 6-well plate, transfected cells were electroplated and

cultured in a cell culture incubator until 95% fusion. In each

culture well, a straight line was scraped using a sterile 20 mL
plastic pipette tip, and the unattached cells and debris were gently

rinsed twice with PBS. Finally, the scratch wounds were

photographed at 0 hours and 48 hours using Image J software,

and the wound width was measured.

Cell invasion and migration studies were performed using a

transwell assay. The upper chambers of a 24-well plate were filled

with treated SW1783 cells (2×10^5 cells) and incubated for 48

hours. To evaluate the invasive and migratory abilities of the cells,

the top surface of the plate was pre-coated with a matrix gel solution

(BD Biosciences, USA) or left uncoated. The remaining cells at the

bottom layer were fixed with 4% paraformaldehyde and stained

with 0.1% crystal violet (Solarbio, China) after removing the

surface cells.
2.9 Statistical analysis

The statistical analyses were conducted using R version 4.1.3,

64-bit, along with its support packages. The Pycharm (3.9)

integrated development environment for Python was also utilized.

Prognostic values and comparisons of patient survival across

different subgroups in each dataset were calculated using Kaplan-

Meier survival analysis and the log-rank test. The non-parametric

Wilcoxon rank sum test was employed to assess the relationship

between two groups for continuous variables. Prognostic variables

within the clinical characteristics of the different subgroups were

identified through univariate and multivariate Cox regression

analysis using the R package “survival.” Spearman correlation

analysis was conducted to examine correlation coefficients. A

significance level of P<0.05 was considered statistically significant

for all statistical investigations.
3 Results

3.1 Scoring of exosome-related features
in scRNA-seq

A brief flowchart depicting this study is displayed in Figure 1.

Single-cell data from four samples were acquired based on the

scRNA-seq data of GSE84465, aiming to explore the heterogeneity

of glioblastoma and appraise disparities among cells situated within

and adjacent to the tumor. Following stringent quality control

filtration for the removal of low-quality cells, a total of 3533 cells

were encompassed in subsequent analysis (Supplementary

Figure 1A). After the elimination of batch effects and

normalization of data, the top 2000 highly variable genes were

chosen (Supplementary Figure 1B). For dimensionality reduction,
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the PCA technique was employed, with the top 20 principal

components selected for further scrutiny based on P values

(Supplementary Figure 1C). Data integration and batch effect

elimination for the four single-cell samples were carried out using

the Harmony algorithm, and t-SNE was employed to exhibit the

distribution of cells before and after integration (Supplementary

Figures 1D, E). Following the identification of 15 clusters,

established marker genes were employed to annotate cell

subpopulations. The distribution of different samples, tissue types,

clusters, and cell subpopulations after annotation was demonstrated

using t-SNE visualization (Figures 2A–D). Figure 2F delineates the

proportional representation of distinct cell types within the four

samples. The expression patterns of these genes across each cell type

were showcased, predicated upon commonly used cellular marker

genes (Figure 2E). The heatmap portrays the relative expression of

marker genes within each cell subpopulation, with the top five

marker genes calculated (Figure 2G). Grounded in the expression

data of 121 exosome-related genes (ERGs), five prevalent

algorithms (AddModuleScore, GSVA, AUCell, UCell, and

singscore) were employed to assign scores to the gene sets within

the single-cell data. The outcomes, depicted in Figures 2H, I,

demonstrated relatively heightened exosome-related scores (ERS)

in monocytes/macrophages and malignant cells. Moreover, a
Frontiers in Immunology 06
comparison between exosome-related scores in tumor and

adjacent tissues unveiled intriguing observations: monocytes/

macrophages, malignant cells, and oligodendroglial within tumors

exhibited notably high ERS (Figure 2J). Following the integration of

all malignant cells, a differential analysis of malignant cells within

the tumor and adjacent tissues was conducted, revealing 33 ERGs

with significant differential expression in both contexts

(Supplementary Table 2).
3.2 Pseudotime analysis and intercellular
communication analysis

The evolution and differentiation of cells at the single-cell level

can be inferred through cell trajectory analysis, accomplished by

constructing intercellular trajectories to reshape cellular processes

over time. The determination of cell trajectories and pseudotime

distributions of malignant cells was carried out using the “monocle”

R package, revealing the existence of seven cellular states during

malignant cell development. For instance, the early state of cell

development corresponds to cluster 5 (Figure 3A). The expression

of 33 differentially expressed exosome-related genes at various

developmental stages is depicted in the heatmap of Figure 3B,
FIGURE 1

Flow chart of this study.
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where BRAD1 is notably highly expressed in the early stages of

malignant cell development. The “CellCall” tool was utilized to infer

intercellular communication networks and internal regulatory

signals by integrating intracellular and intercellular cues. By

leveraging the median exosome-related scores across all

malignant cells, we classified these cells into ERS high and ERS

low groups. Bubble plots were employed to present the results of

signaling pathway activity analysis, revealing that malignant cells

with high scores exhibited intensified JAK-STAT signaling pathway

activity in relation to monocytes/macrophages (Figure 3C). The

JAK-STAT signaling pathway is implicated in pivotal biological

processes like cell proliferation, differentiation, apoptosis, and

immune regulation. The circle plot showcased in Figure 3D

illustrates the intensity of direct ligand-receptor signaling across

distinct cell types. Notably, a more pronounced CTF1-IL6ST

ligand-receptor pair relationship was observed between malignant

cells with high scores and monocytes/macrophages (Figure 3F).

Subsequently, we shifted our focus to inferring the presence of

ligand-receptor pairs and corresponding transcription factors (TFs)

between high-scoring malignant cells and monocytes/

macrophages (Figure 3E).
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3.3 Exosome-related features in spatial
transcriptome sequencing

Spatial transcriptome sequencing data from a GBM patient was

sourced from GSE194329, and following the exclusion of ribosomal

and mitochondrial genes, the SCTransform method was applied to

rectify sequencing depth and implement a series of normalizations.

Through downscaled clustering, a total of 11 cellular subgroups were

delineated within the spatial context (Figures 4A, B). The 33

exosome-related genes investigated in the prior study exhibited

generally elevated expression across these 11 subgroups

(Figure 4C). Guided by the original literature’s annotations,

subpopulations 0 and 1 primarily occupied the GBM tumor core.

Consequently, the “scMetabolism” R package was utilized for the

assessment of metabolic activity within distinct cell subpopulations.

Notably, subpopulations 0 and 1 exhibited close ties to Folate

biosynthesis and tryptophan metabolic activity (Figure 4D). In this

context, tryptophan, an essential amino acid, stands as a pivotal

microenvironmental factor influencing the immunobiology of

various tumor types. Its metabolism is integral to fostering

immunosuppression, invasion promotion, and growth facilitation
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FIGURE 2

Categorization of cellular subpopulations in GBM and enrichment scores of exosome-related genes. (A–D) t-SNE plots of different samples, tissue
sources, clusters of cells, and cell subpopulations associated by color. (E) Expression of common marker genes used for cellular annotation in these
cell subpopulations. (F) Histogram of cell type content for different samples. (G) Heatmap showing the relative expression of marker genes in eight
cell subpopulations. Red color represents highly expressed genes and blue color represents lowly expressed genes. (H) Enrichment scores of
exosome-related genes for each cell type in GBM are shown by bubble plots. (I) Enrichment scores of exosome-associated genes in each cell type
are shown by t-SNE plots, with darker purple color having higher scores. (J) The difference in enrichment scores of exosome-related genes in each
cell type in tumor and peripheral tissues. ns, Not significant; ** p< 0.01; **** P< 0.0001.
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in malignant gliomas (40). As depicted in Figure 4E, heightened

tryptophan metabolic activity was prominently enriched within the

tumor’s core region. Leveraging Python’s Scanpy and stlearn

packages, we conducted a trajectory analysis of cell subpopulations

within the spatial domain. Employing pycharm, we normalized and

clustered the spatial transcriptome data, yielding an additional set of

11 cell subpopulations (Figure 4F). Of interest, cluster 0, located
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within the tumor’s core, exhibited a differentiation trend toward

cluster 5 situated in the periphery (Figure 4G). Ultimately, we

employed the RCTD method to extrapolate the annotated cell

types from single-cell data into the spatial dataset, inferring

predominant cell types at each spatial location. Notably malignant

cells with elevated exosome-related scores are predominantly located

in the core of the tumor (Figure 4H).
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FIGURE 3

pseudotime analysis and cell communication analysis. (A) Cell trajectory and pseudo-time analysis for the malignant cells. (B) Heat map showing the
expression of 33 differentially expressed exosome-related genes during cell development. Red represents high expression and blue represents low
expression. (C) Bubble plots present the activity analysis of signaling pathways in different cell types. (D) The intensity of ligand receptors between
different cell types is shown by circle plots. (E) Ligand receptor pairs and associated transcription factors between malignant cells with high exosome
scores and monocytes/macrophages. (F) Ligand receptor intensities between different cell types.
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3.4 Calculation of exosome-related index
and construction of the prognostic model

To further utilize exosome-related features to aid clinical

decision-making, 121 exosome-related genes (ERGs) were used to

construct prognostic models in the bulk-seq of GBM. 168 GBM

samples with survival information from the TCGA dataset were used

as the training set for constructing prognostic risk models, and 388

GBM samples with survival information from the CGGA dataset were

samples in the CGGA dataset used for external validation. First, the

univariate cox analysis method was used to screen 17 ERGs affecting

the overall survival (OS) of GBM patients (P<0.05, Figure 5A). To

avoid prognostic signature overfitting and narrowing down the genes

predicting OS, a 6-gene signature was constructed by Lasso-Cox

regression analysis (Figures 5B, C). Risk scores/ERI were calculated

for each patient based on the expression profile of each gene and the

corresponding regression coefficients (Figure 5D). By weighting the

estimated cox regression coefficients, our model yielded an exosome-

related index (ERI) for each patient in the TCGA cohort. Based on the

scoring formula, patients were divided into a low-ERI group and a

high-ERI group using the median ERI as the cut-off point. The risk

graph shows the detailed survival outcomes for each patient in the

TCGA cohort and the CGGA external validation cohort (Figures 5E,
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F). Survival curves for both the training and validation groups showed

that patients in the high-ERI group had worse OS compared to those

in the low-ERI group (Figures 5G, H). In addition, the ROC curves

showed that ERI performed well in predicting OS for these individuals

in the TCGA cohort (Figure 5I).
3.5 Validation of the clinical value of
the exosome-related index and
construction of nomograms

In the TCGA cohort, ERI could be an independent prognostic

indicator for patients compared to other common clinical features

(age, grade, IDH mutation status, etc.) according to univariate and

multivariate Cox analysis (Figures 6A, B). In addition to that, the area

under the curve (AUC) of ERI at 1 year was much higher than other

clinicopathological features (Figure 6E). To help clinicians make

better clinical decisions, based on the correlation between the above

clinicopathological features and ERI, we created a nomogram for

predicting 1-year, 1.5-year, and 2-year survival rates in GBM patients

(Figure 6C). The calibration curves were also able to show that the

nomogram was able to make accurate predictions (Figure 6D). 1-year

DCA curves (Figure 6F) and C-index values (Figure 6G) both showed
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FIGURE 4

correlation analysis of the spatial transcriptome. (A) UMAP plot showing the 11 clusters identified by stRNA-seq. (B) Spatial plot showing the 11
clusters identified by stRNA-seq. (C) Bubble plot presenting the expression intensity of exosome-related genes for different clusters. Red color
represents high expression and blue color represents low expression. (D) Bubble plots presenting the metabolic intensities of different clusters. Red
represents high expression, blue represents low expression. (E) The spatial plot of tryptophan metabolic intensity. (F) The spatial plot of 11 cellular
clusters identified in python. (G) Spatial map showing the developmental trajectory of cluster 0 to cluster 5. (H) The distribution of different cell types
in the spatial map was identified by the algorithm of RCTD.
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that our constructed nomogram and ERI had the highest net benefit

and that the risk model constructed based on the six ERGs was more

influential in clinical decision-making than the traditional model in

clinical decision making. The results of the chi-square test showed

that grouping was associated with the IDH mutation status of

patients (Figure 6H). The proportion of IDH mutations was higher

in patients in the low-ERI group (Figure 6I). Based on the analysis of

the results, we are more confident that ERI and nomograms are

reliable clinical predictive scoring systems.

3.6 Mutational landscape, analysis of
immune infiltration and immune function

Given the pivotal role of genetic mutations in tailoring cancer

patient treatments, the somatic mutation profiles of 121 ERGs were
Frontiers in Immunology 10
examined. As depicted in Supplementary Figures 2A, B, HRNR

emerged as the most frequently mutated gene, predominantly

featuring missense mutations. Additionally, the distribution of the

most frequently mutated genes in gliomas within ERI subgroups

was scrutinized, revealing a higher prevalence of TP53 and EGFR

mutations in high-ERI subgroups (Supplementary Figure 2C).

Moreover, an exploration of the co-mutation patterns among

model genes unveiled the co-mutation of HOXC6 and DCT

(P<0.05, Supplementary Figure 2D). However, no substantial

discrepancy in TMB was observed between patients in the high-

ERI and low-ERI groups (Supplementary Figures 2E, F).

Subsequently, patients were categorized into four groups based on

median TMB values and median ERI (H-TMB+high ERI, H-TMB

+low ERI, L-TMB+high ERI, and L-TMB+low ERI). The

outcomes indicated that patients with low ERI and high
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FIGURE 5

Calculation of exosome-related index and construction of the prognostic model. (A) Forest plot showing the univariate cox analysis obtained for 17
prognosis-related genes. (B) LASSO coefficient profiles. (C) 10-time cross-validation for tuning parameter selection in the Lasso model. (D) Model
genes and coefficients were determined by lasso regression and multivariate cox analysis. (E) Distribution of scores between the low ERI and high
ERI groups in the TCGA cohort and patient survival. (F) Distribution of scores between the low-ERI and high-ERI groups in the CGGA cohort and the
survival status of patients. (G) Kaplan-Meier survival curves for OS of patients in the low ERI and high ERI groups in the TCGA cohort. (H) Kaplan-
Meier survival curves for OS of patients in the low-ERI and high-ERI groups in the CGGA cohort. (I) AUC values of ERI at 1, 2, and 3 years in the
TCGA cohort.
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mutation burdens exhibited relatively improved prognoses

(Supplementary Figure 2G).

The clinical outcome of patients and their response to therapy is

influenced by the tumor microenvironment (TME). Among the factors

within the TME, tumor-infiltrating immune cells play a significant role

in impacting tumor progression and the effectiveness of antitumor

therapies. Tumor-infiltrating immune cells (TIICs) constitute a crucial

element of the TME, and their composition and distribution are

intimately linked with tumorigenesis and progression (41).

Consequently, an investigation was conducted into the immune
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landscape of high and low-ERI groups using algorithms from

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, CIBERSORT,

CIBERSORT-ABS, and EPIC platforms (Figure 7A). To further delve

into the relationship between the exosome-related index and immune

cells and their functions, the enrichment scores of diverse immune cell

subpopulations and immune functions were quantified through the

“ssGSEA”method. The findings demonstrated that the high ERI group

exhibited elevated scores for immune cell infiltration and immune

pathway activation (Figure 7C). This encompassed certain

immunosuppressive cells, including regulatory T cells (Tregs) and
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FIGURE 6

Independent prognostic analysis of exosome-related index (ERI) and clinicopathological factors in the TCGA cohort. (A, B) Univariate and multivariate
Cox regression analyses of clinicopathological variables and OS risk scores in the TCGA training cohort. (C) Combined nomograms of age, sex, and IDH
mutation status for predicting 1-, 1.5-, and 2-year OS in GBM patients. (D) Correction curves of nomograms. (E) AUC values for ERI and clinical
characteristics at 1 year in the TCGA cohort. (F) DCA curves of ERI, nomogram scores, and other clinical features. (G) The predictive effect of different
clinical features, nomogram scores, and ERI were evaluated using c - index curves. (H) Heat map of clinical characteristics associated with subgroups as
determined by chi-square test. (I) The proportion of IDH mutation status in different score subgroups. *P< 0.05; ***P< 0.001.
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tolerogenic dendritic cells. Given the considerable influence of

abnormal expression and function of immune checkpoint molecules

on tumor immunotherapy, the expression of immune checkpoints

(ICs) was evaluated across different ERI subgroups. Nearly all ICs

showed heightened expression in the high ERI group (Figure 7E).

Additionally, ESTIMATE was employed to compute the ratio of

stromal and immune cells within various ERI subgroups, providing

an estimate of tumor purity (Figure 7F). Heat maps were employed to

visualize the expression of ICs, TME scores, and immune cell

infiltration patterns in distinct subgroups (Figure 7B). Due to the

contrasting prognostic outcomes and immune infiltration patterns in

patients from the high-ERI and low-ERI groups, a Gene Set

Enrichment Analysis (GSEA) was carried out to uncover potential

disparities in biological functions between these two groups. For each

group, the four most prominent signaling pathways were selected

(Figure 7D). The high ERI group was notably associated with various

cytokine-related pathways, whereas the low-ERI group exhibited

enrichment in signaling pathways related to cell cycle and division.

Based on the aforementioned findings, it is speculated that patients

within the high ERI groupmay face a less favorable prognosis, although

they exhibit more robust immune function. Patients with higher ERI

might correspond to a tumormicroenvironment in GBM characterized
Frontiers in Immunology 12
by immunosuppression, which could contribute to a reduced response

rate to immunotherapy.
3.7 Prediction of the effectiveness
of immunotherapy

A recent study (42) has validated the remarkable advancements

made in cancer treatment through immune checkpoint blockade (ICB)

therapy. Gaining a deeper comprehension of the mechanisms

underpinning cancer immunotherapy and translating this

understanding into therapeutic strategies could potentially lead to

prolonged survival for patients with limited treatment options.

However, the efficacy of ICB therapy remains limited due to primary

resistance, resistance development, and associated toxicities. To gain

further insights into the role of risk scores in immunotherapy, the

TIDE score was utilized to assess patients with potential abnormalities

in immune function within tumors and regional lymph nodes. This

approach aimed to judiciously identify candidates for immunotherapy.

It is recognized that the impact of immunotherapy may fluctuate with

tumor progression owing to variations in the degree of immune

infiltration. Consequently, we probed whether prognostic models
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FIGURE 7

Immune microenvironment analysis of different ERI subgroups. (A) Differences in immune infiltration in different ERI subgroups were assessed using
seven algorithms. (B) Heat map illustrating the differences in TME scores, immune checkpoint expression, and immune cell infiltration in different ERI
subgroups (based on ssGSEA). (C) Radar plot illustrating the differences in immune cell infiltration and immune-related pathways calculated by
ssGSEA between patients in different ERI subgroups. (D) GSEA analysis of the high-ERI and low-ERI groups focusing on the different enrichment of
the KEGG pathway. (E) Differences in immune checkpoint expression between different ERI subgroups. (F) Differences in TME scores between
patients in different ERI subgroups. * P<0.05, ** P<0.01, *** P<0.001.
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could predict responses to ICB in GBM patients. The utilization of the

Immune Profile Score (IPS) can identify individuals who stand to

benefit from immunotherapy. The violin plots illustrate the correlation

between IPS values and risk groups, with higher IPS values indicating

enhanced responses to PD-1 and CTLA-4 inhibitors. We anticipated a

favorable immune response to CTLA-4 inhibitors in individuals from

the low-ERI group (Figure 8A). Given the pivotal role of the immune

microenvironment in mediating ICB responses, we further delved into

the correlation between risk scores and ICB response characteristics.

Notably, the ERI exhibited a significant negative correlation with these

ICB response attributes (Figure 8B). In order to comprehensively

explore the variations in immune responses across different

subgroups, correlation analyses were conducted using six model

genes and classical immune-related genes (Figure 8C). The TIDE

score reflects tumor immune dysfunction and rejection, offering a

computational framework to assess the likelihood of tumor immune

evasion based on gene expression profiles from tumor samples.

Elevated tumor TIDE prediction scores correlated with diminished

ICB responses and inferior patient survival. Our findings revealed that

patients in the high-ERI group exhibited heightened dysfunction

scores, while those in the low-ERI group demonstrated elevated

exclusion scores. Notably, there was no substantial discrepancy in

TIDE scores between these two groups (Figure 8D).
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3.8 BARD1+malignant cells as a target for
prognosis and immunotherapy

Based on the intersection of differential and model genes in

Supplementary Table 1, a total of three ERGs are thought to

influence GBM progression and treatment (Figure 9A). Interestingly

BARD1, CTSB, and GSTP1 were all highly expressed in tumor

samples from the TCGA dataset (Figure 9B). Based on whether

these three genes were expressed in malignant cells, we divided the

malignant cells in single-cell sequencing into expression positive and

negative groups. Based on the marker genes of BARD1, CTSB, and

GSTP1 expressing positive cells, the algorithm of GSVA was used to

impute the content of these cells in the bulk sequencing data. We

categorized them into high and low groups based on the optimal cutoff

value, and the group with high expression of BARD1 and CTSB+

malignant cells had a poorer prognosis (P<0.05, Figure 9C and

Supplementary Figure 3A), whereas the difference in the overall

survival curves between the two groups of GSTP1+ malignant cells

was not statistically significant (P>0.05, Supplementary Figure 3D).

Patients with a lower percentage of BARD1+ malignant cells may

respond better to immunotherapy (P<0.05, Figure 9D). Meanwhile,

the proportion of BARD1+ malignant cells was significantly positively

correlated with cancer-associated fibroblasts (CAF) (Figure 9E). In
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FIGURE 8

Prediction of the effect of immunotherapy. (A) Comparison of the relative distribution of immune fraction (IPS) in the high-ERI and low-ERI groups.
(B) Correlation of ERI with ICB response characteristics and each step of the tumor-immune cycle. (C) Heat map of model gene and immune gene
correlations. (D) TIDE between GBM patients in the high-ERI and low-ERI groups. ns, not significant, * P<0.05, ** P<0.01.
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contrast, patients with lower proportions of CTSB+ and GSTP1+

malignant cells may respond poorly to immunotherapy, and the

comparison was not statistically significant (P>0.05, Supplementary

Figures 3B, E). In the spatial transcriptome, it is clear that BARD1

expression is overall low, while CTSB and GSTP1 aremainly expressed

in the core region of the tumor (Figure 9F, Supplementary Figures 3C,

F). Thus, malignant cells with positive BARD1 expression may be a

risk factor for GBM. To understand the interactions of these cells in

space, we again performed deconvolution of BARD1+ malignant cells,

BARD1- malignant cells, and other cells according to the RCTD

method. The recipient-ligand interactions were inferred by Python’s

stlearn, and Figure 9G shows the top 50 reciprocal ligand-receptor

pairs. Among them, there is strong ligand-receptor communication

between BARD1+ malignant cells and vascular cells (Figure 9H).

Figure 9I demonstrates the spatial enrichment score of COL4A2-

CD93 ligand-receptor pairs.

3.9 Experimental validation of BARD1

The expression levels of BARD1 in HA cells and three GBM cell

lines were initially compared through cell line experiments,
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revealing a notable upregulation of BARD1 in tumor cells

(Figure 10A). Subsequently, the expression level of BARD1 was

assessed 5 days post-transfection using qRT-PCR, to validate the

effectiveness of siRNA-mediated BARD1 knockdown in the

SW1783 cell line (Figure 10B). Following this, a CCK-8 cell assay

demonstrated that the reduction of BARD1 resulting from

knockdown significantly hindered the proliferative capacity of the

SW1783 cell line (Figures 10C, F). Furthermore, the wound healing

assay unveiled that the knockdown of the BARD1 gene notably

impeded the migratory and invasive potential of SW1783 cells

(Figures 10D, G). In alignment with the wound healing assay

outcomes, GBM cells transfected with si-BARD1 exhibited

diminished migratory and invasive capabilities in the transwell

assay (Figures 10E, H). Collectively, these findings collectively

indicate that BARD1 serves as a pro-carcinogenic factor in GBM.
4 Discussion

Exosomes are extracellular vesicles that were first discovered 30

years ago. Since then, they have been used for intercellular
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FIGURE 9

BARD1 is a marker of poor prognosis in GBM patients. (A) Three genes common to exosome-related and model genes were obtained by differential
analysis in single-cell sequencing. (B) Expression of three genes in the TCGA cohort. (C) Kaplan-Meier survival curves for OS of patients in the high
and low BARD1+ malignant cell expression groups. (D) Prediction of response to immunotherapy by TIDE based on the proportion of BARD1+
malignant cells. (E) Correlation between the proportion of BARD1+ malignant cells and CAF cell content. (F) Spatial map of BARD1 expression. (G)
Interacting ligand-receptor pairs of top50. (H) Ligand-receptor communication of different cell types in space. (I) The spatial plot of COL4A2-CD93
ligand-receptor pair scores. *** p< 0.001.
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communication, disease transmission, and drug development (43).

Studies have reported that a single glioma cell can secrete

approximately 10,000 exosomes within 48 hours (44). Numerous

studies have shown that exosomes can influence the process of

glioma development, growth, and metastasis by interacting with

tumor cells and their surrounding microenvironment. Firstly,

bioactive molecules within exosomes can impact tumor cell

signaling pathways and gene expression through their transport
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and delivery mechanisms, consequently enhancing the

proliferation, invasion, and metastatic potential of tumor cells

(45). For instance, a study investigating the impact of glioma cells

on the angiogenic process revealed that these cells could induce

angiogenesis by transferring LncRNA-CCAT2 to endothelial cells

through exosomes (46). Secondly, miRNAs and other nucleic acid

molecules in exosomes can alter the gene expression pattern of

tumor cells by horizontal transfer, affecting the phenotype and
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FIGURE 10

Role of BARD1 in GBM. (A) BARD1 was highly expressed in GBM cell lines compared to normal human astrocyte NHA cell lines. (B) RT-qPCR was
performed to detect the relative expression of BARD1 in GBM cells transfected with si-RNAs or negative control (NC). (C, F) CCK8 assay showed that
SW1783 cells with reduced BARD1 expression had significantly reduced proliferative capacity compared to the NC group. (D, G) Scratch healing
assay. the migration rate of SW1783 cells with reduced BARD1 gene expression was significantly reduced. (E, H) Transwell assay showed that down-
regulation of BARD1 expression inhibited the migration and invasion ability of SW1783 cells. All data are expressed as mean ± SD of three
independent experiments. * p< 0.05, ** p< 0.01, *** p< 0.001.
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characteristics of tumors. For example, epithelial-mesenchymal

transition (EMT) is an important factor that plays an important

role in glioma progression, and inhibition of microRNA-708 in

exosomes has been reported to increase cell proliferation and EMT

in gliomas by promoting the SPHK2/AKT/catenin pathway (47). In

addition, exosomes modulate the immune system response and

inhibit immune cell activity, thus helping tumor cells to evade

immune surveillance (48). Nonetheless, there remain unanswered

questions and challenges concerning the role of exosomes in

gliomagenesis. The precise mechanisms of exosome action and

their interaction networks within glioma remain incompletely

understood, underscoring the need for further investigations to

unveil these aspects.

In recent years, the development of single-cell sequencing and

spatial transcriptome technologies has brought new breakthroughs

in tumor research and provided a deeper understanding of

tumor types such as glioblastoma (GBM). However previous

bioinformatics analyses rarely integrate them can compensate for

each other and provide more comprehensive information (49).

Single-cell sequencing technology allows us to perform high-

throughput analysis of individual cells, revealing the heterogeneity

and subpopulation structure within tumors. Single-cell sequencing

allows us to identify different types of tumor cells, immune cells,

and other cellular components and to study their functions and

interactions in GBM. Nevertheless, single-cell sequencing does not

furnish information about the spatial distribution of cells, a crucial

aspect in the intricate organization of GBM. In contrast, spatial

transcriptome technology provides the spatial distribution pattern

of cells in tissues by analyzing gene expression on tissue

sections. The spatial transcriptome allows us to understand the

positional relationships of different cell types in GBM tissues

and to explore the network of cellular interactions. Thus, the

integration of single-cell sequencing and spatial transcriptome

technologies assumes paramount significance in GBM research.

Harnessing their combined potential enables us to acquire a more

comprehensive and precise understanding of tumor cells and

tissues, thus elucidating the pathogenesis of GBM, the tumor

microenvironment, and potential therapeutic targets (50). This

integrated analysis will drive tumor research in a deeper and

more detailed direction and provide stronger support for future

individualized therapy.

In this study, we employed single-cell sequencing and spatial

transcriptomic techniques to characterize exosome-related genes in

glioblastoma (GBM), thereby providing insight into the potential

role of exosomes in GBM development and immunotherapy. Our

results demonstrate that at the single-cell level, exosome-related

genes exhibit significant heterogeneous expression patterns in GBM

and show expression differences in specific cellular subpopulations

and microenvironmental locations in spatial transcriptomic data.

Single-cell sequencing data revealed heterogeneous expression of

these genes in GBM cell populations, suggesting that exosome

synthesis and function may be influenced by cellular

heterogeneity. Our study found that gene enrichment scores

associated with exosomes were significantly higher in GBM

samples than in cells from peripheral samples. Thus due to the

possible presence of higher levels of exosome release in tumor
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tissues (51). Cancer-associated cells secrete more exosomes than

healthy cells because of the need to exchange information or

nutrients between cells. It is estimated that the blood of cancer

patients contains twice the amount of exosomes than that of healthy

humans. It is reasonable to assume that in tumors, more exosomes

are required to meet the intercellular communication needs due to

the complex hypoxic environment in which tumors form (52, 53).

Interestingly, when we brought this feature into the spatial

transcriptome by means of deconvolution, we found that

exosome features at the core locations of GBM tumors scored

relatively higher. Thus the function of tumor cells in the core

region of GBM is affected, leading to a decrease in their exosome

secretion. We speculate that hypoxia in the tumor core region

affects exosome secretion. Hypoxia is usually present in the tumor

core region due to rapid growth and irregular blood supply.

Hypoxic conditions alter the metabolic pathways and cellular

signaling pathways of tumor cells, thus affecting exosome

formation and release. Studies have shown that a hypoxic

environment can lead to more exosome production by tumor

cells and that the composition and function of exosomes may be

altered (54). Under hypoxic conditions, tumor cells may increase

exosome release in response to environmental stress and facilitate

tumor cell interactions through exosome messaging. In addition,

the hypoxic environment may lead to changes in the number and

type of specific proteins, RNAs, or other biomolecules in exosomes,

which may be associated with characteristics such as tumor

aggressiveness, metastatic ability, and treatment resistance (55).

Subsequently, we used spatial transcriptomic techniques to combine

the expression of these exosome-related genes with cell type and

tissue structure to reveal the spatial heterogeneity of exosomes in

the GBMmicroenvironment. Of particular interest, we discovered a

remarkably robust intercellular communication between tumor

cells exhibiting higher exosome scores and vascular endothelial

cells. Notably, angiogenesis, a critical process in glioma

development, is known to be influenced by glioma-derived

exosomes. These exosomes have been reported to play a

significant role in driving angiogenesis during glioma progression.

For instance, a study has suggested that glioma cells can induce

angiogenesis by transferring Linc-CCAT2 to endothelial cells

through exosomal transport. This finding highlights the

involvement of exosomes in mediating angiogenesis and its

potential impact on glioma pathogenesis (56). In addition, we

observed that CD93 has a key role in tumor vascular maturation

and extracellular matrix organization and is a potential therapeutic

target, and a previous study showed that CD93 regulates Integrin b
signaling activation and fibronectin fibril organization during

tumor angiogenesis (57).

Considering the role of exosomes in GBM progression as

immunosuppressive and aiding tumor metastasis, we developed a

new exosome-related scoring system and associated index for risk

stratification and prediction of personalized therapy (58). After

analysis by lasso-cox regression, we classified patients into two

subgroups based on ERI expression. Similar to many previous

studies, patients in the high ERI group had a worse prognosis and

were accompanied by higher TIICs and TME scores. The exosome-

related signature we constructed proved to be effective for risk
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stratification of GBM patients and as an independent predictive

variable to assess the survival of GBM patients. In addition, higher

tumor microenvironment TME scores were associated with higher

ERI. In several previous bioinformatics studies, mesenchymal and

immune scores were found to be significantly higher with

malignancy progression and to suggest an extremely poor

prognosis (59), and since immunosuppressive cells within the

TME render immunotherapy ineffective, TME is considered a red

flag for GBM patients (60). Of course, in addition to the irreversible

suppressive role played by TME in GBM, hypoxic conditions

may also protect tumors from immune responses through

various mechanisms, inhibit the activity of natural killer cells

and connective tissue cells, and promote the release of

various immunosuppressive cytokines and the enhancement

of immunosuppressive cell function. Our study suggests

that higher ERIs are associated with an immunosuppressive

microenvironment, which explains why patients in the low-

scoring subgroup showed an advantage in terms of OS and

effective response to immunotherapy.

The therapeutic effect of immune checkpoint inhibitors (ICIs)

alone for GBM is relatively limited due to the immune escape

mechanism and immunosuppressive microenvironment of GBM.

However, in recent years, researchers have begun to explore the use

of ICIs in combination with other therapeutic approaches (e.g.,

radiotherapy, chemotherapy, vaccines, etc.) to improve the

therapeutic efficacy of GBM (61). Currently, there are several

clinical trials exploring the potential of ICIs in the treatment of

GBM. Although partial responses and prolonged survival have been

observed in some patients, overall, the efficacy of ICIs in the

treatment of GBM remains relatively limited. Researchers are

working to find more effective treatment strategies and

combination regimens to overcome the resistance of GBM to

immunotherapy (62). We investigated the distribution of

common ICs between the high-ERI and low-ERI groups. Most

ICs, including PD-1, CTLA-4, IDO, LAG-3, and TIM-3 were

expressed higher in the low subgroup. The interaction of

programmed cell death factor 1 (PD-1) protein and programmed

cell death ligand 1 (PD-L1) protein generates an immunoregulatory

axis that promotes GBM cell invasion in brain tissue (63). PD-L1

elevated in glioma cells binds to PD-1 on Tumor-Associated

Macrophages (TAMs) and Tumor-Infiltrating Lymphocytes

(TILs), induces a suppressive immune microenvironment, and is

associated with poor prognosis in GBM patients (64, 65). The study

of the GBM tumor immune cycle and ICB response revealed that

ERI showed a significant negative correlation with ICB-related

positive signals, while it showed a positive correlation with the

suppressive tumor immune cycle. The above findings further

support that immunosuppression is characteristic in the high ERI

group. Finally, the calculation of the IPS score showed that a higher

response rate to immunotherapy was associated with a lower ERI

score and also corresponded to a better prognosis.

Interestingly, we finally identified a risk gene for GBM, BARD1,

through differential screening at the single-cell sequencing level and

selection of a model gene. In recent decades, researchers have

investigated the role of the BARD1 gene in cancer progression

and its use as a prognostic biomarker and potential candidate for
Frontiers in Immunology 17
targeted cancer therapy (66). BARD1 is a gene that encodes a

protein that plays a critical role in the development and progression

of different types of cancer. This protein plays a dual role in cancer

as both a tumor suppressor and an oncogene (67). Notably, BARD1

shares a structurally homologous domain with BRCA1, and these

two proteins interact to impede the progression of different cancers,

including breast and ovarian cancers, through the BRCA1-

dependent pathway (68). Furthermore, BARD1 has been

implicated in other tumor suppression pathways, such as the

tp53-dependent apoptosis signaling pathway (69). Mutations in

BARD1 have been associated with susceptibility to various cancers,

including lung, breast, and cervical cancers (70). These mutations

may result in the generation of distinct BARD1 isoforms that differ

from the full-length BARD1 protein. These isoforms may have a

dominant negative effect, meaning that they interfere with the

function of the full-length protein and promote tumor growth

(71). BARD1 is now included in the clinical genome for cancer

susceptibility testing. This means that mutations in BARD1 can be

used as a diagnostic tool to identify individuals at higher risk of

developing certain types of cancer (72, 73). In addition, BARD1 is

being investigated as a potential therapeutic target for cancer

treatment. However, there is still a gap in the study of BARD1 in

GBM, and according to our findings, BARD1-positive GBM cells

represent a poor prognosis and poorer immunotherapeutic efficacy,

and subsequently, based on a series of knockout experiments, it is

more confirmed that aberrant expression of BARD1 in gliomas can

contribute to malignant transformation of cells and lead to

proliferation of tumor cells, avoidance of apoptosis, and promote

abnormal biological behaviors such as invasion and metastasis.

In this study, we performed a comprehensive analysis of

exosome-related gene features expressed at the single-cell

sequencing level and the spatial transcriptome level. Our study

revealed differences in the expression of exosome-related genes in

different cell subpopulations by single-cell sequencing, which

provides clues for a deeper understanding of the role of exosomes

in tumor immune escape and drug resistance mechanisms. On the

other hand, through spatial transcriptome technology, we were able

to explore the expression patterns of exosome-related genes at the

tissue structure and to study their distribution characteristics within

the tumor and surrounding microenvironment. In addition to this,

we highlighted significant differences in anti-tumor immune

response and immune status among different ERI groupings in

GBM. Furthermore, we created a novel exosome-related index that

provides some new data and novel findings for GBM biomarkers

and their clinical applications. This signature not only correctly

predicts the prognosis of GBM patients, but also provides additional

benefits in terms of prognosis and personalized treatment for these

high-risk patients.

However, despite the important application potential of single-

cell sequencing and spatial transcriptome technologies in revealing

exosome-related gene features, there are still some limitations (74).

First, single-cell sequencing technologies may have certain noise

and errors during the detection process, and have limitations on the

capture rate and coverage of cells, which may result in the

expression characteristics of certain cell subpopulations being

overlooked or underestimated. Second, spatial transcriptome
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technologies are still in the developmental stage, and challenges

remain for the analysis and interpretation of complex tissue

structures. In addition, these technologies require more refined

and efficient methods of data processing and analysis. And all our

analyses were performed only on data from public databases, large

prospective studies as well as additional in vivo and in vitro

experimental studies are needed to confirm our findings, and

most importantly this exosome-related signature needs to be

validated in more real cohorts.
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SUPPLEMENTARY FIGURE 1

quality control and principal component analysis of scRNA-seq. (A) Quality

control of scRNA-seq data from GBM samples. (B) Variance plot showing
14,263 genes in all cells, with red dots representing the top 2,000 highly

variable genes. (C) Principal component analysis was used to downscale and

select the top 20 PCs.(D) t-SNE plots of four samples before over harmony to
remove batch effects. (E) t-SNE plots of four samples after performing

harmony to remove batch effects.

SUPPLEMENTARY FIGURE 2

Mutation landscape of GBM samples. (A) Description of the details of

mutations in all 121 exosome-related genes, where the most common
mutation type is a missense mutation. SNPs account for an absolute

proportion of mutations compared to insertions or deletions, and C>A

occurs more frequently than other types. The horizontal histogram lists the
top 10 mutated genes in GBM. (B) Mutation landscape of all 121 exosome-

related genes. (C) Mutation landscape of the top 10 genes in mutation
frequency in the two ERI subgroups. (D) Co-mutation or co-exclusion

relationships between model genes. (E) Comparison of tumor mutational
load (TMB) between different subgroups. (F) Correlation analysis of ERI and

TMB. (G) Survival differences among the four subgroups of H-TMB+ high ERI,

H-TMB+ low ERI, L-TMB+ high ERI, and L-TMB+ low ERI.

SUPPLEMENTARY FIGURE 3

Analysis of CTSB and GSTP1. (A) Kaplan-Meier survival curves for OS in

patients in the high and low CTSB+ malignant cell expression group. (B)
Prediction of response to immunotherapy based on the proportion of CTSB+

malignant cells. (C) Spatial map of CTSB expression. (D) Kaplan-Meier survival

curves for OS of patients in the high and low GSTP1+ malignant cell
expression group. (E) Prediction of response to immunotherapy based on

the proport ion of GSTP1+ malignant cel ls. (F) Spatial plot of
GSTP1 expression.

SUPPLEMENTARY TABLE 1

siRNA and primer sequence information.

SUPPLEMENTARY TABLE 2

33 ERGs differentially expressed in malignant cells from the tumor and
peripheral samples.
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